Volcans actifs : Informations diverses // Active volcanoes : Miscellaneous news

Piton de la Fournaise (Ile de la Réunion) : Poursuite de l’éruption. Tremor stable.

Sheveluch (Kamchatka) : Forte activité explosive le 24 juillet. Niveau d’alerte élevé au Rouge, avant d’être ramené à l’Orange.

Bezymianny (Kamchatka) : Présence d’une coulée de lave sur le flanc ouest. Niveau d’alerte Orange.

Karymsky (Kamchatka) : Explosions sporadiques. Niveau d’alerte Orange.

Klyuchevskoy (Kamchatka) : Anomalie thermique et panaches de cendre. Niveau d’alerte Orange.

Bogoslof (Alaska) : Pas d’activité significative au cours de la semaine écoulée.

Cleveland (Alaska) : Présence d’un nouveau dôme de lave au fond du cratère.

Kilauea (Hawaii) : Situation stable. Voir ma dernière note sur les points chauds.

Nishinoshima (Japon) : Poursuite de l’éruption. Activité strombolienne dans le cône éruptif. Une coulée de lave avance sur le flanc ouest et atteint la mer.

Poas (Costa Rica) : Emissions gazeuses jusqu’à 300 – 500 mètres au-dessus des bouches.

Sabancaya (Pérou) : Recrudescence d’activité. Panaches de cendre jusqu’à 3 – 5 km de hauteur.

Source: Global Volcanism Network.

————————————

Piton de la Fournaise (Reunion Island): The eruption continues. The tremor is stable.
Sheveluch (Kamchatka): High explosive activity on July 24th. Alert level raised Red, before being brought back to Orange.
Bezymianny (Kamchatka): Lava flow on the western flank. Alert level is Orange.
Karymsky (Kamchatka): Sporadic explosions. Alert level at Orange.
Klyuchevskoy (Kamchatka): Thermal anomaly and ash plumes. Alert level et Orange.
Bogoslof (Alaska): No significant activity during the past week.
Cleveland (Alaska): Presence of a new lava dome on the crater floor.
Kilauea (Hawaii): Stable situation. See my last note on hotspots.
Nishinoshima (Japan): The eruption continues. Strombolian activity on the eruptive cone. A lava flow advances on the western flank and reaches the sea.
Poas (Costa Rica): Gaseous emissions up to 300 – 500 meters above the vents.
Sabancaya (Peru): Increased activity. Ash plumes up to 3 – 5 km.

Source: Global Volcanism Network.

La catastrophe glaciaire continue dans les Alpes // The glacier disaster continues in the Alps

Selon une étude du CNRS de Grenoble, la fonte des glaciers a été sous-estimée. Le manque de neige l’hiver dernier et les récentes fortes chaleurs estivales aggravent la situation.

Ainsi, sur le glacier d’Argentière, en Haute-Savoie, la fonte des glaces devrait atteindre des records cette année. D’une superficie de 19 km², il est victime du réchauffement climatique et son état ne fait qu’empirer en ce début d’été. Etudié grâce à une cinquantaine de balises GPS, les voyants sont au rouge. Les alpinistes l’ont bien compris et désertent l’endroit, qui est devenu trop dangereux. Comme en Nouvelle Zélande avec les glaciers Fox et Franz Josef, la fonte des glaces libère des rochers prêts à tomber.
De son côté, la Mer de Glace devrait reculer d’1,2 km d’ici 30 ans selon une estimation modérée. Quant au glacier de Sarenne, il aura disparu d’ici 5 ans.
La triste conclusion de l’étude du CNRS est que les glaciers situés sous 3500 mètres d’altitude devraient tous disparaître d’ici 2100. Les stations de ski alpines ont de quoi s’inquiéter.

Source : France 3 Auvergne-Rhône-Alpes.

————————————

According to a study by the CNRS of Grenoble, the melting of glaciers has been underestimated. The lack of snow during the last winter and the recent summer heat have made the situation still worse.
Thus, on the Argentière glacier, in Haute-Savoie, the melting of ice is expected to reach a record this year. This glacier with a surface of 19km² is a victim of global warming and its condition only worsened at the beginning of summer. The glacier is scrutinized thanks to about fifty GPS beacons, and the lights are red. Mountaineers have understood this and have deserted the place which has become too dangerous. Just like in New Zealand with the Fox and Franz Josef glaciers, the melting of the ice lets loose rocks which are ready to fall.
For its part, the Mer de Glace is expected to decline by 1.2 km within 30 years, according to a moderate estimate. As for the glacier of Sarenne, it will disappear within 5 years.
The sad conclusion of the CNRS study is that glaciers below 3500 metres a.s.l. are all likely to disappear by 2100. Alpine ski resorts have something to worry about.
Source: France 3 Auvergne-Rhône-Alpes.

Front du Glacier d’Argentière

Ce qu’il reste de la Mer de Glace.

(Photos: C. Grandpey)

 

Suite de la désintégration de l’Antarctique ? // Will Antarctica keep disintegrating ?

Comme je l’ai indiqué il y a quelques jours, l’immense fracture qui cisaillait la plate-forme glaciaire Larsen C a finalement atteint son point de rupture entre le 10 et le 12 juillet 2017. L’événement a donné naissance à un iceberg de la taille de la Lozère.
Cependant, ce n’est pas la fin de l’histoire. En fait, ce pourrait être le début d’une série d’événements plus importants et plus inquiétants. L’iceberg qui s’est détaché – baptisé A68 – n’était qu’un élément de la plate-forme Larsen C. Maintenant, les scientifiques veulent savoir jusqu’à quel point le reste de la plate-forme glaciaire va rester stable et relié au continent antarctique.
Des images satellitaires récentes laissent supposer que certaines parties du reste de la plate-forme Larsen C sont sur le point de larguer les amarres et de donner naissance à de nouveaux icebergs plus petits qui iront tenir compagnie au A68.
En outre, une nouvelle fracture s’est formée près de l’endroit où l’ancienne s’est ouverte. Elle se dirige vers Bawden Ice Rise, élévation de glace qui est un point d’ancrage essentiel pour la plate-forme Larsen C. Les scientifiques ne savent pas si la fracture atteindra Bawden Ice Rise, mais ils surveillent attentivement l’évolution de la situation.
Source: Business Insider.

————————————–

As I put it before, the giant crack that had been racing across Antarctica Larsen C ice shelf finally met its breaking point between July 10th and 12th. The result was an iceberg the size of Lozère.

However, this is not the end of the story. In fact, it could be the beginning of a more important, more dangerous series of events. The iceberg that broke off – dubbed A68 – was just one piece of the much larger Larsen C ice shelf. Now, scientists want to know how stable is the ice shelf that has been left intact, connected to the Antarctic continent.

Recent satellite images suggest that pieces of the remaining ice shelf are already preparing to break off, creating more, smaller icebergs that will join Iceberg A68.

Moreover, a new crack has formed close to where the old crack left off. And it has headed for Bawden Ice Rise, which is a critical anchor point for the ice shelf. Scientists are not certain the crack will reach Bawden Ice Rise, but they are keeping a close eye on it, nevertheless.

Source: Business Insider.

Vue de la plate-forme Larsen C et de Bawden Ice Rise (Source: Science Nordic)

Le risque éruptif à Auckland (Nouvelle Zélande) // The eruptive risk in Auckland (New Zealand)

Comme je l’ai déjà écrit à plusieurs reprises, Auckland est construite sur un site volcanique potentiellement actif, avec plus de 50 cônes et bouches disséminés autour de la ville.
Dans plusieurs études publiées ce mois-ci, une équipe de chercheurs de Determining Volcanic Risk in Auckland (Evaluation du Risque Volcanique à Auckland) a constaté que la ville avait une histoire éruptive « complexe et épisodique ». L’éruption la plus ancienne, celle de Pupuke, remonte à environ 200 000 ans, alors que la plus récente, celle de Rangitoto, s’est produite il y a seulement 500 ans. Le temps écoulé entre les éruptions est très irrégulier et imprévisible. Il convient de noter que plus de la moitié des éruptions d’Auckland ont eu lieu au cours des 60 000 dernières années. Les chercheurs ont indiqué que le nombre d’éruptions a montré une certaine hausse avec, malgré tout, des périodes de repos allant jusqu’à 10 000 ans.
Certaines des éruptions passées se sont produites après de courtes périodes de temps d’un point de vue géologique. Par exemple, il peut y avoir de six à dix volcans en éruption en seulement 4000 ans. D’autre part, le site volcanique d’Auckland a également connu des périodes de repos de 10 000 ans au cours des 60 000 dernières années.
Les recherches ont montré que le site volcanique d’Auckland a une activité « imprévisible » et que la population doit être préparée dans l’éventualité d’une nouvelle activité éruptive. (NDLR : À un moment où nous ne sommes pas en mesure de prévoir des éruptions à court terme, il serait stupide de dire que nous pouvons les prévoir dans le long terme!)
La région d’Auckland est le site volcanique le plus densément peuplé dans le monde. Chacun des volcans qui s’y trouvent est entré en éruption au moins une fois depuis que le Pupuke s’est manifesté il y a environ 200 000 ans.
En avril, des chercheurs de l’Université de Canterbury ont déclaré que « une éruption volcanique pourrait mettre Auckland à genoux, paralyser les réseaux de transport et déplacer près d’un tiers de la population ». En mars, le GNS Science a publié un rapport indiquant que la prochaine éruption de la région se produirait probablement sur un volcan qui n’existe pas encore.
Source: Manawatu Evening Standard.

———————————————

As I put it in several previous notes, Auckland is built on a potentially active volcanic field, with more than 50 vents dotted around the city.

In studies published this month, a team of researchers from Determining Volcanic Risk in Auckland found that the city has had a complex and episodic eruption history. The oldest eruption, Pupuke, was about 200,000 years ago, while the most recent, Rangitoto, was only 500 years ago. However, the time in between eruptions was inconsistent and unpredictable. It should be noted that more than half of Auckland’s eruptions have been in the past 60,000 years. The researchers said that indicated the rate of eruptions has been increasing, although there had also been quiet periods of up to 10,000 years.

Some of the past eruptions occurred after what was, geologically speaking, a short period of time. For example, there can be six to 10 volcanoes erupting within a 4000-year timeframe. On the other hand, the Auckland volcanic field has also gone quiet for up to 10,000 years in the last 60,000 years.

The research showed that Auckland’s volcanic field was « unpredictable” and that the population needs to be prepared. (Editor’s note: At a time when we are not able to predict eruptions in the short-term, it would be stupid to say we are able to predict them in the long term!)

Auckland’s volcanic field is the most densely populated field of its type in the world.

Each of its volcanoes has erupted at least once since Pupuke blew about 200,000 years ago.

In April, researchers from the University of Canterbury said “a volcanic eruption could bring Auckland to its knees, crippling transport networks and displacing almost one-third of its population.” In March, GNS Science released a report saying the region’s next eruption would likely come from a volcano that doesn’t exist yet.

Source: Manawatu Evening Standard.

Carte montrant les éruptions sur le site volcanique d’Auckland. Elles vont de la plus ancienne (en bleu) à la plus récente (en rouge). Source: GNS Science.

Photo: C. Grandpey

 

Nouvelles de points chauds // News of hotspots

Kilauea (Hawaii):
L’éruption du Kilauea continue au sommet et au niveau du Pu’uO’o sur l’East Rift Zone. Le niveau du lac de lave à l’intérieur du cratère Halema’uma’u se trouve actuellement à environ 25 mètres sous la lèvre de Overlook Crater. La coulée de lave 61g continue d’entrer dans l’océan à Kamokuna. Plusieurs grandes fractures se sont ouvertes dans le delta de lave, parallèlement au littoral et s’étirent sur toute la largeur du delta. Ces fractures annoncent un probable effondrement du delta. Des explosions se produiront au moment de l’effondrement. Les visiteurs devront être très prudents car des matériaux très chauds peuvent être éjectés jusqu’à l’intérieur des terres pendant ce type d’événement.
Des coulées de surface sont actives au-dessus du pali, ainsi que de petites coulées éphémères sur la plaine côtière à environ 2 km en amont de la route en terre battue. Ces coulées ne constituent pas une menace pour les zones habitées.
Source: HVO.

Piton de la Fournaise (Ile de la Réunion):
L’éruption qui a débuté le 14 juillet se poursuit. Le tremor éruptif connaît certaines fluctuations, mais il a globalement retrouvé son niveau du 18 au 20 juillet. On observe 3 bouches actives à l’intérieur du cône sur le site de l’éruption. La coulée lave qui s’en échappe mesure environ 2,8 km de long et environ 0,6 km de large. Comme sur le Kilauea à Hawaï, la lave ne constitue pas une menace pour les zones habitées.

Source : OVPF.

A noter que le 26 juillet marque le premier anniversaire de l’arrivée de la coulée de lave 61g dans l’océan. L’histoire a commencé à la fin du mois de mai 2016, lorsqu’une nouvelle bouche s’est ouverte sur le flanc du Pu’u O’O. Cette nouvelle phase éruptive a été baptisée « épisode 61g » car il s’agissait du septième élément du 61ème épisode de l’éruption Pu’u O’Oo qui a débuté en 1983. La coulée 61g a avancé sur le flanc sud du Kilauea et en deux mois, elle a atteint la côte. Peu de temps après 1 heure du matin le 26 juillet 2016, la lave est entrée dans l’Océan Pacifique sur le site de Kamokuna.

————————————

Kilauea (Hawaii):

Kilauea Volcano continues to erupt at its summit and from the Pu’uO’o vent on the East Rift Zone. The lake level within Halema’uma’u Crater is currently roughly 25 metres below the Overlook crater rim. The 61g lava flow continues to enter the ocean at Kamokuna. Several large cracks have developed in the lava delta, running parallel to the coastline and spanning the width of the delta. These cracks increase the likelihood of a large delta collapse. Explosions will probably occur at the moment of the collapse. Visitors will have to be very careful as material can be ejected far inland during this kind of event.
Surface flows are active above the pali, with minor breakouts on the coastal plain about 2 km upslope from the gravel emergency route. These flows pose no threat to nearby communities.

Source: HVO.  

It should be noted that July 26th marks the one-year anniversary of the 61g lava flow reaching the sea. The story began in late May 2016, when a new vent opened on the flank of the Pu‘u’O‘o cone. This new phase was called “episode 61g,” as it was the seventh subevent of the 61st episode of the Pu‘u ‘O‘o eruption, which began in 1983. The 61g flow gradually advanced down the south flank of Kilauea, and, within two months, reached the coast. Just after 1 a.m. July 26th, 2016, lava entered the ocean on the site of Kamokuna.

 
Piton de la Fournaise (Reunion Island):

The eruption that started on July 14th continues. The intensity of the eruptive tremor is going through some fluctuations but it has globally retrieved its level of July 18th-20th. There are 3 active vents within the eruptive cone. The lava flow is about 2.8 km long and about 0.6 km wide. Like on Kilauea in Hawaii, it poses no threat to nearby communities.

Source: OVPF.

Hawaii: Delta de lave fracturé de Kamokuna (Crédit photo: HVO)

Piton de la Fournaise: Tremor éruptif le 24 juillet 2017

(Source: OVPF)

Piton de la Fournaise: Coulée de lave le 24 juillet 2017.

(Crédit photo: Christian Holveck)

Le plus haut volcan du monde (suite) // The highest volcano in the world (continued)

Une foule de 3 000 personnes s’est rassemblée dimanche après-midi à Portland (Oregon) sur le parvis de l’OMSI pour assister à l’éruption d’un volcan de 10,2 mètres de hauteur dans le cadre de la tentative de battre le record du monde Guinness du plus grand volcan réalisé avec du bicarbonate de soude et du vinaigre. Un liquide rougeâtre a giclé au sommet de la structure recouverte d’une bâche (voir photo ci-dessous).
Il faudra plusieurs mois pour avoir la confirmation du record mais les autorités du musée sont «confiantes à 100%» que la tentative de dimanche a bien établi un nouveau record du monde. Le record précédent pour un tel volcan était de 8,40 mètres de hauteur avec une éruption de 1,20 mètres, établi par l’École Elmfield Rudolf Steiner au Royaume-Uni en 2015.
Le volcan de OMSI aura battu le record précédent avec une structure autonome qui atteignait 10,20 mètres de hauteur et une éruption qui atteignait environ 1,80-2,40 mètres. L’OMSI ne saura pas avant 2 ou 3 mois si le record du monde est validé par Guinness.
Un employé de l’OMSI a filmé l’éruption depuis le toit du musée pour que Guinness puisse se avoir une bonne idée de l’éruption.
L’événement de dimanche faisait partie de l’ouverture au public d’une exposition sur Pompéi. (voir ma note précédente à ce sujet).
Source: The Oregonian.

————————————-

A crowd of 3,000 people gathered on Sunday afternoon around the OMSI Front Plaza as the science museum’s 10.2-metre-high volcano erupted in an attempt to break a Guinness World Record for the largest baking soda and vinegar volcano. A reddish liquid sprayed from the top of the tarp-covered structure.

Though it will take months to confirm it, the museum authorities are « 100 percent confident » that Sunday’s attempt indeed set a new world record. The previous record for a vinegar-baking soda volcano was 8.4 metres tall with a 1.20-metre eruption, set by the Elmfield Rudolf Steiner School in the United Kingdom in 2015.

OMSI’s baking soda-vinegar volcano appears to have beaten the previous record handily, with a freestanding structure that reached 10.20 metres and an eruption that hit around 1.80-2.40 metres beyond that. OMSI will not know for sure that they have set the Guinness World Record for at least 2-3 months.

An OMSI employee recorded the eruption from the museum’s rooftop so Guinness would be able to confirm how high the eruption went.

Sunday’s event was part of a celebration of this summer’s opening of « Pompeii: The exhibition.”

Source: The Oregonian.

Crédit photo: OMSI

La fonte du permafrost (suite) // The thawing of permafrost (continued)

Sur plusieurs routes de l’Alaska, il faut rouler prudemment et être prêt à freiner car le goudron est déformé. Les maisons ont tendance à s’enfoncer dans le sol ; des fissures apparaissent sur les murs et les portes ferment mal. Le long des routes, les poteaux électriques s’inclinent, parfois dangereusement. Il y a de plus en plus de «forêts ivres» car les racines des arbres ne sont plus maintenues en place par le sol gelé. Le pergélisol dans la région de Bethel, le long de la côte sud-ouest de l’Alaska, fond et disparaît encore plus rapidement que dans la plupart des autres région de cet Etat. Les ingénieurs qui conçoivent de nouveaux bâtiments et des routes doivent se battre avec le dégel du pergélisol.
Le permafrost dans la région de Bethel est considéré comme «chaud», avec une température à peine inférieure à zéro ; il est donc sensible au moindre réchauffement de l’air ambiant. Au-dessus du pergélisol dans le sud-ouest de l’Alaska, on trouve une couche active de sol, souvent de la tourbe, qui gèle et dégèle chaque année. Avec le réchauffement de l’air, cette couche active devient plus importante, empiétant sur ce qui était considéré comme un sol gelé en permanence. Il y a trente ans, les ouvriers rencontraient le pergélisol à un ou deux mètres de profondeur. Aujourd’hui, ils le trouvent généralement à 2,50 mètres ou 3,50 mètres. Pour enfoncer des pieux capables de supporter une maison, ils devaient creuser jusqu’à environ 6 mètres de profondeur. Aujourd’hui, ils atteignent des profondeurs de 10 mètres.
La fonte du pergélisol devient un véritable problème pour les maisons. Une maison s’enfonce parfois tellement dans le sol que la pente n’est plus suffisante pour l’écoulement des eaux usées. Les baignoires se vident mal. Dans les toilettes, il faut tirer la chasse à plusieurs reprises dans une ville comme Bethel où beaucoup de gens s’auto rationnent en eau. Les points bas dans les canalisations deviennent des pièges à eau ; cette dernière gèle en hiver et la canalisation éclate. Beaucoup de maisons sont construites sur des poteaux placés sur des assises en bois qui agissent comme des raquettes ; cela empêche la structure de s’enfoncer dans le sable ou les graviers. Afin de réduire l’affaissement des maisons, on a recours à des matériaux de meilleure qualité, ainsi que des éléments qui, théoriquement, sont plus faciles à gérer lorsqu’une partie d’un bâtiment s’enfonce. Mais tout cela à un coût dans une région où les matériaux de construction sont déjà coûteux.
Les ingénieurs et les constructeurs adaptent les techniques à cette nouvelle situation. Le plus grand projet de construction à Bethel est l’extension de l’hôpital, pour un coût de 300 millions de dollars. Sous l’hôpital actuel, le pergélisol reste gelé dans certaines zones, mais il a tendance à fondre à la périphérie. Pour l’extension du bâtiment, les ingénieurs envisagent d’installer des sondes thermiques afin d’extraire la chaleur et maintenir le sol gelé pour assurer sa stabilité. Une autre solution serait de forer à 30 mètres de profondeur pour installer des supports en acier, capables de supporter les trois étages supplémentaires prévus dans la construction. En outre, le projet comprend une isolation de la base des bâtiments et, comme avec la toundra, une isolation à la surface du sol. Comme précaution supplémentaire, un système de refroidissement du sol est prévu sous le bâtiment afin de maintenir le sol gelé si les hivers deviennent trop chauds. Les ouvriers ont installé des capteurs de température dans le sol sur le site du projet et ils savent déjà que le sol se réchauffe.
Le signe le plus évident des effets de la fonte du permafrost à Bethel se trouve sur la route la plus fréquentée de la ville. Des panneaux ont été installés pour alerter les conducteurs. L’un des panneaux près de l’aéroport annonce des dénivelés sur les 6 prochains kilomètres. Les autorités locales prévoient des travaux dont le coût est estimé à près de 9 millions de dollars, mais il faudra d’abord mieux identifier les causes de ces déformations de la chaussée. On pense que la fonte du pergélisol est responsable. Il se pourrait aussi que le problème soit dû à des ponceaux qui piègent l’air sous la chaussée et accélèrent le dégel. En 1989, un projet avait ajouté des siphons à extraction de chaleur, mais il semble avoir été abandonné.

La route a été refaite pour la dernière fois en 2006 et les travaux comprenaient une assise de 15 centimètres de matériau d’asphalte en mousse isolante qui a permis de maintenir la route en état convenable jusqu’à maintenant. Certains habitants se souviennent de l’époque où la route était faite en gravier et ils affirment que c’était mieux ainsi. Il est vrai qu’une route de gravier peut être plus facilement nivelée, mais elle nécessite également une maintenance plus fréquente.

Source: Alaska Dispatch News.

—————————————–

Along many roads of Alaska, drivers need to brake for warped asphalt. Houses sink unevenly into the ground. Walls crack and doors stick. Utility poles tilt, sometimes at alarming angles. There are more and more « drunken forests » as the roots of the trees are no longer held in place by the frozen ground. Permafrost in and around Bethel, along the south-western coast, is deteriorating and shrinking even more quickly than most places in Alaska. Engineers designing new buildings and roads have to battle with permafrost thaw.

Permafrost in the Bethel area is considered « warm, » maybe a fraction of a degree below freezing, so it is sensitive to just a slight warming of the air. Above the permafrost in Southwest Alaska, an active layer of soil, often peat, freezes and thaws each year. With air temperatures warming too, the active layer is growing bigger, consuming what had been thought of as permanently frozen. Thirty years ago, crews would hit permafrost within one or two metres of the surface.. Now they typically find it 2.50 to 3.50 metres down. To install piling deep enough into permafrost to support a house, they used to drill down about 6 metres. Now they are going to depths of 10 metres.

The melting of permafrost becomes a real problem for houses. The whole house might sink so much that a wastewater line no longer has enough slope. Tubs won’t drain well. Toilets need repeat flushes in a town where many people ration their home-delivered water. Low spots in pipes become bellies that trap wastewater, then freeze and burst in wintertime. Many homes are built on posts set on wooden pads that act like snowshoes, preventing the structure from sinking into sand or gravel fill. Some of the problems are being addressed with better materials, along with designs that theoretically are easier to adjust when part of a building sinks. But that adds costs in a place where building materials already are expensive.

Engineers and builders are adjusting techniques and designs. The biggest construction project is the $300 million expansion and remake of the hospital in Bethel. Under the existing hospital, the permafrost stays frozen in some areas but has thawed near the perimeter. For the building expansion, engineers evaluated whether to add thermal probes, which extract heat and keep the ground frozen for stability. Or they could drill down 30 metres for steel supports, deep enough that the ground didn’t have to remain frozen for the three-story addition to be stable. In addition, the project includes insulation on the bottom of the buildings and, like the tundra, insulation on top of the ground. As further insurance, a ground loop cooling system is being installed under the building that can be powered up to keep the ground frozen if winters become too warm. Crews put temperature sensors into the ground at the project site and already know the soils are warming.

The most visible sign of disrupted infrastructure in Bethel is the roller coaster of a ride along the busiest road in town. Warning signs have been installed. One near the airport alerts drivers to dips for the next 6 kilometres. Local authorities are planning extensive repairs estimated to cost almost $9 million but first must better identify what is causing the heaves. Officials suspect thawing permafrost. Some of the problem might also stem from culverts that trap air under the roadway and hasten thaw. A project in 1989 added heat-extracting siphons but they no longer appear to be in place. Whether that would be a good solution now is something to investigate further.

The highway was last repaved in a project that began in 2006 and included a 15-centimetre base of insulating foam asphalt material that helped the pavement hold up this long. Some locals remember when the road was gravel and said it was better then. It’s true that a gravel road can be more easily evened out but it also requires more day-to-day maintenance.

Source: Alaska Dispatch News.

Carte montrant les régions de l’Alaska et du Canada où le thermokarst (ou cryokarst) est le plus susceptible d’apparaître avec le réchauffement climatique. (Source: University of Alaska Fairbanks)

Exemple des effets de la fonte du permafrost sur le réseau routier en Alaska (Photo: C. Grandpey)