Sismicité et prévision éruptive // Seismicity and volcanic prediction

Dans les années 1980, le regretté Maurice Krafft, un volcanologue français, comparait un volcan actif sur le point d’entrer en éruption à une personne malade ou blessée. Elle a de la fièvre ; elle a souvent des frissons et une mauvaise haleine. La plaie gonfle à cause de l’infection. Un volcan qui va entrer en éruption se comporte de la même manière. La température des gaz augmente et leur composition change ; le sol vibre et gonfle sous la poussée du magma.
Dans son dernier article Volcano Watch, le Hawaiian Volcano Observatory (HVO) insiste sur l’importance de la sismicité dans la prévision éruptive. En effet, les premiers signes d’activité volcanique, avant l’apparition de la lave, sont fournis par l’activité sismique dans les profondeurs de la Terre.
Les sismologues examinent les données de diverses manières pour interpréter les processus volcaniques qui se déroulent sous terre. Dans un premier temps, ils notent le nombre d’événements, leur localisation et leur magnitude. Ils étudient également le profil des séismes enregistrés pour en déduire comment la Terre s’est déplacée et a vibré. Les bruits parasites générés par l’activité humaine (grondements des hélicoptères et explosions dans les carrières) et les signaux atmosphériques (comme le tonnerre et le vent) peuvent compliquer l’identification des signaux volcaniques. La sismicité permet de décrire l’histoire d’un volcan apparemment silencieux, en particulier lorsque l’histoire de ce volcan et de sa sismicité a été décrite dans le passé.
Le Kilauea a fourni au HVO de nombreuses occasions d’observer les relations entre la sismicité et l’activité volcanique. Les scientifiques ont identifié des régions connues pour être sources de sismicité et qui montrent une augmentation de l’activité sismique au fur et à mesure qu’une éruption se précise. Ils reconnaissent également les types de séismes qui révèlent des mouvements du magma. Parfois, il a même été possible de prévoir où et quand une éruption commencerait en observant les modèles d’activité sismique.
Le Mauna Loa est un autre volcan actif sur la Grande Ile. Au cours des deux derniers siècles, les scientifiques du HVO ont constaté des changements dans les intervalles entre les éruptions. Entre 1832 et 1950, le Mauna Loa est entré en éruption, en moyenne, tous les 3 à 7 ans. Depuis 1950, les intervalles sont beaucoup plus longs. Après 1950, il a fallu attendre 25 ans avant que se produise l’éruption de 1975, puis encore 9 ans jusqu’à l’éruption de 1984. Ensuite, 38 ans se sont écoulés jusqu’à la dernière éruption de 2022 sur la zone de rift nord-est du Mauna Loa.
De nos jours, les observations sismiques effectuées par le HVO sur le Mauna Loa sont relativement rares comparées à celles du Kilauea. Pourtant, les observations de 1975 et 1984 ont fourni des indications utiles pour comprendre le fonctionnement du volcan.
Au printemps 1974, les sismologues du HVO ont noté une augmentation de l’activité sismique sous les hautes pentes du Mauna Loa. Ils ont installé des sismomètres supplémentaires et, sans l’aide d’ordinateurs, ils ont compté et localisé les séismes manuellement. Les observations ainsi compilées ont permis une bonne prévision éruptive.
Les capacités actuelles du HVO permettent la détection et la localisation des séismes de manière beaucoup plus fiable qu’en 1975 et 1984. Pour mieux comparer les modèles sismiques actuels à ceux des éruptions précédentes, les sismologues ont compté manuellement de minuscules événements en septembre 2022 ; ils étaient trop faibles pour être enregistrés par informatique. Cette comparaison a montré une augmentation similaire de l’activité sismique et a conduit à l’organisation de réunions publiques au cours des mois suivants pour sensibiliser la population.
De nouvelles hausses de la sismicité en octobre 2022 ont reflété des changements rapides de contraintes au sein du volcan. Cependant, le seul précurseur signalant l’arrivée de la lave dans la caldeira sommitale a été un essaim sismique superficiel d’une heure juste avant le début de l’éruption. Heureusement, la zone de rift NE du Mauna Loa n’est pas habitée et il n’était donc pas nécessaire d’évacuer des personnes. Sinon, une heure aurait été un laps de temps trop court pour mettre en sécurité la population menacée.
Source : USGS/HVO.

Tout comme le Piton de la Fournaise sur l’île de la Réunion, le Kilauea et la Mauna Loa à Hawaii sont des volcans de point chaud. Ils ont, la plupart du temps, des éruptions effusives et la lave ne représente pas une menace pour les hommes. Seules les structures se trouvant sur la trajectoire des coulées peuvent être détruites.

Il en va tout autrement pour les volcans explosifs de la Ceinture de Feu du Pacifique. Leur comportement est beaucoup plus brutal et beaucoup plus dangereux pour les zones habitées. Certes, les signaux sismiques donnent des indications précieuses sur le risque éruptif mais on sait, comme ce fut le cas pour le Mauna Loa en 2022, que le laps de temps entre la crise sismique et le phénomène éruptif est en général très bref. C’est pour cela que les autorités mettent en place le principe de précaution et conseillent l’évacuation des populations, même si la suite des événements leur donne tort. De nos jours, les instruments ne permettent pas au scientifiques d’en savoir plus sur les comportement d’un volcan.

——————————————-

In the 1980s, the late Maurice Krafft, a French volcanologist, compared an active volcano about to erupt with an ill or wounded person. This person has a fever ; she often has the shivers and a bad breath. The wound inflates because of the infection. A volcano that is going to erupt behaves in the same way. Gas temperature increases and their composition changes ; the ground vibrates and inflates under the push of magma from beneath.

In its last Volcano Watch article, the Hawaiian Volcano Observatory (HVO) insists on the importance of seismicity in eruptive prediction. Indeed, the earliest signs of volcanic unrest, before lava is seen, are provided by earthquake activity occurring deep within the Earth.

Seismologists look at the data in a variety of ways to interpret the story of volcanic processes occurring underground. As a first step, they note earthquake rates, locations and magnitudes. They also study details of the recorded earthquakes to infer how the Earth moved and shook the ground. Human-generated noise (like helicopters and quarry blasts) and atmospheric signals (like thunder and wind) can make volcanic signals difficult to identify. Seismicity helps tell the story of a seemingly quiet volcano, especially when the stories of these volcanoes and their seismicity have been told in the past.

Kilauea has provided HVO with many opportunities to observe relationships between earthquakes and volcanic activity. Scientists have identified established earthquake source regions that show increases in seismic activity as the volcano gets closer to erupting. They also recognize the earthquake types that suggest magma movement. At times, it has been possible to forecast where and when eruptions would start, based on patterns of earthquake activity.

Mauna Loa is also an active volcano. Through the past two centuries, HVO scientists have seen intervals between successive eruptions change. Between 1832 and 1950, Mauna Loa erupted, on average, every 3 to 7 years. Since 1950, the intervals have been much longer. After 1950, it was 25 years until the 1975 Mauna Loa summit eruption, and then another 9 years until the 1984 eruption. Then, 38 years passed until the most recent eruption in 2022 from Mauna Loa’s Northeast Rift Zone.

HVO’s modern seismic observations of Mauna Loa are relatively sparse compared to those of Kilauea. Still, the observations of 1975 and 1984 provide some helpful clues toward learning how Mauna Loa works.

In the Spring of 1974, HVO seismologists noted an increase in earthquake activity beneath the upper elevations of Mauna Loa. They installed additional seismometers and, without computers, counted and located earthquakes by hand. The compiled observations could be viewed as a successful eruption forecast.

HVO’s current capabilities allow earthquake detection and location to levels far surpassing those of 1975 and 1984. To better compare current earthquakes patterns to these previous eruptions, seismologists hand counted tiny earthquakes in September 2022 that were too small to be recorded by modern computer processing. This comparison showed a similar uptick in seismic activity and led to community meetings in ensuing months to emphasize awareness, preparedness and safety.

Further increases in seismicity in October 2022 reflected rapid stress changes within the volcano. However, the only imminent precursor to lava appearing in the summit caldera was an hour-long tremor-like burst of numerous small, shallow earthquakes just before the eruption started. Fortunately, Mauna Loa’s NE Rift Zone is not populated and there was no need to evacuate people. Otherwise, one hour would have been very short to transfer residents to safe places.

Source : USGS / HVO.

Like Piton de la Fournaise on Reunion Island, Kilauea and Mauna Loa in Hawaii are hotspot volcanoes. They mostly have effusive eruptions and their lava poses no threat to humans. Only structures in the flow path can be destroyed.
The situation is quite different for the explosive volcanoes of the Pacific Ring of Fire. Their behaviour is much more brutal and much more dangerous for populated areas. Admittedly, seismic signals give valuable indications of the eruptive risk, but we know, as was the case for Mauna Loa in 2022, that the time between the seismic crisis and the eruptive phenomenon is generally very short. This is why the authorities use the principle of precaution and advise the evacuation of the populations, even if the sequence of events proves them wrong. Nowadays, the instruments do not allow scientists to know more about the behaviour of a volcano.

Image webcam de l’éruption du Mauna Loa en 2022

Le séisme de M 6,9 sur le Kilauea le 4 mai 2018 et ses répliques plusieurs mois plus tard (Source: USGS)

L’éruption du Hunga-Tonga Hunga-Ha’apai ne cesse de surprendre // The Hunga-Tonga Hunga-Ha’apai eruption was really amazing

Des mois après qu’elle se soit produite (15 janvier 2022), l’éruption du volcan sous-marin Hunga-Tonga Hunga-Ha’apai intrigue toujours la communauté scientifique car sa puissance n’avait jamais été observée à l’occasion d’autres éruptions sur Terre.
Une analyse des ondes sismiques a révélé quatre événements qui ont été interprétés comme de puissantes poussées de roche en fusion sous le volcan. En l’espace de cinq minutes, chacun de ces coups de boutoir a probablement développé une force d’un milliard de tonnes.
Comme je l’ai écrit précédemment, le Hunga-Tonga Hunga-Ha’apai a généré la plus grande explosion atmosphérique jamais enregistrée par l’instrumentation moderne. Elle a déplacé environ 10 kilomètres cubes de roche, de cendres et de sédiments. Une grande partie a été évacuée par la caldeira du volcan et a été propulsée directement dans le ciel.
Des scientifiques se sont réunis à Chicago lors de la réunion d’automne de l’American Geophysical Union (AGU) pour comparer les derniers résultats de leurs études à propos de cette éruption hors du commun.
Un scientifique de l’Université de Houston (Texas) a détaillé l’analyse, par son équipe, des ondes sismiques qui ont accompagné l’événement de magnitude M 5,8 et qui se sont propagées pendant un peu plus de 10 minutes après le début de l’éruption. Ces signaux ont été captés par plus de 400 stations à travers le monde. Le chercheur les attribue à une poussée magmatique qui a percuté la base de la caldeira. Il semble qu’une nouvelle arrivée de magma ait tout à coup atteint la chambre magmatique et l’ait mise en surpression. Il ajoute : « Le magma a surgi à grande vitesse, comme un train qui aurait percuté un mur. Le phénomène s’est produit à quatre reprises en 300 secondes. »
Les satellites ont montré que les cendres du Hunga-Tonga ont atteint une altitude de 57 km; c’est le panache volcanique le plus élevé jamais enregistré. De nouvelles données présentées lors de la réunion de l’AGU ont indiqué que les cendres sont montées jusque dans l’espace. En effet, les capteurs des satellites de l’agence spatiale américaine et de l’US Air Force qui mesurent le rayonnement ultraviolet lointain du Soleil ont détecté dans leurs données un fort coefficient d’absorption à une altitude supérieure à 100 km, ce qui correspond à la ligne Karman, la frontière avec l’espace.
Les analyses de l’éruption ont également révélé que le volcan avait envoyé dans l’espace une masse de vapeur d’eau estimée entre 20 000 à 200 000 tonnes. Les scientifiques expliquent qu’il n’est pas surprenant qu’un volcan sous-marin envoie de l’eau dans le ciel lors d’une éruption, mais la hauteur atteinte par cette eau défie l’entendement.

Cette eau a de toute évidence contribué à créer les conditions nécessaires à la plus grande concentration de foudre jamais détectée. Le panache de l’éruption du Hunga-Tonga a produit 400 000 éclairs le 15 janvier, avec jusqu’à 5 000 à 5 200 événements par minute. C’est un ordre de grandeur supérieur à celui observé pendant les orages supercellulaires qui sont parmi les plus puissants sur Terre. La concentration d’éclairs était si élevée qu’elle a saturé les capteurs. Le nombre de 400 000 est donc très probablement en dessous de la vérité.
Une conséquence remarquable de tous ces éclairs est qu’ils ont produit un flash de rayons gamma détecté par un satellite de la NASA qui recherche dans l’Univers ces émissions à haute énergie. Elles sont censées provenir de trous noirs lointains ou d’explosions d’étoiles. C’était la première fois que le vaisseau spatial Fermi captait un tel flzsh en provenance d’un volcan sur Terre. Cela confirme le caractère extrême et exceptionnel de l’éruption Hunga-Tonga.
Source : la BBC.

——————————————–

Months after it happened on January 15th 2022, the eruption of Hunga-Tonga Hunga-Ha’apai summarine volcano still puzzles scientists around the word as its power had never been observed on other eruptiond on Earth.

An analysis of seismic waves has revealed four individual events that are interpreted to be thrusts of molten rock beneath the underwater mountain. Occurring within a five-minute period, each of these blows is calculated to have had a force of a billion tonnes.

As I put it previously, the seamount produced the biggest atmospheric explosion ever recorded by modern instrumentation. It displaced some 10 cubic kilometers of rock, ash and sediment, much of it exiting through the volcano’s caldera, to shoot straight up into the sky.

Scientists have gathered in Chicago at the American Geophysical Union (AGU) Fall Meeting to compare the latest results of their investigations into what happened.

A scientist from the University of Houston (Texas) detailed his team’s analysis of the Magnitude 5.8 seismic waves generated just over 10 minutes into the climactic eruption. These signals were picked up at more than 400 monitoring stations around the globe. The researcher attributes them to a pulse of magma moving up from below the mountain and hitting the base of the caldera. It looked as if a new batch of magma had suddenly just reached into the magma chamber and over-pressured the chamber. He adds : « The pulse of the magma was travelling up at high speed and it was like a train hitting the base of the wall. It hammered four times within 300 seconds. »

Ash from Hunga-Tonga was measured by weather satellites to have travelled 57 km above the Earth’s surface, the highest ever recorded volcanic plume. But new data presented at the AGU meeting indicated the disturbance went higher still, all the way to space. Sensors on US space agency and US Air Force satellites that measure far-ultraviolet radiation from the Sun noticed a strong absorption feature in their data correlated to an altitude above 100 km, which corresponds to the Karman Line, the recognised boundary to space.

Analyses of the eruption aloso revealed that the volcano sent into space a mass o water vapour estimated between 20,000 to 200,000 tonnes. Scientists say that a submarine volcano throwing so much water into the sky during an eruption is not a surprise, but the height to which that water travelled is. This water also clearly played a role in creating the conditions necessary to generate the greatest concentration of lightning ever detected. The Hunga-Tonga eruption plume produced 400,000 lightning events on January 15th, with rates of up to 5,000 to 5,200 events per minute. This is an order of magnitude higher than the one observed in super-cell thunderstorms, some of the strongest thunderstorms that exist on Earth. The rates were so high that they saturated the sensors. The 400,000 number is most probably below the truth.

One remarkable consequence of all this lightning is that it produced a gamma-ray flash detected by a Nasa satellite that normally looks out into the Universe for such high-energy emissions. These are expected to come from far-off black holes or exploding stars. This was the first time the Fermi spacecraft had caught a flash coming from a volcano on Earth. This confirms the extreme and exceptional nature of the Hunga-Tonga eruption.

Source: The BBC.

Images montrant l’étendue du nuage de cendres au moment de l’éruption du Hunga-Tonga Hunga-Ha’apai (Source: USGS)

Prévision volcanique et sismique // Volcanic and seismic prediction

L’éruption du Mauna Loa n’a surpris personne. Tout le monde l’attendait, d’autant plus que Madame Pele ne s’était pas mise en colère depuis 1984. Cela faisait plusieurs mois que les scientifiques américains enregistraient une inflation de l’édifice volcanique. Au cours des semaines qui ont précédé la sortie de la lave, la sismicité s’était intensifiée et des réunions avaient été organisées pour expliquer la situation aux populations susceptibles d’être menacées.

Mais la prévision éruptive s’arrêtait là. La suite dépendrait des humeurs de la déesse. Les volcanologues ne savaient pas où allait sortir la lave. Elle a commencé à apparaître le 27 novembre 2022 dans la zone sommitale du Mauna Loa, avant de migrer, au grand soulagement des scientifiques, vers la zone de rift nord-est où la menace pour les zones habitées étaient très faible, alors qu’elle aurait été très forte si la lave avait décidé de sortir dans le rift sud-ouest.

L’éruption s’est déroulée sans grande surprise, avec des coulées de lave à haute température, donc très fluides, comme cela s’était déjà produit en 1984.

Sans que les scientifiques sachent pourquoi, le débit éruptif a brusquement décliné vers le 8 décembre. Aujourd’hui, aucune reprise de l’éruption ne semble à l’ordre du jour et l’histoire éruptive du Mauna Loa montre qu’un tel retour d’activité est hautement improbable.

Quand l’éruption du Mauna Loa a débuté, le Kilauea voisin avait pris de l’avance avec une éruption qui avait débuté le 29 septembre 2021. Un petit lac de lave était apparu dans le cratère de l’Halema’uma’u. Or, vers le 8 décembre 2022, alors de l’éruption du Mauna Loa montrait des signes d’épuisement, celle du Kilauea a appuyé sur la touche « pause ». La lave a cessé de s’écouler sur le plancher du cratère et le lac de lave s’est recouvert d’une croûte. S’agit-il d’une simple interruption de l’éruption ou de son arrêt définitif? Personne ne le sait.

Est-ce à dire que les deux volcans sont en relation et qu’ils sont alimentés par une chambre magmatique commune? C’est ce que pensent depuis pas mal de temps les scientifiques américains. Il sera intéressant de voir comment se comporteront les deux volcans dans les prochaines semaines.

Comme je l’ai écrit précédemment, notre aptitude à prévoir les éruptions reste faible. Certes, celle du Mauna Loa n’a pas été une surprise, mais la difficulté était de prévoir où la lave allait sortir et les volcanologues américains ne savent pas le faire.

De la même façon, leurs collègues italiens n’ont pas vu venir la dernière crise éruptive du Stromboli. L’accès à la Fossa de Vulcano reste interdit car les émissions gazeuses sont trop importantes et personne ne connaît l’avenir éruptif de ce volcan. Une coulée de lave est apparue à la base du Cratère Sud-Est de l’Etna. Simple épisode éruptif ou annonce d’un événement de plus grande ampleur? Impossible de le dire.

Pourtant, le Mauna Loa, le Kilauea, le Stromboli et l’Etna sont truffés d’instruments. Aujourd’hui, nous savons décrire le déroulement des éruptions – c’est ce que je fais sur ce blog – mais nous sommes incapable de dire où, quand et comment une éruption va se dérouler.

C’est la même chose pour les séismes. Nous connaissons la plupart des zones où ils sont susceptibles de se déclencher, mais la prévision s’arrête là. Comme pour les volcans, nous savons décrire les conséquences et expliquer les causes. C’est ce qui vient de se passer pour les séismes qui ont secoué la Sicile ces derniers jours. Leur source se trouve sur le complexe Alfeo-Etna, un immense système de failles situé à l’est de l’escarpement ibléo-maltais et qui génère des séismes depuis novembre 2021. Ces derniers n’ont pas causé de dégâts majeurs, contrairement à la secousse de M 5,6 qui a tué plus de 300 personnes le 21 novembre 2022 dans la région de Cianjur sur l’île indonésienne de Java. Elle aussi était imprévisible.

————————————-

The Mauna Loa eruption came as no surprise. Everyone was waiting for it; Madame Pele had not been angry since 1984. American scientists had been recording inflation of the volcanic edifice for several months. In the weeks before the lava erupted, seismicity had intensified and meetings had been held to explain the situation to people who might be at risk.
But eruptive prediction did not go any further. What would happen next would depend on the moods of the goddess. The volcanologists did not know where lava would be emitted. The eruption began on November 27th, 2022 in the summit area of Mauna Loa, before migrating, to the relief of scientists, to the northeast rift zone where the threat to inhabited areas was very low, while it would have been very high if lava had decided to erupt in the southwest rift.
The eruption took place without great surprise, with lava flows at high temperature, therefore very fluid, as had already happened in 1984.
Without the scientists knowing why, the eruptive output abruptly declined around December 8th. Today, no resumption of the eruption seems on the agenda and the eruptive history of Mauna Loa shows that such a return of activity is highly unlikely.
When Mauna Loa’s eruption began, neighboring Kilauea had forged ahead with an eruption that began on September 29th, 2021. A small lava lake had appeared in Halema’uma’u crater. However, around December 8th, 2022, while the eruption of Mauna Loa was showing signs of exhaustion, Kilauea pressed the « pause » button. Lava stopped flowing on the crater floor and the lava lake became crusted over. Is it a simple interruption of the eruption or its permanent cessation? No one knows.
Does this mean that the two volcanoes are related and that they are fed by a common magma chamber? This is what American scientists have been thinking for quite a lot of time. It will be interesting to see how the two volcanoes behave in the coming weeks.
As I put it previously, our ability to predict eruptions remains low. Sure, the Mauna Loa eruption was not a surprise, but the difficulty was to predict where the lava was going to erupt and American volcanologists do not know how to do it.
In the same way, their Italian colleagues did not see the last eruptive crisis of Stromboli coming. Access to the Fossa di Vulcano remains prohibited because the gaseous emissions are too high and no one knows the eruptive future of this volcano. A lava flow appeared at the base of Mt Etna’s Southeast Crater. Is it a single eruptive episode or does it announce a larger event? No one knows.
However, Mauna Loa, Kilauea, Stromboli and Etna are full of instruments. Today, we know how to describe the course of eruptions – that’s what I’m doing on this blog – but we are unable to say where, when and how an eruption will take place.
It is the same for earthquakes. We know most of the areas where they are likely to occur, but the prediction stops there. As with volcanoes, we know how to describe the consequences and explain the causes. This is what has just happened for the earthquakes that have shaken Sicily in recent days. Their source is on the Alfeo-Etna complex, a huge fault system located east of the Ibleo-Maltese escarpment and which has been generating earthquakes since November 2021. The quakes have not caused major damage, unlike the M 5.6 quake that killed more than 300 people on November 21st, 2022 in the Cianjur region on the Indonesian island of Java. It was unpredictable.

Eruption du Mauna Loa…

Eruption du Kilauea…

…et la main de Pele!

 

 

 

 

 

 

La cause de la récente sismicité en Sicile // The cause of the recent seismicity in Sicily

On a assisté au cours de la semaine écoulée à une hausse de la sismicité en Sicile. Le dernier événement en date est un séisme de magnitude M 2,9 qui a été enregistré à 5 kilomètres au nord-est de Rosolini, dans la province de Syracuse, à une profondeur de 8 kilomètres. Le 8 décembre 2022, un nouveau séisme de magnitude M 4,1 a été enregistré avec un épicentre entre les municipalités de Mazzarone (Catane), Chiaramonte Gulfi et Acate, dans la région de Raguse.
Les scientifiques de l’INGV ont expliqué que la cause de cette sismicité se trouve sur le complexe Alfeo-Etna, un immense système de failles pouvant atteindre une centaine de kilomètres de long, situé à l’est de l’escarpement ibléo-maltais, qui génère un essaim sismique avec des événements mineurs depuis novembre 2021. Les données géologiques et géophysiques acquises en mer ces dernières années indiquent que la zone de déformation, d’une orientation nord-ouest-sud-est, de la faille Alfeo-Etna modifie le fond marin au large de la côte ionienne en rejoignant, le long de la Timpa d’Acireale, les systèmes de failles actives du versant oriental de l’Etna.
S’agissant de la surveillance de la faille Alfeo-Etna, je vous renvoie à une note que j’ai publiée sur ce blog le 15 février 2021:

https://claudegrandpeyvolcansetglaciers.com/2021/02/15/letude-de-la-faille-au-pied-de-letna-the-study-of-the-fault-at-the-foot-of-mt-etna/

Un scientifique de l’INGV indique que le système de failles Alfeo-Etna représente une frontière cinématique importante entre des blocs qui se déplacent différemment dans l’ouest de la mer Ionienne, dans le contexte de la convergence entre les plaques africaine et européenne.

—————————————-

The past week has seen an increase in seismicity in Sicily. The latest event is an earthquake with a magnitude M 2.9 which was recorded 5 kilometers northeast of Rosolini, in the province of Syracuse, at a depth of 8 kilometers. On December 8th, 2022, a new earthquake with a magnitude M 4.1 was recorded with an epicenter between the municipalities of Mazzarone (Catania), Chiaramonte Gulfi and Acate, in the Ragusa region.
The INGV scientists explained that the cause of this seismicity is on the Alfeo-Etna complex, a huge fault system, up to a hundred kilometers long, located east of the Ibleo-Maltese escarpment which has been generating a seismic swarm with minor events since November 2021. Geological and geophysical data acquired at sea in recent years indicate that the deformation zone, with a northwest-southeast orientation, of the Alfeo-Etna fault modifies the seabed off the Ionian coast as it merges, along the Timpa of Acireale, with the active fault systems of the eastern slope of Mt Etna.
Regarding the monitoring of the Alfeo-Etna fault, you can have a look at a post I published on this blog on February 15, 2021:
https://claudegrandpeyvolcansetglaciers.com/2021/02/15/letude-de-la-faille-au-pied-de-letna-the-study-of-the-fault-at-the-foot-of-mt- etna/

An INGV scientist indicates that the Alfeo-Etna fault system represents an important kinematic boundary between differently moving blocks in the western Ionian Sea, in the context of the convergence between the African and European plates.

Source: INGV