Première bougie pour le lac au fond de l’Halema’uma’u (Hawaii) // Halema’uma’u’s lake (Hawaii) is one year old

Le 25 juillet 2020 a marqué le premier anniversaire du petit lac qui est apparu ce même jour de 2019 au fond du cratère de l’Halema’uma’u, au sommet du Kilauea. Au cours des douze derniers mois, l’Observatoire des Volcans d’Hawaii (HVO) a scruté cette surprenante étendue d’eau qui, après avoir été une petite mare est devenue un petit étang puis un véritable lac, le premier observé dans la caldeira du Kilauea depuis au moins 200 ans.
Le HVO observe et analyse attentivement ce lac en utilisant plusieurs méthodes. Des caméras classiques et thermiques suivent l’évolution de la couleur et de la température à la surface du lac. La couleur est changeante et la température de surface se situe généralement entre 70°C et 85°C. Les mesures effectuées au télémètre laser permettent de suivre l’évolution du niveau du lac qui s’élève régulièrement d’environ 75 centimètres chaque semaine. De plus, deux missions d’échantillonnage de l’eau ont été effectuées à l’aide d’un drone.

On observe de nombreux lacs de cratère sur les volcans de la planète, mais très peu d’entre eux se trouvent sur des volcans basaltiques comme le Kilauea. Le cratère de l’Halema’uma’u, qui s’est effondré lors de l’éruption de 2018, est si profond (environ 500 m) que le plancher se trouve en dessous de la nappe phréatique. En tant que tel, il offre au HVO une fenêtre unique sur une partie du volcan normalement invisible.
Les eaux souterraines n’ont pas rempli tout de suite le cratère de l’Halema’uma’u. C’est normal car il faut du temps pour que l’eau pénètre lentement à travers les pores et les fissures de la roche environnante, et aussi parce que la chaleur du volcan peut faire s’évaporer les eaux souterraines comme elle le fait avec les eaux de surface. Avec le temps, les eaux souterraines ont réussi à se frayer un chemin et le sous-sol s’est refroidi suffisamment pour que l’eau puisse rester à l’état liquide. De la sorte, l’eau peut maintenant s’infiltrer dans le cratère qui continuera à se remplir jusqu’à ce qu’un point d’équilibre soit atteint.
Pendant les premiers mois, l’origine de cette eau est restée un mystère. Les scientifiques du HVO ne savaient pas si elle provenait des eaux souterraines, elles-mêmes alimentées par les précipitations, ou si elle provenait de la condensation de la vapeur d’eau émise par le         magma. La réponse a été apportée par les missions d’échantillonnage à l’aide du drone. L’analyse des isotopes a indiqué que l’eau était d’origine météorique, et provenait donc des précipitations. Alors qu’une petite quantité de pluie tombe directement dans le cratère de l’Halema’uma’u, la majeure partie de l’eau provient des eaux souterraines (des précipitations qui ont percolé à travers le sol) qui s’infiltrent jusqu’au niveau où la nappe phréatique rencontre le cratère.
Avec le temps, les minéraux et les gaz volcaniques se dissolvent dans l’eau et la chimie du lac évolue. Au début, lorsque le lac s’est formé, l’eau était de couleur bleu-vert clair, une couleur que l’on peut encore voir dans certaines zones du lac où l’apport d’eau est le plus important. La surface du lac montre aujourd’hui surtout des nuances d’orange et de marron, probablement en raison des minéraux sulfatés dissous qui sont riches en fer. L’eau n’est pas brassée uniformément et des poches de couleurs, de chimie et de température différentes circulent à l’intérieur du lac.
En plus d’être rare en raison de son existence même, ce lac montre la particularité d’avoir une faible acidité, avec un pH d’environ 4,0, tandis que la plupart des lacs volcaniques sont soit fortement acides (comme le Kawah Ijen en Indonésie, dont le pH est voisin de 0), soit fortement alcalins. A titre de comparaison, le jus d’orange est également légèrement acide avec un pH de 3,5. Il se peut que l’acidité de l’eau soit modérée à ce stade précoce du développement du lac et qu’elle augmentera par la suite.
Au bout d’une année d’existence, le lac couvre désormais une superficie de plus de 2,5 hectares et atteint une profondeur de plus de 40 m.
Source: USGS / HVO.

—————————————

July 25th, 2020 was the first anniversary of the water pond that appeared on that same day of 2019 at the bottom of Halema‘uma‘u at the summit of Kilauea Volcano. Over the past twelve months, the Hawaiian Volcano Observatory (HVO) has watched this surprising body of water grow from a tiny pond into a real lake, the first ever observed within the Kilauea caldera in at least 200 years.

HVO closely monitors the lake using a variety of methods. Visual and thermal cameras track the lake’s surface colour and temperature. Colour is variable and the lake surface temperature is hot, usually between 70°C and 85°C. Laser rangefinder measurements track the surface level, which has risen steadily by about 75 centimetres each week. Moreover, two water-sampling missions have been flown using unoccupied aircraft systems.

Crater lakes occur at volcanoes around the world, but very few of those crater lakes occur at basaltic volcanoes like Kilauea. Halema‘uma‘u, which collapsed and deepened during Kilauea’s 2018 eruption, is so deep (about 500 m) that the bottom is actually below the local water table, providing HVO with a unique window into a realm that is normally hidden from direct view.

Groundwater did not rush in and fill the crater immediately because it takes time for water to squeeze through the pores and cracks of the surrounding rock, and because volcanic heat can evaporate groundwater just as it does surface water. With time, the surrounding groundwater slowly squeezed through the voids, and the subsurface cooled enough for water to be able to remain in liquid form and accumulate within this newly exposed subaerial space. Water will continue to flow into the crater, and the lake will continue to get deeper until a point of equilibrium is reached.

For the first few months, the source of the water was not known. HVO scientists did not know whether it came from groundwater, in turn, fed by rainfall, orif it came from the condensation of water vapour released directly from magma. Thee answer was brought by the water sampling missions. Analysis of the isotopes in the water indicated that it was meteoric in origin, meaning that it originally came from rainfall. While a small amount of rain falls directly into the crater, most of the water is coming from groundwater (that started off as rainfall that percolated into the ground) seeping in where the water table intersects the crater.

With time, minerals and volcanic gases dissolve into the water and the lake’s chemistry changes. When the lake first formed it was light blue-green in colour, a colour that is still seen in parts of the lake where there is a higher influx. The surface water is mostly shades of orange and brown now, likely due to dissolved iron-rich sulfate minerals. The water within the lake is not uniformly mixed, and cells of water with different colours, chemistry and temperature are seen to circulate.

Besides being uncommon because of its very existence, this lake is unique in that it is only mildly acidic, with a pH of about 4.0, while most volcanic lakes are either strongly acidic or strongly alkaline. For reference, orange juice is also mildly acidic with a pH of 3.5. The water’s acidity is likely to be moderated at this early stage of development, and it may become more acidic in the future.

Following a year of steady growth, the lake now covers an area of more than 2.5 hectares and reaches a depth of more than 40 m.

Source: USGS / HVO.

Graphique montrant l’évolution du niveau de l’eau dans le lac au cours de l’année écoulée. Les mesures par télémètre laser ont été effectuées 2 à 3 fois par semaine. Les photos permettent de comparer le lac entre le 27 août 2019, alors qu’il avait une profondeur d’environ 7 mètres, et le 7 juillet 2020, jour où il présentait une profondeur d’environ 40 mètres. (Source: USGS).

Volcans du monde // Volcanoes of the world

Voici quelques nouvelles de l’activité volcanique dans le monde.

Le CENAPRED indique qu’une puissante éruption s’est produite sur le Popocatepetl (Mexique) dans l’après-midi du 22 juillet 2020. Le VAAC de Washington indique que le panache de cendres a atteint une altitude d’environ 7300 m. Des retombéesde cendres étaient attendues dans les zones sous le vent. De tels événements se produisent é général quand la pression détruit le dôme de lave au fond du cratère.
Le reste du temps, le système de surveillance enregistre les habituelles «exhalaisons», autrement dit des panaches de gaz et de vapeur.
Le niveau d’alerte volcanique reste à la couleur Jaune Phase 2.
Malgré les restrictions, in voit des randonneurs inconscients grimper jusqu’au cratère et filmer le sommet du volcan.

++++++++++

L’activité strombolienne reste intense dans le cratère Mackenney du Pacaya (Guatemala). Le volcan projette des matériaux incandescents jusqu’à 100 mètres au-dessus du cratère. Une nouvelle coulée de lave a émergé de la base nord-ouest du cône sommital, devant Cerro Chino le 20 juillet. Les autres coulées mentionnées précédemment sont toujours actives. Les stations sismiques enregistrent un tremor en relation avec l’arrivée de magma et de gaz. La population et les touristes sont invités à rester à l’écart du volcan
Source: INSIVUMEH.

++++++++++

L’INGV donne plus de détails sur les derniers événements observés sur le Stromboli (Sicile). L’activité explosive se situe dans deux bouches de la zone cratèrique N (nord) et quatre bouches dans la zone C-S (zone cratèrique centre-sud). Des explosions de la bouche N1 projettent parfois des téphra à 200 m de hauteur, ainsi que des lapilli et des bombes qui arrosent toute la zone sommitale. Des explosions de faible intensité au niveau de la bouche N2 expédient des téphra à 80 m de hauteur. Des explosions sont également observées au niveau des bouches S1 et S2 de la zone C-S.
Comme je l’ai indiqué précédemment, une forte séquence explosive a débuté à 5h00 le 19 juillet 2020 et a duré environ 4 minutes. La première explosion s’est produite au niveau de la bouche centrale de la zone C-S, mais en quelques secondes, toutes les bouches de la zone C-S ont montré de l’activité. Un panache de cendres s’est élevé jusqu’à 1 km de hauteur. Les blocs et lapilli sont retombés le long de la Sciara del Fuoco et ont atteint la mer environ 40 secondes après le début de l’événement. L’événement a endommagé la caméra infrarouge de l’INGV.

++++++++++

Une grande quantité de cendres est toujours émise par le cratère sommital de Nishinoshima (Japon), avec des panaches de cendres s’élevant à environ 1,7 km, avec des retombées jusque dans la mer. Des dépôts de gros blocs jonchent le sol au pied du cône. Des fontaines de lave s’élevant à 200 m au-dessus du cratère sont observées pendant la nuit, avec des éclairs dans les panaches de cendres. Le cône atteint environ 200 m de hauteur, soit environ 40 m de plus qu’au 1er décembre 2019. Il ;est demandé aux embarcations de rester à au moins 2,5 km du cône.
Source: JMA.

++++++++++

Aucun événement majeur n’a été enregistré sur l’Agung (Bali / Indonésie) au cours des derniers mois. La dernière éruption a été enregistrée le 13 juin 2019. Au cours de l’année écoulée, la sismicité est restée généralement faible; des séismes d’origine volcanique sont toujours enregistrés, mais ils sont de moins en moins fréquents. Les données de déformation indiquent une stabilisation du processus de déflation de l’édifice volcanique. Une anomalie thermique a été détectée pour la dernière fois dans les données satellitaires en octobre 2019 et n’est pas réapparue. On peut vour des panaches blancs s’élever de 20 à 150 m au-dessus du sommet. Le niveau d’alerte de l’Agung a été abaissé à 2 (sur une échelle de 1 à 4) le 16 juillet 2020 et il est demandé au public de ne pas pénétrer dans une zone d’exclusion d’un rayon de 2 km.
Source: VSI.

++++++++++

Aucun événement volcanique significatif n’est actuellement observé à Hawaii. C’est une bonne chose car le Covid-19 se répand dans l’archipel, avec de nombreux cas, comme dans le reste des États-Unis.
Le Kilauea n’est pas en éruption. On observe les niveaux habituels de sismicité et de déformation du sol, ainsi que de faibles émissions de SO2. On a relevé des modifications géologiques mineures depuis la fin de l’activité éruptive en septembre 2018. Le lac au fond de l’Halema’uma’u continue de grandir et de s’approfondir lentement. Le 30 juin 2020, la profondeur du lac était d’environ 39 mètres.
Le Mauna Loa n’est pas en éruption et reste au niveau d’alerte « Advisory » (surveillance conseillée). Cela ne signifie pas qu’une éruption est imminente, mais que le volcan doit être tout de même surveillé. Des séismes de faible magnitude sont enregistrés dans la partie supérieure du volcan; la plupart des hypocentres sont à faible profondeur. Les mesures GPS montrent une lente inflation sommitale sur le long terme, en relation avec la recharge en magma du réservoir superficiel du volcan.
Source: HVO.

———————————————

 Here is some news of volcanic activity around the world.

CENAPRED indicates that a powerful eruption occurred at Popocatepetl (Mexico) in the afternoon of July 22nd, 2020. The Washington VAAC indicates that the ash plume reached an altitude of about 7 300 m. Ashfall was expected in downwind areas. Similar events usually happen when gas pressure destroys the come at the bottom of the crater. The rest of the time, the monitoring system identifies the usual ‘exhalations’, gas and steam plumes..

The Volcanic Alert level is kept Yellow Phase 2.

Despite the restrictions, reckless mountaineers have been seen climbing to the crater, even filming the top of the volcano.

++++++++++

Strombolian activity is still elevated at Pacaya‘s Mackenney crater (Guatemala). The volcano is ejecting incandescent material up to 100 metres above the crater. A new lava flow emerged from the north-western base of the summit cone, in front of Cerro Chino on July 20th. The other flows mentioned previously are still active. Seismic stations register new tremors associated with the rise of magma and gas. Residents and tourists are advised to stay away from the volcano

Source: INSIVUMEH.

++++++++++

INGV gives more details about the latest events at Stromboli (Sicily). The volcano’s explosive activity is located in two vents in Area N (north crater area) and four vents in Area C-S (south-central crater area). Explosions at the N1 vent in Area N sometimes ejected tephra 200 m high, and ejected lapilli and bombs radially. Low-intensity explosions at vent N2 ejected tephra 80 m high. Explosions at the S1 and S2 vents in Area C-S aso ejected tephra.

As I put it previously, a sequence of high-energy explosions began at 0500 on July 19th, 2020 and lasted about 4 minutes. The first explosion originated at the central vent in Area C-S but within a few seconds involved all Area C-S vents. An ash plume rose as high as 1 km. Tephra was ejected radially; some material was deposited along the Sciara del Fuoco and reached the coast within about 40 seconds after the beginning of the event. The event damaged INGV’s infrared camera.

++++++++++

A large amount of ash is still emitted by Nishinoshima’s summit crater (Japan), with plumes rising about 1.7 km, dropping ash into the sea. Deposits of large blocks cen be seen at the foot of the cone. Lava fountains rising 200 m above the crater can be obseved at night, along with lightning in the ash plumes. The cone has grown to about 200 m, about 40 m higher than on December 1st, 2019. Ships are asked to stay at least 2.5 km away from the cone.

Source : JMA.

++++++++++

No major event has been recorded at Agung (Bali / Indonesia) during the past months. The last eruption was recorded on June 13th, 2019. Over the past year seismicity was generally low; volcanic earthquakes continued to be recorded but at a low occurrence rate. Deformation data indicated a stabilisation of the deflationary process. A thermal anomaly was last visible in satellite data in October 2019 and did not reappear. White plumes can be seen rising 20-150 m above the summit. The alert level at Agung was lowered to 2 (on a scale of 1-4) on July 16th, 2020 and the public should not enter an exclusion zone set at a 2-km radius.

Source : VSI.

++++++++++

No significant volcanic event is currently observed in Hawaii. It’s a good thing because Covid-19 is spreading in the archipelago, with many cases, like in the rest of the U..S.

Kilauea is not erupting. Typical rates of seismicity and ground deformation are observed, together with low rates of SO2 emissions, and only minor geologic changes since the end of eruptive activity in September 2018. The water lake at the bottom of Halema‘uma‘u continues to slowly expand and deepen. As of June 30th, 2020, the lake depth was approximately 39 metres.

Mauna Loa is not erupting and remains at volcano alert level ADVISORY. This does not mean that an eruption is imminent, but that the volcano should be closely monitored. Small-magnitude earthquakes are recorded beneath the upper-elevations; most of them at shallow depths. GPS measurements show long-term slowly increasing summit inflation, consistent with magma supply to the volcano’s shallow storage system.

Source: HVO.

Graphique montrant l’évolution du niveau du lac au fond du cratère de l’Halema’uma’u (Source: HVO)

La sismicité sous le Mauna Kea (Hawaii) // Seismicity beneath Mauna Kea (Hawaii)

Le Mauna Kea n’a pas connu d’éruptions depuis plus de 4 500 ans, mais cela ne signifie pas que c’est un volcan éteint. En fait, depuis des décennies, il cache l’un des signaux sismiques les plus étranges jamais observés sur un volcan.
Il y a plusieurs années, les sismologues de l’USGS testaient une nouvelle méthode d’analyse de la sismicité sur le Kilauea. Elle consiste à analyser des fractions de 24 heures de données sismiques afin de détecter des signaux similaires sur plusieurs appareils. Par curiosité, ils ont décidé d’étendre leurs observations au reste de l’île d’Hawaii. Ce qu’ils ont découvert est surprenant. Une étude publiée dans la revue Science en mai 2020 explique qu’ils ont détecté des séismes profonds sous le Mauna Kea, avec une répétition toutes les 7 à 12 minutes. La pollution sonore générée par le vent et les voitures à proximité, ainsi que la faible magnitude (M 1.5) des séismes avaient empêché leur détection par le réseau sismique traditionnel. .
Ces petits séismes se produisent à des profondeurs d’environ 15 – 25 km directement sous le sommet du Mauna Kea, toutes les 7 à 12 minutes avec une régularité surprenante. En outre, ces événements répétitifs apparaissent depuis au moins l’année 1999, mais il est très probable qu’ils se produisaient bien avant cette date.
Les scientifiques se sont tout d’abord montrés prudents avant d’attribuer ces séismes à des processus volcaniques car leur régularité semblait artificielle. Ils ont pris le temps d’éliminer toutes les causes possibles, comme les activités dans la zone d’entraînement de Pohakuloa ou les travaux routiers.
Un facteur permettant d’interpréter l’origine des séismes répétés et profonds du Mauna Kea est que leurs ondes sismiques sont différentes de celles des séismes classiques. Alors que les séismes classiques donnent naissance essentiellement à des événements haute fréquence, ceux du Mauna Kea sont plus prolongés, avec des fréquences plus basses. Cela signifie qu’un décrochement sur une faille n’est pas la cause de ces événements.
Les séismes basse fréquence peuvent se produire sur les volcans, mais il n’y a aucun autre exemple de ce type de répétition ou de longévité dans le monde. Au total, on a enregistré plus d’un million de secousses sismiques sur le Mauna Kea entre 1999 et 2018. Cumulée, l’énergie ainsi libérée correspond à un séisme de M 3.0 sous le volcan chaque jour. En mettant ensemble les signaux produits par ces milliers de ces séismes, on peut examiner leur forme d’onde plus en détail. Les résultats montrent que ces événements sont probablement causés par le mouvement de fluides au-dessus d’une chambre magmatique profonde. À mesure que les fluides s’élèvent, ils pénètrent dans une fissure hermétique dans sa partie supérieure. L’arrivée continue de fluide met la fissure sous pression, ce qui finit par briser l’obturation à son sommet et déclencher un séisme. La fissure se referme ensuite, et tout recommence.
La question est de savoir d’où proviennent ces fluides. La source d’alimentation réside probablement au niveau des gaz magmatiques qui se comportent comme des fluides lorsqu’ils se trouvent dans les profondeurs de la croûte terrestre. Ces gaz se séparent du magma en se refroidissant. Les grandes poches magmatiques mettent des centaines à des milliers d’années pour se refroidir, donc ce processus génère des fluides sur le long terme, ce qui pourrait expliquer la présence des séismes profonds sous le Mauna Kea.
Selon cette interprétation, les fluides sont produits par le refroidissement du magma en place. Rien n’indique toutefois qu’il y ait une ascension du magma sous le Mauna Kea. Bien que cette étude donne un aperçu intéressant des processus en cours sous le volcan, elle ne change en rien le niveau de risque volcanique du Mauna Kea. Si une éruption devait être imminente, les scientifiques de l’USGS pensent que l’ouverture d’un nouveau conduit d’alimentation s’accompagnerait d’essaims sismiques à faible profondeur pour avertir à l’avance d’une activité éruptive imminente.
Les séismes profonds qui ont été détectés par les scientifiques de l’USGS confirment que le Mauna Kea reste un volcan potentiellement actif.
Source: USGS, HVO, AVO.

———————————————

Mauna Kea volcano hasn’t erupted in over 4,500 years, but that doesn’t mean it is quiet. In fact, for decades it has been hiding one of the most unique seismic signals seen at any volcano.

Several years ago, USGS seismologists were trying out a new method to track seismicity at Kilauea Volcano. The method scans 24-hour sections of seismometer data looking for signal similarity on many instruments. Out of curiosity, they decided to look at the rest of the Island of Hawaii to see what else they might find. What they found came as a surprise. A study published in the journal Science in May 2020 describes how they detected deep earthquakes beneath Mauna Kea that repeat every 7 to 12 minutes. Noise in the seismic records from wind and nearby cars, together with the small size of the individual earthquakes (magnitude M 1.5), had prevented these earthquakes from being detected with the regular earthquake detection system.

The small, repeating earthquakes occur at depths of about 15-25 km directly beneath Mauna Kea’s summit and happen every 7 to 12 minutes with surprising regularity. Furthermore, the repeating events can be detected going back to at least 1999, but it is very likely that the repeating earthquakes were occurring even further back in time.

Scientists were initially cautious about interpreting the earthquakes due to volcanic processes because the regularity seemed man-made. It took a long period of investigation to rule out all of the possibilities, such as activity at the Pohakuloa Training Area or road construction.

One clue to the origin of the repeating, deep Mauna Kea earthquakes is that their seismic waves look different from those of ordinary earthquakes. Where regular earthquakes produce more high frequency shaking, the Mauna Kea events are more drawn out, containing lower frequencies. This means that regular slip on a fault is not responsible for the deep Mauna Kea events.

Low-frequency earthquakes are not unusual at volcanoes, but there is no other example of this kind of repetition or longevity anywhere in the world. Ultimately, over 1 million earthquakes were found from 1999 to 2018. Summing the energy release of the earthquakes gives a total that is equivalent to an M 3.0 earthquake under Mauna Kea every day. Adding together the signals of thousands of these earthquakes allows the waveform to be examined in greater detail, and the results suggest the events are caused by the movement of fluids above a deep magma chamber. As the fluids ascend, they enter a crack that is sealed at the top. The continuous flow of fluid pressurizes the crack, eventually breaking the top seal and creating the earthquake. The crack then reseals, and everything starts over again.

The question is to know where these fluids come from. The source of the fluid dupply is likely magmatic gases that behave like fluids when they are deep within the Earth’s crust. These gases separate from the magma as it cools. Large magma bodies cool over hundreds to thousands of years, so this process provides a long-term, nearly continuous supply of fluids to repeatedly drive deep earthquakes beneath Mauna Kea.

Under this interpretation, the fluids are produced from magma cooling in place. There is no evidence that magma is rising under Mauna Kea. So while this study provides important insight into processes beneath the volcano, it does not change estimates of volcanic hazard at Mauna Kea. USGS scientists expect any opening of a new conduit will be accompanied by swarms of shallow earthquakes to provide advanced warning of impending eruptive activity.

The earthquakes nonetheless underscore that Mauna Kea is classified as an active volcano.

Source : USGS, HVO, AVO.

Photos: C. Grandpey

L’éruption du Kilauea (Hawaii) en 1952

Dans l’un de ses Volcano Watch, l’USGS / HVO revient sur l’éruption du Kilauea en 1952. Elle pourrait avoir des points communs avec la prochaine éruption du volcan après la pause actuelle qui fait suite à l’événement de 2018.
Le 27 juin 1952, une éruption a commencé au sommet du Kilauea, mettant fin à une période de repos de près de 18 ans. Pendant près de deux décennies de calme après l’éruption sommitale de 1934, on a observé plusieurs périodes d’activité sismique intense et de déformation au niveau du sommet. Cependant, aucun de ces événements n’a entraîné d’éruption.
Au début du mois d’avril 1952, une série de séismes a été enregistrée le long de l’East Rift Zone du Kilauea et sous le sommet. Les séismes, accompagnés d’une inflation sommitale, ont persisté en mai et juin.
En fin de soirée le 27 juin, une éruption a commencé au sommet, avec une forte incandescence et des grondements en provenance du cratère de l’Halema’uma’u ..
Quelques minutes après le début de l’éruption, une fontaine de lave a jailli dans la partie sud-ouest du cratère et s’est élevée à près de 250 mètres au-dessus de la lèvre. La fontaine a rapidement décliné et la lave s’est accumulée le long d’une fissure qui parcourait tout le plancher de l’Halema’uma’u.
Le HVO explique que le lac de lave ainsi formé avait à sa surface des plaques de croûte refroidie espacées par des fissures qui permettaient de voir la lave ci-dessous, un peu comme sur le petit lac de lave qui est apparu de 2008 à 2018 dans l’« Overlook Crater» de l’Halema’uma’u. Le jaillissement de la lave donnait naissance à des vagues à la surface du lac. On pouvait voir parfois des tourbillons à la surface du lac ; ils projetaient des morceaux de croûte, parfois d’un mètre de diamètre, à plusieurs mètres de hauteur. Ce même phénomène a été observé en 2018 sur le chenal de lave issu de la Fracture n°8.
Après les premières heures de l’éruption, les fontaines de lave ont commencé à se calmer. Après un peu plus de quatre heures d’éruption, seul le quart nord-est de la fissure était actif et on pensait que l’éruption allait peut-être se terminer. Peu de temps après, cependant, la partie sud-ouest de la fissure s’est réactivée avec de petits bouillonnements de lave. A ce moment-là, on estime que le cratère de l’Halema’uma’u contenait un lac de lave d’environ 15 mètres de profondeur.
Le 11 juillet, la partie active de la fissure avait fortement diminué. Deux fontaines ont continué à être actives et ont édifié un grand cône à l’intérieur du lac de lave. Des ouvertures dans les flancs du cône permettaient à la lave de se répandre et d’alimenter le lac dont la surface était maintenant considérablement réduite.
À la fin du mois d’août, la majeure partie de la lave produite par l’éruption était contenue dans le grand cône à l’intérieur duquel deux bouches actives construisaient de plus petits cônes de projection. Entre ces deux cônes de projection, il y avait une petite mare de lave d’une trentaine de mètres de diamètre.
L’éruption a continué de la même manière pendant les mois suivants, avant de se terminer, après 136 jours d’activité, le 10 novembre 1952
Un volume d’environ 60 millions de mètres cubes de lave s’est accumulé dans le cratère de l’Halema’uma’u. Avec l’éruption, le plancher de l’Halema’uma’u s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère. À titre de comparaison, le plancher du cratère avant l’effondrement sommital de 2018 se trouvait à environ 80 mètres sous la lèvre.
Source: USGS / HVO.

————————————————-

In one of its Volcano Watch, the USGS / HVO describes the 1952 eruption of Kilauea which might have similarities with the volcano’s next eruption after the current pause that followed the 2018 event.

On June 27th, 1952, an eruption started at the summit of Kilauea, ending a period of quiescence that had lasted nearly 18 years.

During the nearly two decades of quiet following a summit eruption in 1934, there were several periods of increased earthquake activity and deformation beneath the summit. However, none of these phases of unrest resulted in an eruption.

Early in April 1952, a series of earthquakes began along Kilauea’s East Rift Zone and beneath the summit. The earthquakes, accompanied by summit inflation, persisted through May and June.

Late in the evening on June 27th, an eruption started at the summit, with a loud roaring and bright glow emanating from Halema‘uma‘u Crater..

Within minutes of the eruption onset, a lava fountain erupted on the southwestern edge of the Halema‘uma‘u Crater floor, nearly 250 metres higher than the crater rim. The fountain quickly waned and lava pooled along a fissure that crossed the entire floor of Halema’uma’u crater.

HVO explains that the lava lake had plates of cooled crust on its surface separated by cracks that provided views of the incandescent molten lava below,  much like the smaller 2008 to 2018 lava lake within the Halema‘uma‘u “Overlook crater.” The fountaining lava created waves over the surface of the lake. Observers also noted seeing occasional whirlwinds on the lake surface that threw pieces of crust, up to a metre across, several metres into the air. This same phenomenon was observed in 2018 over the fissure 8 lava channel.

After the initial hours of the eruption, the lava fountains began to subside. After a little more than four hours, only the northeastern quarter of the fissure was active, and observers thought that the eruption could be ending. Shortly after, however, the southwestern end of the fissure reactivated with low bubbling fountains, and by that time Halema‘uma‘u Crater was estimated to have been filled with a lake of lava approximately 15 metres deep.

By July 11th, the active length of the fissure had shortened to approximately 120 metres. Two main fountains persisted and began to build a large cinder and spatter cone within the lava lake. Gaps within the cone wall allowed lava to spill out and feed the surrounding lava lake, whose surface had been considerably reduced.

By the end of August, most of the erupted lava was contained within the large cone, where two active vents were building smaller spatter cones. Between the two spatter cones, there was a small lava pond that had an average diameter of about 30 metres.

The eruption continued in the same way for the next few months until it ended after 136 days on November 10th, 1952

A volume of about 60,000,000 cubic metres of erupted lava was confined within Halema‘uma‘u Crater. The eruption raised the floor of Halema’uma’u Crater from 230 metres to 140 metres below the rim. For comparison, the Halema‘uma‘u Crater floor prior to the 2018 summit collapse was approximately 80 metres below the rim.

Source: USGS / HVO.

Vue du cratère de l’Halemaumau le 26 juin 1952, veille du début de l’éruption (photo du haut), et de ce même cratère (photo du bas) quatre semaines plus tard. Comme indiqué dans la description de l’éruption, le plancher s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère.  (Crédit photo: National Park Service).

Les volcans de vos vacances…

Voici quelques informations – la liste n’est pas exhaustive – sur les destinations volcaniques les plus visitées par les touristes pendant l’été. Il est bien évident qu’en 2020 les déplacements dépendront de la situation sanitaire dans le monde et des autorisations d’entrée dans les pays concernés.

En Europe, on pourra se rendre en Islande avec ses phénomènes hydrothermaux et ses superbes paysages. La crise sismique en cours dans la Zone de fracture de Tjörnes semble s’atténuer.

Plus au sud, le volcan sous-glaciaire Grimsvötn a montré des signes de réveil ces dernières semaines, mais aucune activité éruptive n’a été observée. Si une éruption devait se produire, elle déclencherait très probablement des inondations glaciaires (jokulhlaups en islandais) avec des restrictions de circulation, en particulier sur la Route n°1 au sud de l’île.

°°°°°°°°°°

Beaucoup de volcanophiles auront envie de se rendre en Sicile où l’activité est en ce moment relativement faible, que ce soit sur l’Etna ou le Stromboli.

Aucune anomalie thermique n’a été détectée sur l’Etna où l’activité éruptive observée au printemps dans les différents cratères s’est donc considérablement réduite.

Sur le Stromboli, on recense chaque heure une dizaine d’explosions stromboliennes de faible à moyenne intensité.

La visite de la zone sommitale de ces deux volcans ne peut se faire qu’avec les guides. S’agissant du Stromboli, l’accès ne pouvait se faire que jusqu’à l’altitude 400 mètres ces dernières semaines. Se renseigner auprès du bureau des guides pour la situation du moment.

°°°°°°°°°°

Sur l’île de la Réunion, on observe une reprise de la sismicité et de l’inflation sur le Piton de la Fournaise, mais il n’y a pas d’éruption en ce moment. Vous pourrez admirer la superbe vue sur le volcan depuis le Pas de Bellecombe. Les plus courageux pourront emprunter le sentier qui conduit jusque sur la lèvre du Cratère Dolomieu. Le trajet est un peu long mais ne présente pas de difficultés techniques. Bien suivre les marques blanches au sol et surtout ne pas s’en éloigner en cas de brouillard.

°°°°°°°°°°

Impossible de dire aujourd’hui si toutes les liaisons aériennes seront assurées avec l’Amérique

Il n’y a pas de vols pour les Etats-Unis en ce moment. L’épidémie de covid-19 reste très présente dans de nombreux Etats, y compris Hawaii où aucune activité éruptive n’est observée.

°°°°°°°°°°

Au Mexique, le Popocatepetl montre son activité habituelle d’émissions de vapeur, ponctuées d’explosions de cendre quand la pression des gaz pulvérise le dôme à l’intérieur du cratère. Il est fortement déconseillé de s’approcher de la zone sommitale à cause du risque de projections. Des touristes se sont déjà fait tuer. De plus le CENAPED demande d’éviter les ravines où des coulées de boue peuvent survenir en cas de fortes pluies.

°°°°°°°°°°

Au Guatemala, on observe une petite activité strombolienne au sommet du Pacaya et une coulée de lave d’environ 200 m sur le flanc sud.

Le Fuego reste très actif avec des explosions parfois très fortes dans le cratère. Des avalanches de matériaux peuvent emprunter plusieurs ravines.

L’approche de ces deux volcans est fortement déconseillée par la CONRED, la Coordination nationale pour la prévention des catastrophes au Guatemala.

°°°°°°°°°°

En Ethiopie, les images satellitaires montrent que le lac de lave est probablement réapparu dans le cratère sud de l’Erta Ale, mais cette information demande confirmation.

°°°°°°°°°°

En Indonésie, le Krakatau est en niveau d’alerte 2. On observe des émissions de vapeur. Il est demandé au public de respecter le rayon de 2 km de sécurité autour du cratère.

Des explosions secouent ponctuellement le dôme de lave dans le cratère du Merapi, en déclenchant des coulées pyroclastiques. Il est demandé de respecter la zone d’exclusion de 3 km ;

°°°°°°°°°°

Rien de significatif à signaler sur les volcans du Kamchatka où des explosions peuvent se produire à tout moment et sans prévenir, en particulier sur le Karymsky, le Bezymianny, le Sheveluch et le Klyuchevskoy.

°°°°°°°°°°

En Nouvelle Zélande, l’accès à White Island reste interdit, mais on peut visiter les zones hydrothermales de l’Ile du Nord et parcourir le célèbre et magnifique Tongariro Crossing.

(Photos : C. Grandpey)

Découverte de la Fracture n°8 de l’éruption de 2018 du Kilauea (Hawaii) // Discovery of Fissure 8 of the 2018 Kilauea eruption (Hawaii)

Voilà une vidéo comme je les aime. Elle n’est certes pas parfaite d’un point de vue technique mais elle présente une très bonne approche de la Fracture n°8, un des hauts lieux de l’éruption de 2018 sur la Lower East Rift Zone du Kilauea.

Bien que les ayant arpentés à plusieurs reprises, je suis toujours impressionné par l’immensité des champs de lave hawaiiens où il est facile de se perdre, même si le GPS apporte aujourd’hui une aide précieuse à la randonnée. Il y a quelques jours, beaucoup de gens ouvraient de grands yeux devant la quantité de lapilli qui a recouvert les abords du Piton Voulvoul sur le Piton de la Fournaise (Ile de la Réunion) pendant l’éruption du mois d’avril, mais à Hawaii on se trouve à une autre échelle de grandeur.

En visionnant les images de ces immensités de lapilli, j’avais en tête les impressionnantes fontaines et rivières de lave émises par la Fracture n°8. Malheureusement, l’éruption s’est déroulée à huis clos car le public n’a pas été autorisé à admirer le spectacle. La plateforme d’observation promise par les autorités hawaiiennes n’a jamais vu le jour.

Grâce à sa grande fluidité, il a fallu très peu de temps à la lave pour atteindre l’océan. Quelques gros plans confirment que cette lave est très pauvre en silice et on voit également qu’elle a donné naissance à une grande quantité de cheveux de Pélé.

Le gouffre laissé par l’éruption est impressionnant lui aussi. On remarquera les nuages de vapeur qui s’échappent toujours des coulées deux ans après l’éruption. La lave est un excellent auto-isolant et je pense qu’il ne faudrait pas gratter très profond pour atteindre des températures très élevées et peut-être même voir de l’incandescence car les coulées sont épaisses à leur source.

J’imagine aussi que de longs tunnels de lave se cachent sous la surface car ce sont eux qui ont acheminé la lave depuis l’Halema’uma’u et le Pu’uO’o.

La vidéo donne envie d’accompagner son auteur qui appartient  à l’agence ApauHawaiiTours ou est un client de cette agence.

Attention, ces champs de lave sont sur des terres privées et il est préférable d’avoir l’autorisation des propriétaires avant de s’y aventurer.

https://www.youtube.com/watch?v=CA-9V4n7fzA&fbclid=IwAR2TzgBUBXbYdYNPlMV-REjxY8qztve7KTnQu4mRTQ8rUFwL5Utp2KYTbrI

——————————————–

Here is a video that I like. It is certainly not technically perfect but it presents a very good approach to Fissure n° 8, one of the highlights of the 2018 eruption on Kilauea’s Lower East Rift Zone.
Although I have walked across them several times, I am still impressed by the immensity of the Hawaiian lava fields where it is easy to get lost, even if the GPS now provides a precious hiking assistance. A few days ago, many people opened their eyes wide in front of the quantity of lapilli showered over the area around Piton Voulvoul on Piton de la Fournaise (Reunion Island) during the April eruption, but at Hawaii the scale of magnitude is different.
While viewing the images of the lapilli, I had in mind the impressive fountains and rivers of lava emitted by Fissure n°8. Unfortunately, the eruption took place behind closed doors because the public was not allowed to admire the show. The observation platform promised by the Hawaiian authorities never saw the light of day.
Thanks to its great fluidity, it took the lava very little time to reach the ocean. A few close-ups confirm that this lava is very poor in silica and we can also see that it gave birth to a large amount of Pele’s hair.
The abyss left by the eruption is also impressive. One can notice the vapour clouds that are still emitted by the flows two years after the eruption. The lava is an excellent self-insulator and I think we don’t need to scrape very deep to reach very high temperatures and maybe even see incandescence because the flows are thick at their source.
I also imagine that long lava tunnels are hiding beneath the surface because they are the ones that carried the lava from Halema’uma’u and Pu’uO’o.
On the video, you accompany its author who belongs to the ApauHawaiiTours agency or is one of its patrons..
One should keep in mind that these lava fields are on private land and it is advisable to have the authorization of the owners before venturing there.

https://www.youtube.com/watch?v=CA-9V4n7fzA&fbclid=IwAR2TzgBUBXbYdYNPlMV-REjxY8qztve7KTnQu4mRTQ8rUFwL5Utp2KYTbrI

Vue aérienne de la Fracture n°8 et des volumineuses coulées de lave qui s’en échappent (Crédit photo : USGS / HVO)

Les émissions de SO2 du Kilauea pendant l’éruption de 2018 // Kilauea’s SO2 emissions during the 2018 eruption

L’éruption du Kilauea dans la Lower East Rift Zone (LERZ) en 2018 a libéré d’énormes quantités de dioxyde de soufre (SO2) et l’ensemble de l’archipel hawaïen a parfois été envahi par le brouillard volcanique, ou vog.
Pour mesurer les émissions de SO2, les volcanologues utilisent un spectromètre. L’instrument est généralement installé à bord d’un véhicule ou un avion qui passe sous le panache de SO2 et mesure l’absorption de lumière par le gaz. Plus il y a de SO2, moins la lumière ultraviolette (UV) atteint le spectromètre. En 2018, il y avait tellement de SO2 que le spectromètre pouvait à peine détecter cette lumière, ce qui n’a guère facilité les mesures.
Le spectromètre mesure la lumière UV sur une gamme de longueurs d’onde. Normalement, avec de faibles émissions de SO2, on examine les longueurs d’onde où l’absorption de SO2 est importante, ce qui permet de détecter de très faibles quantités de gaz. En 2018, la situation a été beaucoup plus compliquée car aucune lumière UV n’atteignait l’instrument. Les scientifiques du HVO ont alors examiné une partie du spectre UV où l’absorption de SO2 est 500 fois plus faible, de sorte qu’une certaine quantité de lumière UV restait détectable.
Après avoir traité les mesures dans la nouvelle gamme de longueurs d’onde, les données ont révélé que pendant la majeure partie du mois de juin et début juillet 2018, les fractures dans la LERZ ont émis près de 200 000 t / j (tonnes / jour) de SO2. Ce sont les niveaux d’émission les plus élevés jamais mesurés sur le Kilauea avec le spectromètre UV qui a commencé à être utilisé vers la fin des années 1970. Il se peut que les premières fontaines de lave du Pu’uO’o en 1983, et peut-être l’éruption du Mauna Loa en 1984, aient montré des niveaux de SO2 similaires, mais ces mesures ont probablement souffert de la même sous-estimation que les premières mesures effectuées par le HVO en 2018. Elles avaient alors révélé des émissions de 15000 t / j (tonnes / jour). Malheureusement, les données fournies par le spectromètre des années 1980 ne peuvent pas être traitées de la même manière que les données de 2018.
Les scientifiques du HVO estiment que l’éruption de 2018 a émis plus de 10 Mt (mégatonnes, ou millions de tonnes) de SO2 entre mai et début août. Au cours de ces trois mois, le Kilauea a émis cinq fois plus de SO2 que pendant la seule année 2017. Peu d’éruptions récentes sur Terre ont émis autant de SO2, et lorsqu’elles l’ont fait, il s’agissait généralement d’éruptions explosives majeures sur des stratovolcans.
L’éruption fissurale de l’Holuhraun (Islande) en 2014 également émis environ 10 Mt de SO2, mais en 6 mois, et non 3 comme le Kilauea. À titre de comparaison, la plus grande éruption volcanique du siècle dernier, celle du Pinatubo (Philippines) en 1991, n’a émis que deux fois plus de SO2 que celle du Kilauea en 2018, mais de manière explosive en une seule journée.
Depuis la fin de l’éruption de 2018, le Kilauea a émis beaucoup moins de SO2. Fin 2018, les émissions étaient d’environ 30 t / j au sommet et sur le Pu’uO’o, et presque nulles dans la LERZ. Début 2019, le Pu’uO’o a retrouvé des niveaux proches de zéro. Bien que du SO2 se dissolve dans l’eau du lac dans le cratère de l’Halema’uma’u, les niveaux d’émission de SO2 en ce moment sont les plus bas observés sur le Kilauea depuis plus de 30 ans.
Source: USGS / HVO.

———————————————–

Kilauea’s Lower East Rift Zone (LERZ) eruption in 2018 released huge amounts of sulphur dioxide (SO2) and the whole Hawaiian archipelago was sometimes invaded by the volcanic fog, or vog.

To measure SO2 emission rates, volcanologists use a spectrometer. The instrument is mounted to a vehicle or aircraft, which passes under the SO2 plume and measures the absorption of sunlight by SO2 overhead. The more SO2, the less ultraviolet (UV) light reaches the spectrometer. In 2018, there was so much SO2 that the spectrometer could barely detect any UV light at all, which made it difficult to determine the exact amount of gas overhead.

The spectrometer measures UV light over a range of wavelengths. Normally, with low SO2 emissions, one examines wavelengths where SO2 absorption is significant, which allows to detect even very small amounts of gas. But 2018 was different as nearly no light was reaching the instrument. HVO scientists examined a part of the UV spectrum where SO2 absorption is 500 times weaker, so some UV light would still be detectable.

After re-processing all measurements in the new wavelength range, the data revealed that for much of June and early July of 2018, fissures in the LERZ emitted nearly 200,000 t/d (tonnes/day)of SO2. These are the highest SO2 emission rates measured at Kilauea using the UV spectrometer technique, which began in the late 1970s. Early Pu’uO’o high lava fountains, and perhaps Mauna Loa’s 1984 eruption, may have had similar emission rates, but those measurements likely suffered from the same underestimation as HVO’s initial 2018 analyses which revealed emissions of 15,000 t/d (tonnes/day). Unfortunately, because of older spectrometer technology, data from the 1980s cannot be reprocessed in the same way as 2018 data.

HVO scientists now estimate that the 2018 eruption emitted over 10 Mt (megatonnes, or millions of tonnes) of SO2 between May and early August. In those three months alone, Kilauea emitted five times the SO2 it emitted in the year 2017. Few recent eruptions on Earth have released that much SO2, and when they do, they are generally large explosive eruptions at stratovolcanoes.

Most similar to Kilauea’s eruption was the 2014 Holuhraun fissure eruption in Iceland, which also emitted about 10 Mt of SO2, though in 6 months rather than just 3. For comparison, the largest volcanic eruption of the past century, Mount Pinatubo in the Philippines in 1991, only released about twice the SO2 mass of Kilauea’s 2018 eruption, albeit explosively on a single day.

Since the extremely high emissions in 2018 ended, Kilauea has been releasing far less SO2. By late 2018, SO2 emissions were about 30 t/d at the summit and Pu’uO’o, and near-zero in the LERZ. By early 2019, Pu’uO’o had dropped to near-zero levels as well. Though some additional SO2 is dissolving into the new lake in Halema‘uma‘u Crater, current emission rates are the lowest that have been observed at Kilauea in over 30 years of measurements.

Source: USGS / HVO.

Emissions de SO2 au sommet du Kilauea et sur l’East Rift Zone (Photos : C. Grandpey)