Sismicité dans les Samoa américaines // Seismicity in American Samoa

L’Observatoire des Volcans d’Hawaii, le HVO, m’a envoyé un message faisant état d’une hausse de la sismicité depuis fin juillet dans les îles Manuʻa des Samoa américaines (voir carte ci-dessous). Les Samoa américaines sont un territoire non incorporé des États-Unis situé dans l’océan Pacifique Sud, au sud-est de l’État indépendant des Samoa.
Selon le HVO, les secousses sismiques sont probablement dues à une activité magmatique sous les îles. L’Observatoire essaie de comprendre la source de cette sismicité et ses implications potentielles.
Les volcans des Samoa américaines sont du même type que ceux d’Hawaï, avec la plaque Pacifique qui se déplace vers le nord-ouest au-dessus du point chaud (hotspot) des Samoa. Le phénomène donne naissance à des volcans sous-marins qui finissent par émerger de l’océan sous forme d’îles. Ces îles sont les sommets de grands volcans boucliers basaltiques s’élevant à plus de 4 500 mètres au-dessus du plancher océanique
Le point chaud samoan est actuellement centré sur le volcan sous-marin (seamount) Vailuluʻu, qui a connu plusieurs éruptions historiques. Les îles Manuʻa d’Ofu, Olosega et Ta’ū, ainsi que l’île principale de Tutuila, sont toutes considérées comme potentiellement actives car elles ont connu des éruptions au cours des 10 000 dernières années.
Tutuila est l’île la plus peuplée des Samoa américaines et c’est là que se trouve la capitale Pago Pago. La plus récente éruption émergée des Samoa américaines a eu lieu sur l’île de Tutuila il y a environ 1400 à 1700 ans. Cependant, de nombreuses éruptions sous-marines se sont produites plus récemment sur les volcans à l’est de Tutuila.
Les îles Manu’a, situées à environ 100 km à l’est de Tutuila, comprennent Ofu, Olosega et Ta’ū. Ofu et Olosega, et sont séparées de Tutuila par l’étroit détroit d’Asaga. Ce sont les sommets de deux volcans boucliers. Taʻū, le plus volumineux du groupe Manuʻa, est un volcan bouclier avec des zones de faille au nord-est et au nord-ouest. En 1866, une éruption sous-marine a formé un cône entre Taʻū et Olosega.
Le volcan sous-marin Vailuluʻu, le plus jeune volcan samoan, est situé à environ 40 km à l’est de Taʻū. Son sommet se trouve à environ 600 m sous le niveau de la mer. Vailuluʻu est entré en éruption à plusieurs reprises au cours des 50 dernières années. Au cours des vingt dernières années, un jeune cône s’est édifié dans la caldeira sommitale.
Si l’on se réfère aux rapports concernant les événements sismiques ressentis et à l’activité historique, on pense que Taʻū et Vailuluʻu sont des sources probables de la sismicité récente. Il était jusqu’à présent difficile d’identifier cette source car il n’y avait pas de sismomètres suffisamment proches. Les dernières données, obtenues à partir de microsismomètres rapidement déployés, indiquent que la source est proche de Taʻū qu’Olosega, mais éloignée de Vailuluʻu. L’essaim sismique est très probablement dû au mouvement du magma sous les volcans et non à des failles tectoniques.
On ne sait pas si cette dernière activité sismique débouchera sur une éruption volcanique. Si cette dernière se produit, elle présentera très probablement des coulées de lave lentes ou des explosions de faible intensité se limitant à une petite zone. D’autres risques pourraient inclure des gaz volcaniques, des séismes et des tsunamis locaux. Une éruption comme celle du Hunga Tonga-Hunga Ha’apai début 2022 est extrêmement improbable car il s’agit d’un type de volcan très différent. Les volcans des Tonga entrent en éruption de manière beaucoup plus explosive que ceux des Samoa américaines et d’Hawaï.
Source : USGS, HVO.

———————————————

The Hawaiian Volcano Observatory (HVO) has sent me a message about an increase in seismisity since late July in the Manuʻa Islands of American Samoa (see map below). American Samoa is an unincorporated territory of the United States located in the South Pacific Ocean, southeast of the independent state of Samoa.

The earthquakes are likely associated with magmatic activity beneath the islands. The Observatory is trying to better understand the source and potential hazard implications of these ongoing earthquakes.

Volcanoes in American Samoa are similar to those in Hawaii, with the Pacific Plate moving to the northwest over the Samoa hotspot and building submarine volcanoes that eventually emerge from the ocean as islands. These islands are the tops of large basaltic shield volcanoes rising over 4,500 meters from the surrounding seafloor.

The Samoan hotspot is currently centered on Vailuluʻu seamount, which has had several historic eruptions. The Manuʻa Islands of Ofu, Olosega, and Ta‘ū, along with the main island of Tutuila, are all considered potentially active as they have erupted within the last 10,000 years.

Tutuila is the most populous island in American Samoa and is where the capital city of Pago Pago is located. The youngest dated eruption in American Samoa on land is on Tutuila and occurred approximately 1400–1700 years ago. However, numerous submarine eruptions have occurred more recently at volcanoes east of Tutuila.

The Manu‘a Islands, located about 100 km east of Tutuila, include Ofu, Olosega and Taʻū. Ofu and Olosega, separated by the narrow Asaga Straight. They are the tops of two shield volcanoes. Taʻū, the largest of the Manuʻa group, is a shield volcano with rift zones to the northeast and northwest. In 1866, a submarine eruption formed a cone between Taʻū and Olosega.

The Vailuluʻu seamount, the youngest Samoan volcano, is located about 40 km east of Taʻū. It is a submarine volcano with a summit about 600 m below sea level. Vailuluʻu has erupted multiple times over the past 50 years. During the past twenty years, a young cone has grown within the summit caldera.

Based on felt reports and historic activity, Taʻū and Vailuluʻu were identified as likely possible sources for the recent seismicity. It was initially difficult to confirm the source because, until a few days ago, there were no seismometers close enough to determine the distance to the source of the earthquakes. The latest data, obtained from rapidly deployed microseismometers, indicate that the source is closer to Taʻū than Olosega and not close to Vailuluʻu. The earthquake swarm is most likely due to magma movement beneath the volcanoes and not tectonic faulting.

It is unclear if this seismic unrest will escalate to a volcanic eruption. If an eruption does occur, it will most likely include slow-moving lava flows or low-level explosions that are localized to a small area. Other hazards could include volcanic gases, ground shaking, and local tsunami. An eruption like Hunga Tonga–Hunga Ha’apai in Tonga earlier this year is extremely unlikely as it is a different type of volcano. Volcanoes in Tonga erupt much more explosively than ones in American Samoa and Hawaii.

Source: USGS, HVO.

Source: USGS

Eruption à court terme sur la péninsule de Reykjanes ? // Short-term eruption on the Reykjanes Peninsula ?

Selon la dernière analyse du Met Office islandais (IMO), la probabilité d’une éruption dans la région de Fagradalsfjall dans les jours ou semaines à venir est à prendre en compte. Cette hypothèse fait suite à l’étude des modèles de déformation obtenus grâces aux satellites. Ils indiquent que le chemin emprunté par l’intrusion magmatique sous le Fagradalsfjall est très peu profond, à environ 1 km sous la surface.
Les modèles montrent que l’afflux de magma est assez rapide, presque deux fois plus rapide que lors de l’éruption de février/mars 2021. L’image InSAR réalisée à partir des données satellitaires Sentinel-1 montre clairement l’intrusion magmatique entre Keilir et le Fagradalsfjall ainsi que la déformation qui a accompagné le séisme de M5.4 à Grindavík le 31 juillet 2022.
La déformation et l’activité sismique semblent ralentir en ce moment, mais une situation semblable a été observée l’année dernière et a été l’un des précurseurs de l’éruption.
L’intrusion magmatique actuelle se produit le long de la bordure nord du chenal magmatique de l’année dernière et s’étend du centre du chenal à mi-chemin jusqu’à Keilir, ce qui explique probablement la sismicité dans cette zone. Le risque éruptif dans la zone autour du Fagradalsfjall dans les jours ou semaines à venir est donc bien réel.
Source: IMO.

———————————————-

According to the latest analysis by the Icelandic Met Office (IMO), the chances of eruption in the area around Fagradalsfjall in the coming days or weeks have increased and are considered significant. This hypothesis follows the study of the deformation models. They indicate that the magma tunnel under Fagradalsfjall lies very shallow, about 1 km below the surface.

The models show that he magma influx is quite fast, nearly double the rate of the previous eruption in February/March 2021. InSAR image made from Sentinel-1 satellite images clearly shows the magmatic intrusion between Keilir and Fagradalsfjall along with deformation parallel to the M5.4 earthquake that occurred at Grindavík on July 31st, 2022.

The deformation and seismic activity seem to be slowing down right now, but this situation looks like what it was last year and was one of the forerunners of the eruption.

The current magma intrusion is taking place along the northern side of the magma tunnel from last year and extends from the center of the tunnel halfway to Keilir, which probably accounts for the earthquakes in that area.. The chances an eruption in the area around Fagradalsfjall in the coming days or weeks have therefore increased.

Source: IMO.

Source: Copernicus

Image InSAR couvrant la période du 20 juillet au 1er août 2022. On voit parfaitement l’intrusion magmatique entre Keilir et Fagradalsfjall ainsi que la déformation qui a accompagné le séisme de M5.4 à Grindavík le 31 juillet 2022.

Essaim sismique sur la Péninsule de Reykjanes (suite) // Seismic swarm on the Reykjanes Peninsula (continued)

La nuit a encore été agitée sur la péninsule de Reykjanes avec plusieurs séismes d’une magnitude supérieure à M 3,0 et 4 événements supérieurs à M 4,0 (4,1; 4,8; 4,2; 4,5) . Les hypocentres des secousses les plus fortes ont été localisés entre 1 km et 3,5 km de profondeur. Cette superficialité explique pourquoi ils ont été ressentis par la population. La plupart des séismes les plus significatifs avaient les épicentres au NNE de Krysuvik. Au fur et à mesure que les jours s’écoulent, il semble de plus en plus probable que cette sismicité ait avant tout une origine tectonique avec des événements qui sont dispersés sue une bonne distance le long de l’épine dorsale de la péninsule. Affaire à suivre malgré tout.

————————————

The night was again restless on the Reykjanes peninsula with several earthquakes with a magnitude greater than M 3.0 and 4 events greater than M 4.0 (4.1; 4.8; 4.2; 4.5) . The hypocenters of the strongest tremors were located between 1 km and 3.5 km deep. This superficiality explains why they were felt by the population. Most of the most significant earthquakes had epicentres NNE of Krysuvik. As the days go by, it seems more and more likely that this seismicity has primarily a tectonic origin with events that are scattered over a good distance along the backbone of the peninsula.

Source: IMO

Essaim sismique sur la Péninsule de Reykjanes (suite) // Seismic swarm on the Reykjanes Peninsula (continued)

La sismicité reste intense en ce 1er août 2022 sur la péninsule islandaise de Reykjanes. Plusieurs événements montrent des magnitudes supérieures à M 3,0, voire M 4,0. Les hypocentres se maintiennent à des profondeurs entre 3,6 et 4,7 km.

En regardant la carte du Met Office, on se rend compte que la hausse de la sismicité affecte une zone relativement vaste, même si les secousses les plus significatives restent concentrées dans la partie de centrale de la péninsule. Les événements avec la plus forte intensité ont été localisés à l’ENE de Fagradalsfjall (le site de la dernière éruption), au SE de Keilir, au NO de Grindavik, ou encore au NE de Krysuvik.

Comme je l’ai indiqué avant que se produise la dernière éruption,, la péninsule de Reykjanes est une zone complexe. Son histoire montre qu’elle a été exposée aussi bien à des événements sismiques que volcaniques. La prévision éruptive est donc difficile. Heureusement, la région ne présente pas une grande densité de population et il serait relativement facile de procéder à des évacuations si une éruption devait se produire.

—————————————–

Seismicity remains intense on August 1st, 2022 on the Icelandic Reykjanes Peninsula. Several events had magnitudes greater than M 3.0, even M 4.0. The hypocenters have been located at depths between 3.6 and 4.7 km.
Looking at the Met Office map, one can see that the increase in seismicity affects a relatively large area, although the most significant tremors remain concentrated in the central part of the peninsula. The events with the strongest intensity were located ENE of Fagradalsfjall (the site of the last eruption), SE of Keilir, NW of Grindavik, or NE of Krysuvik.
As I stated before the last eruption, the Reykjanes Peninsula is a complex area. Its history shows that it has been exposed to both seismic and volcanic events. Eruptive prediction is therefore difficult. Fortunately, the area does not have a high population density and it would be relatively easy to carry out evacuations if an eruption were to occur.

Source: IMO