Projections climatiques // Climate predictions

On peut lire sur le site « global-climat » un article qui explique que des outils existent pour mesurer concrètement le réchauffement local du climat et faire des projections pour les prochaines décennies.

Ce n’est un secret pour personne. Sous l’effet des gaz à effet de serre et, peut-être d’un cycle climatique de réchauffement, notre planète va continuer à connaître une hausse de température au cours des prochaines décennies. Des outils permettent aujourd’hui de dire en fonction des scénarios d’émissions de gaz à effet de serre qu’en général les villes de l’hémisphère nord verront leur climat afficher les caractéristiques de villes situées bien plus au sud. Dans l’hémisphère sud, la climatologie adoptera réciproquement des caractéristiques que l’on retrouve aujourd’hui plus au nord.

Une étude publiée en 2018 permet d’appréhender le changement climatique de 90 villes européennes de 1951 à 2100 avec le scénario A1B du GIEC qui conduit à une hausse globale de 3°C en 2100. La méthode développée dans cette étude prend en compte cinq variables climatiques : la température moyenne et les précipitations moyennes mensuelles ; la température minimale mensuelle pour les mois d’hiver et la température maximale mensuelle pour les mois d’été ; les précipitations totales annuelles.

Ces variables ont été calculées mensuellement (ou annuellement dans le cas de la variable annuelle des précipitations totales) et moyennées sur cinq périodes de 30 ans, à savoir P1 (1951-1980), P2 (1981-2010), P3 (2011-2040), P4 (2041-2070) et P5 (2071-2100). Parmi les 90 villes étudiées, 70 villes ont des analogues climatiques fiables pour chacune des quatre périodes futures de 30 ans.

Parmi les déplacements climatiques les plus spectaculaires, le climat de Berlin sera situé en 2071-2100 (P5) à 1 584 km vers le sud (sud de l’Espagne) par rapport à son climat en 1951-1980 (P1). Les résultats montrent que la vitesse du changement climatique des villes européennes n’est pas constante de 1951 à 2100, mais qu’elle accélère de manière significative tout au long du 21ème siècle.

Le climat des villes européennes se déplacera vers le sud à une vitesse moyenne de 7,9 km par an de 1951-1980 à 2071-2100 (P1-P5), selon le scénario A1B. Cela signifie qu’en moins d’une génération humaine (c’est-à-dire 25 ans), le climat des villes européennes changera de 200 km en moyenne vers le sud. Ce changement climatique rapide aura sans aucun doute des conséquences négatives sur les 416 millions d’habitants des 90 villes faisant l’objet de l’enquête.

En été, la ville championne du réchauffement sera Sofia, en Bulgarie. Pour Paris, le réchauffement est un peu moins important mais reste très impressionnant, notamment en été avec +6,5°C en 2100, digne de ce que l’on trouve actuellement à Fez, au Maroc. Comme en Bulgarie, la tendance est clairement à la hausse depuis les années 80. La projection pour 2100 avec le scénario RCP8.5 annonce +5,2°C en moyenne annuelle à Paris :

L’étude concernant les Etats-Unis montre également, comme celle sur l’Europe, que le climat de la plupart des zones urbaines nord-américaines changera considérablement et ressemblera davantage aux climats contemporains des localités situées à 850 km et principalement au sud. Avec un scénario de fortes émissions de CO2, le citadin moyen aux Etats-Unis devra parcourir près de 1 000 km pour se rendre dans un climat semblable à celui qu’il est susceptible de rencontrer dans sa ville aujourd’hui.

Les données montrent que, d’ici 2050, les Australiens ne profiteront plus de l’hiver tel qu’ils le connaissent aujourd’hui et connaîtront une nouvelle saison baptisée « Nouvel été ». Le nouvel été représente une période de l’année où, dans de nombreuses localités, les températures dépasseront régulièrement les 40 ° C sur une période prolongée.

Source : global-climat.

Si ces prévisions se confirment, elles obligeront certains secteurs à s’adapter, en particulier les zones de montagne où la saison de sports d’hiver se réduira comme peau de chagrin. L’agriculture devra s’adapter elle aussi car les besoins en eau se feront de plus en plus grands. La population de certaines régions devra probablement subir des restrictions pour sa consommation. Je ne serai plus là pour assister à cette évolution climatique sévère, mais je suis persuadé que l’Homme saura s’adapter, même si cela ne se fera pas sans mal.

A l’échelle de la planète, beaucoup de glaciers disparaîtront ; la banquise continuera de fondre, ouvrant la voie à de nouvelles routes de navigation, avec les risques que cela suppose pour l’environnement. L’économie subira, elle aussi, de profondes transformations, en particulier l’agriculture qui devra s’adapter, voire se déplacer en fonction des nouvelles conditions climatiques.

————————————————————-

One can read on the « global-climat  » website, an article explaining that tools exist to concretely measure the local warming of the climate and to make projections for the next decades.
It’s no secret to anyone. Under the effect of greenhouse gases and, perhaps, a warming climate cycle, our planet will continue to experience a rise in temperature over the coming decades. Tools now make it possible to say in terms of greenhouse gas emission scenarios that, in general, the future climate of cities in the northern hemisphere will display the characteristics of cities far further south. In the southern hemisphere, climatology will adopt reciprocally features that are found today further north.
A study published in 2018 makes it possible to apprehend the climatic change of 90 European cities from 1951 to 2100 with the IPCC A1B scenario which leads to an overall increase of 3°C in 2100. The method developed in this study takes five variables into account: average temperature and average monthly precipitation; minimum monthly temperature for the winter months and maximum monthly temperature for the summer months; total annual precipitation.
These variables were calculated monthly (or annually in the case of the annual total precipitation variable) and averaged over five 30-year periods, namely P1 (1951-1980), P2 (1981-2010), P3 (2011-2040) ), P4 (2041-2070) and P5 (2071-2100). Of the 90 cities surveyed, 70 cities have reliable climate analogues for each of the four future 30-year periods.
Among the most spectacular movements, the climate of Berlin will be located in 2071-2100 (P5) 1,584 km to the south (south of Spain) compared to its climate in 1951-1980 (P1). The results show that the speed of climate change in European cities is not constant from 1951 to 2100, but accelerates significantly throughout the 21st century.
The climate of European cities will move southwards at an average speed of 7.9 km per year from 1951-1980 to 2071-2100 (P1-P5), according to the A1B scenario. This means that in less than a human generation (i.e. 25 years), the climate of European cities will move an average of 200 km to the south. This rapid climate change will undoubtedly have negative consequences for the 416 million inhabitants of the 90 cities surveyed.
In summer, the champion city of warming will be Sofia, Bulgaria. For Paris, the warming is a little less significant but remains very impressive, especially in summer with + 6.5°C in 2100, with temperatures currently found in Fez, Morocco. As in Bulgaria, the trend has been clearly on the rise since the 80s. The projection for 2100 with the scenario RCP8.5 predicts  + 5.2°C average annual in Paris:
The US study also shows, like the one on Europe, that the climate of most North American urban areas will change considerably and will be more like the contemporary climates of places 850 km to the south. With a scenario of high CO2 emissions, the average city-dweller in the United States will have to travel nearly 1,000 km to reach a climate similar to the one he is likely to encounter in his city today.
The data shows that by 2050, Australians will no longer enjoy the winter as they know it today and will experience a new season called « New Summer ». The new summer is a time of year when, in many places, temperatures will regularly exceed 40°C over a prolonged period.
Source: global-climat.

If these predictions are confirmed, they will force some sectors to adapt, especially mountain areas where the winter sports season will be reduced to a trickle. Agriculture will have to adapt too, because water needs will be higher and higher. The population of some areas will probably have to face water restrictions for consumption. I will no longer be here to witness this severe climate change, but I am convinced that Man will adapt, even if it will not be without difficulty.
At the planet level, many glaciers will disappear; the ice sheet will continue to melt, paving the way for new shipping routes, with obvious risks to the environment. The economy will also undergo profound transformations, in particular agriculture which will have to adapt, or even move, according to the new climate conditions.

Evolution prévue de la température à Paris (Source : Carbon Brief)

Séismes et éruptions volcaniques // Earthquakes and volcanic eruptions

A l’issue de ma conférence « Volcans et risques volcaniques », les gens me demandent souvent s’il existe un lien entre les séismes et les éruptions volcaniques. Je réponds que dans certaines circonstances, on a cru voir un lien et que, dans d’autres, le lien était loin d’être évident. Cependant, j’insiste sur le fait que la sismicité est présente avant une éruption car le magma provoque une fracturation des roches pendant son ascension et cette fracturation est enregistrée par les sismomètres.
Les séismes d’origine tectonique – provoqués par les mouvements des plaques, en particulier dans les zones de subduction – font partie des phénomènes naturels les plus impressionnants sur Terre. Rien d’étonnant à ce qu’ils soient parfois associés au déclenchement des éruptions volcaniques. Les volcans sont souvent situés dans des régions sismiques comme la célèbre Ceinture de Feu du Pacifique. On y enregistre 90% des séismes et on y rencontre 75% de tous les volcans actifs de la planète. Les éruptions et les tremblements de terre ont souvent lieu à peu près au même moment; Cependant, on ne peut affirmer qu’il existe un lien direct entre un séisme et une éruption qui a eu lieu peu de temps après le premier événement. Le volcan était peut-être déjà sur le point d’entrer en éruption, ou bien il était déjà en éruption depuis longtemps.
Des études récentes laissent supposer qu’il pourrait exister un lien entre les séismes et les éruptions volcaniques dans certaines situations. Par exemple, un article paru en 1993 établit un lien entre un séisme de magnitude M 7,3 en Californie et des manifestations volcaniques et géothermales observées immédiatement après. Une étude publiée en 2012 estime qu’un séisme de magnitude M 8,7 au Japon en 1707 a entraîné la pénétration du magma dans une chambre peu profonde du Mont Fuji et déclenché une puissante explosion du volcan 49 jours plus tard. Le séisme de magnitude M 7,2 survenu le 29 novembre 1975 sur le Kilauea à Hawaii a été rapidement suivi d’une éruption de courte durée.

Cependant, il existe d’autres cas où un séisme majeur n’a pas été suivi d’une éruption. L’un des meilleurs exemples se situe au Japon en 2011. Les scientifiques japonais craignaient que le puissant séisme de Tohoku (magnitude M 9.1) le 11 mars 2011 réveille le Mont Fuji, ce qui ne s’est jamais produit!
A l’heure actuelle, les mécanismes de déclenchement des séismes ne sont pas bien compris, et les documents reliant les tremblements de terre à des éruptions ne s’appuient que sur des spéculations. Il est possible que le timing dans tous les exemples mentionnés ci-dessus soit juste une coïncidence. Les géologues doivent avant tout comprendre le déclenchement des séismes et exclure toute intervention du hasard avant d’établir un lien entre séismes et éruptions.

Parfois, il est fait référence à l’histoire pour montrer la corrélation entre les séismes et les éruptions volcaniques. Un document publié en 2009 a utilisé des données historiques pour montrer qu’il existe une relation entre un séisme de M 8,0 au Chili et un nombre d’éruptions en nette hausse sur certains volcans situés à une distance pouvant aller jusqu’à 500 km. Le problème est que de telles données historiques ne sont pas vraiment fiables. En effet, les grands séismes et les grandes éruptions volcaniques sont des événements relativement peu fréquents, et les scientifiques ne disposent pas d’un recul suffisant. Les archives fiables n’existent que depuis un demi-siècle ou un peu plus, selon les régions.
Dans le passé, les données provenaient de récits de voyages et de journaux de bord assez ambigus. Ainsi, en 1840, Darwin a recueilli des informations fournies par des témoins oculaires et relatives à des modifications mineures survenues sur des volcans chiliens à la suite du puissant séisme de 1836. Au final, en lisant les écrits de Darwin, on ignore si des éruptions ont eu lieu.
Des simulations ont été réalisées en laboratoire en 2016 et 2018 pour tenter de comprendre le comportement du magma dans la chambre magmatique et voir si ce comportement pourrait éventuellement déclencher des séismes. Cependant, aucune corrélation réelle entre les séismes et les éruptions volcaniques n’est ressortie de ces expériences.
Adapté d’un article de 2018 dans le National Geographic.

———————————————–

During my conference “Volcanoes and volcanic risks”, people often ask me whether there is a link between earthquakes and volcanic eruptions. I answer that on some occasions there appears to be some link and in other circumstances the link is far from clear. However, I insist that seismicity is always linked to an eruption and present before the event as magma causes the fracturing of rocks during its ascent and this fracturing is recorded by the seismometers.

Tectonic earthquakes – caused by the movement of plates, especially in subduction zones – are among the most powerful natural phenomena on the planet. It’s no surprise that they are sometimes suspected of being able to trigger volcanic eruptions. Earth’s volcanoes are often located in seismic parts of the world like the well-known Ring of Fire around the Pacific Ocean. This area hosts 90 percent of the world’s recorded earthquakes and 75 percent of all active volcanoes. Eruptions and earthquakes are often taking place at roughly the same time; however, you can’t automatically assume that there’s a connection between a given quake and a subsequent eruption. The volcano may have already been preparing to erupt, or it is already been erupting for a long time.

Recent studies suggest that a connection could potentially exist between earthquakes and volcanic eruptions in certain situations. For instance, a 1993 paper links an M 7.3 quake in California to volcanic and geothermal rumblings immediately afterward. And a 2012 study reckons that an M 8.7 earthquake in Japan in 1707 forced deeper magma up into a shallow chamber, triggering a huge blast at Mount Fuji 49 days later. There was also the M 7.2 earthquake on Hawaii’s Kilauea volcano on November 29th, 1975, which was quickly followed by a short-lived eruption.

However, there are other examples showing that a major earthquake has not been followed by an eruption. One of the best example was in Japan in 19 when Japanese scientists feared the powerful M 9.1 Tohoku earthquake on March 11th, 2011 might wake up Mount Fuji, which it never did!

The triggering mechanisms for earthquakes are not well understood, and papers linking quakes to later eruptions can really only speculate. It is quite possible that the timing in all these examples was just a coincidence. Geologists must understand the specific triggering and rule out chance before a connection can be definitively made.

Sometimes, reference is made to history to show the correlation between earthquakes and volcanic eruptions. A 2009 paper used historical data to show that that M 8.0 quakes in Chile are associated with significantly elevated eruption rates in certain volcanoes as far as 500 kilometres away. The problem is that these sorts of historical data are not really reliable. Indeed, major earthquakes and large volcanic eruptions are both relatively infrequent events, and scientists have only been reliably keeping these records for the last half century or more, depending on the region.

Many data points in the past come from fairly ambiguous news reports and journal entries. For instance, in 1840, Darwin gathered eyewitness information on some minor changes at Chilean volcanoes following the powerful quake there in 1836. However, it is unclear if any eruptions took place.

Simulations were performed in laboratory in 2016 and 2018 to try and understand magma behaves within the chamber and how this behaviour might eventually trigger earthquakes. However, no real correlation between earthquakes and volcanic eruptions came out of these experiments.

Adapted from a 2018 article in the National Geographic.

La Ceinture de Feu du pacifique, une zone sismique et volcanique très active (Source: Wikipedia)

Le Mont Fuji, un volcan sous surveillance (Crédit photo: Wikipedia)

Mt Agung (Bali / Indonésie)

L’ Agung a connu une nouvelle séquence éruptive le vendredi 24 mai 2019. Elle a duré quatre minutes et 30 secondes et projeté des matériaux sur un rayon de 2,5 à 3 km. La cendre est retombée sur des dizaines de villages, mais aucune victime n’a été signalée et aucune évacuation n’a eu lieu. Certains vols ont été annulés vers et depuis l’Australie, mais l’aéroport international fonctionne de nouveau normalement. Le niveau d’alerte reste à trois (SIAGA) et une zone d’exclusion de 4 km a été établie.
Source: VSI, presse locale et internationale.
D’autres événements explosifs semblables sont susceptibles de se reproduire, chaque fois que la pression des gaz détruira le dôme de lave dans le cratère. L’aéroport international de Bali rencontre des problèmes lorsque les vents poussent la cendre dans la mauvaise direction. Des vols peuvent être annulés. Il convient de noter qu’aucun progrès n’a été réalisé depuis l’éruption islandaise de l’Eyjafjallajökull en 2010.

————————————-

Mt Agung went through another eruption on Friday, May 24th, 2019. It lasted for four minutes and 30 seconds, spraying lava and rock showers over a 2.5- to 3-kilometre radius. Ash fell over dozens of villages, but no casualties were reported and no evacuations took place. Some flights were canceled to and from Australia after the eruption, but normal operations have since resumed. The alert level remains at level three (SIAGA) and a 4 kilometre exclusion zone has been established.
Source: VSI, local and international press.
Similar explosive events are likely to take place again, each time gas pressure destroys the lava dome within the crater. Bali’s international airport when the winds blow the ash in the wrong direction. Flights may also be cancelled. It should be noted no progress has been made since the Icelandic eruption of Eyjafjallajökull in 2010.

Pour mieux comprendre les noms islandais… // To better understand Icelandic names…

On peut lire sur le site web Iceland Monitor un article intéressant qui explique la signification des noms de certains lieux et volcans d’Islande.

Le mont Hekla (1491m) est l’un des volcans les plus connus et les plus actifs d’Islande. Ses éruptions sont fréquentes et commencent en général par des explosions accompagnées de panaches de cendre, suivies par des fontaines et de grandes coulées de lave. Les dernières éruptions ont eu lieu en 1980, 1981, 1991 et 2000.
Le mot Hekla fait référence à un manteau ou une cape. L’origine du nom tient peut-être au fait que l’Hekla se couvre d’un manteau de neige plus tôt que la plupart des montagnes islandaises, avant de s’en débarrasser au printemps lorsque le temps le permet.

Lakagígar est une fissure éruptive longue de 27 km jalonnée de 130 cratères au sud-ouest du Vatnajökull. Une éruption de 8 mois, entre juin 1783 et février 1784, a tué 50% à 80% du bétail et 25% de la population islandaise.
L’origine du mot Lakagígar est assez surprenante. Il désigne les cratères du Laki, la montagne en leur centre. Le mot Laki désigne, quant à lui, le feuillet*, l’un des compartiments de l’estomac d’un ruminant. On pense que le nom vient du fait que la forme de la montagne rappelait aux gens celle du feuillet.

* Ceux qui, comme moi, ont passé le certificat d’études primaires, se souviennent que la vache et plus généralement les ruminants ont un système digestif composé d’un estomac (la caillette) et de trois pré-estomacs (la panse, le bonnet et le feuillet).

L’Esja est une montagne au sommet plat située à environ 10 kilomètres de Reykjavík. En fait, ce n’est pas vraiment une montagne ; c’est davantage une chaîne volcanique dont le plus haut sommet culmine à 914 mètres. L’origine du nom est intéressante. Il existe de vieilles histoires sur une femme irlandaise appelée Esja, qui vivait à Esjuberg. C’est pourquoi certaines personnes sont persuadées que le nom est irlandais. Cependant, il s’agit plus probablement d’un prénom féminin scandinave, comme il en existe dans toute la Scandinavie. Il signifie à la fois l’âtre et un type de roche de couleur claire que l’on trouve sur la montagne.

Fnjóskadalur est une vallée du nord de l’Islande; c’est aussi le site de la forêt de Vaglaskógur. Le nom est composé des mots fnjóskur qui désigne un morceau de bois sec, et dalur, qui signifie ‘vallée’. Des découvertes archéologiques dans la vallée montrent qu’il y a très longtemps, on fabriquait du charbon à partir du bois sec de la forêt.

Eyjafjallajökull est le célèbre volcan qui est entré en éruption en 2010, menntant des voyageurs en détresse et bloquant des aéroports dans de nombreuses régions du monde. La prononciation du nom a posé bien des problèmes aux étrangers, alors qu’il est assez facile de le comprendre. Le mot est dérivé de deux mots: Eyjafjöll et jökull. ‘Jökull’ signifie glacier et ‘Eyjafjöll’ les montagnes de l‘île. L’Eyjafjöll est la montagne sous la calotte glaciaire de l’Eyjafjallajökull. Les îles en question sont peut-être les îles Vestmann, au sud, ou Landeyjar, la région située à l’ouest des montagnes.

—————————————————-

One can read on the website Iceland Monitor an interesting article that explains the meaning of the names of some of Iceland’s places and volcanoes.

Mount Hekla (1491m) is one of Iceland’s best known and most active volcanoes. It has frequent eruptions that start with explosions producing eruption plumes, and followed by lava fountains and large lava flows. The last eruptions occurred in 1980, 1981, 1991 and 2000.

The word Hekla can mean coat or outer garment. The origin of the name may have to do with the fact that Hekla puts on a coat of snow earlier than most mountains, only to throw it off in spring when weather allows.

Lakagígar is a 27-km long eruptive fissure consisting of 130 giant craters on the southwest side of Vatnajökull. An 8-month long eruption, which lasted from June 1783 until February 1784 killed 50%- 80% of the livestock and 25% of the Icelandic population died.

The origin of the word Lakagígar  comes as a surprise. It means the craters of Laki, which is the mountain at their center. Laki is the word for one of the compartments of a ruminant’s stomach, more precisely the omasum. The name is believed to stem from the fact that the shape of the mountain reminded people of that of an omasum.

 

Esja, is a flat-topped mountain about 10 kilometres from Reykjavík. Actually, it is not a true mountain in itself, but a volcanic range, the highest peak of which reaches 914 metres tall. It has an interesting name. Old stories exist of an Irish woman by the name of Esja, who lived in Esjuberg. Therefore, some believe the name is Irish. More likely, though, it is a Scandinavian female name, as it exists all over Scandinavia, meaning both fireplace and a type of rock. It may refer to a light-colored rock type, found in the mountain.

 

Fnjóskadalur is a valley in North Iceland; it is also the site of Vaglaskógur forest. The name is made from the words fnjóskur, meaning a dry piece of wood, and dalur, meaning valley. Archaeological finds in the valley suggest that ages ago, coal was made from dry wood in the forest.

 

Eyjafjallajökull is the volcano which famously erupted in 2010, stranding passengers and blocking airports in many parts of the world. Pronouncing the word proved difficult for many foreigners, whereas understanding it is quite easy. The word is derived from two words: Eyjafjöll and jökull. Jökull means glacier and Eyjafjöll means island mountains. Eyjafjöll is the name of the mountain under the Eyjafjallajökull ice cap. The islands referred to may be Vestmannaeyjar islands, to the south, or Landeyjar, the area to the west of the mountains.

Vue de l’Hekla (Crédit photo: Wikipedia)

Lakagigar (Photo: C. Grandpey)

Eruption de l’Eyjafjallajökull en 2010 (Crédit photo: Wikipedia)