Volcans du monde // Volcanoes around the world

L’activité éruptive n’a pas été très intense dans le monde au cours des derniers jours. Voici quelques-uns des événements les plus significatifs.

Comme je l’ai écrit dans une note précédente, l’activité de l’Etna (Sicile) est caractérisée par des émissions de gaz au niveau des cratères sommitaux, avec une activité strombolienne périodique faible à modérée au niveau des bouches dans la Bocca Nuova, le cratère nord-est et le nouveau cratère sud-est ( NCSE). En outre, on observe de petites coulées de lave sur environ 500 mètres le long du flanc est du cône dans le NCSE.
De nouvelles restrictions d’accès ont été mises en place par la municipalité de Nicolosi.
Source: INGV. .

Comme indiqué dans une note diffusée il y a quelques jours, une nouvelle activité éruptive a débuté à Manam (Papouasie-Nouvelle-Guinée) le 8 décembre 2018 avec des panaches de cendre s’élevant jusqu’à 5,2 km d’altitude. On a observé des émissions de cendre, des explosions accompagnées de projections au-dessus du cratère, ainsi que de forts grondements. Les panaches de cendre ont atteint 15,2 km d’altitude. L’activité éruptive a ensuite diminué. La population de l’île a fait état d’importantes retombées de cendre. Les habitants de Bokure et de Kolang ont été évacués.
Source: Darwin VAAC.

À Hawaii, la lave a été visible pour la dernière fois le 4 septembre 2018 dans la Fracture N° 8 et a marqué la fin de l’éruption dans la Lower East Rift Zone. C’est également la fin officielle de l’éruption du Kilauea qui avait débuté en 1983.
Source: HVO.

Entre le 30 novembre et le 6 décembre 2018, le dôme de lave dans le cratère du Merapi (Indonésie) a augmenté à raison de 2 200 mètres cubes par jour. Le 6 décembre, le volume du dôme était estimé à 344 000 mètres cubes. Le niveau d’alerte reste à 2 (sur une échelle de 1 à 4).
Source: VSI.

L’activité éruptive est stable sur le Sabancaya (Pérou) avec une moyenne de 17 explosions par jour. Les panaches de gaz et de cendre s’élèvent à 3 km au-dessus du cratère. Les émissions de SO2 atteignent en moyenne 3 600 tonnes par jour.
Source: INGEMMET, IGP.

———————————————-

Eruptive activity has not been quite intense around the world during the past days. Here are a few of the most significant events.

As I put it in a previous post, activity at Mt Etna (Sicily) is characterized by gas emissions at the summit craters, with periodic weak to moderate strombolian activity from vents in Bocca Nuova, Northeast Crater (NEC), and New Southeast Crater (NSEC). In addition, lava effusion has become continuous with small overlapping flows travelling about 500 metres down the E flank of the cone in the NSEC.

New access restrictions have been implemented by the municipality of Nicolosi.

Source: INGV. .

As I put it in a previous post, new euptive activity started at  Manam (Papua-New-Guinea) on December 8th, 2018 with ash plumes rising to an altitude of 5.2 km.The eruption was characterized by ash emissions, explosions that ejected lava fragments above the crater, and rumbling and roaring noises. Ash plumes rose as high as 15.2 km. Eruptive activity later decreased. Island residents described heavy ashfall. Residents in Bokure and Kolang evacuated.

Source: Darwin VAAC.

In Hawaii, lava was last visible at Kilauea’s Fissure 8 cone on September 4th, 2018, signalling the end of the Lower East Rift Zone (LERZ) eruption. This is also the end of the Kilauea eruption that began in 1983.

Source: HVO.

Between November 30th and December 6th, the lava dome in Merapi’s crater (Indonesia) grew at a rate of 2,200 cubic metres per day. By December 6th, the volume of the dome was an estimated 344,000 cubic metres. The Alert Level remains at 2 (on a scale of 1-4).

Source: VSI.

Eruptive activity is stable at Sabancaya (Peru) with an average of 17 explosions per day. Gas-and-ash plumes rise as high as 3 km above the crater. SO2 emissions reach an average of 3,600 tons per day.

Source: INGEMMET, IGP.

L’éruption du Pu’uO’o qui avait débuté le 3 janvier 1983 est définitivement terminée (Crédit photo: USGS)

La Science peut-elle permettre la détection des nuages de cendre volcanique? // Can Science help detect volcanic ash clouds?

En 2010, l’éruption de l’Eyjafjallajökull en Islande a déclenché une vague de panique dans le ciel et les nuages ​​de cendre ont paralysé le trafic aérien dans une grande partie de l’Europe. Dans les années qui ont suivi, plusieurs tentatives ont été faites pour essayer de trouver des solutions afin d’éviter que semblable problème se reproduise à l’avenir. Cependant, aucun progrès significatif n’a été réalisé dans ce domaine. Si un autre énorme nuage de cendre devait envahir le ciel européen, il est fort probable que les avions seraient de nouveau cloués au sol.
Un article récemment publié sur le site web Science News explique qu’un nouvel algorithme pourrait «permettre de protéger les avions contre les dangereuses cendres volcaniques». On nous dit qu’il faut cinq à dix minutes à la cendre volcanique pour atteindre une hauteur de 11 kilomètres dans le ciel et se trouver ainsi sur les couloirs des vols  commerciaux, avec un risque certain pour les moteurs des aéronefs.
Les scientifiques ont mis au point un nouvel algorithme permettant d’identifier et de suivre rapidement la trajectoire des nuages ​​de cendre produits par les éruptions. Ils expliquent qu’en utilisant des images satellites, le programme peut mesurer la température, la hauteur et la trajectoire des nuages en l’espace de trois minutes environ.
En suivant les panaches de cendre quasiment en temps réel, les scientifiques peuvent alerter les autorités compétentes et leur conseiller de modifier les bulletins d’alerte concernant les cendres volcaniques ou de modifier les trajectoires de vol des avions se dirigeant vers des éruptions potentiellement dangereuses. La nouvelle technologie pourrait être particulièrement utile pour les volcans qui ne sont pas surveillés dans les régions qui se trouvent loin de tout. Il faut savoir que sur environ 1 500 volcans actifs dans le monde, moins de 10% sont surveillés.
L’algorithme numérise les images prises par les satellites météorologiques américains et japonais en orbite autour de l’équateur et qui enregistrent les images de vastes étendues de la Terre toutes les 30 secondes.
La difficulté consiste à faire la différence entre les types de nuages, par exemple entre les nuages éruptifs et la formation de gros nuages d’orages. Dans ce cas, l’algorithme analyse la «température de luminosité». En effet, lorsque des nuages ​​de cendre surchauffés montent dans le ciel, ils refroidissent rapidement à l’approche de la stratosphère.
Les chercheurs ont mis au point l’algorithme en se basant sur 79 éruptions volcaniques observées dans les données satellitaires de 2002 à 2017. Lorsque l’algorithme a utilisé des données de générations précédentes, il a pu identifier avec précision les nuages ​​de cendre dans environ 55% des cas. À l’aide de données provenant de satellites plus récents, le programme a repéré les nuages ​​dans près de 90% des cas.

Source: Science News.

L’article montre que des progrès ont été accomplis, mais mettre face à face la Science et la Nature peut être dangereux car la Nature n’est pas une science exacte. Je ne voudrais pas être dans un avion confronté aux 10% de nuages ​​de cendre qui n’ont pas été détectés par le programme scientifique décrit dans l’article!
Source: Science News.

————————————————–

In 2010, the eruption of Eyjafjallajökull in Iceland sent a wave of panic in the skies and the ash clouds paralysed air traffic in a large part of Europe. In the years that followed, several attempts were made to try and find solutions in order to avoid similar problems in the future. However, no significant progress has been made. Should another huge ash cloud invade the European skies it is highly likely that the planes will be grounded again.

A recent article released on the website Science News explains us that a new algorithm could “help protect planes from damaging volcanic ash.” We are told that it takes five to ten minutes for volcanic ash to shoot 11 kilometres into the sky  and reach altitudes at which commercial jets cruise, and potentially harm their engines.

Scientists have developed a new algorithm that can identify and track explosive ash clouds soon after volcanoes erupt. They explain that by using satellite imagery, the program can measure the temperature, height and trajectory of the expanding clouds within about three minutes.

By tracking the ash plumes in near real time, scientists can alert aviation authorities if there is a need to alter any volcanic ash advisories or change the flight paths of any planes flying toward hazardous eruptions. The new technology could be especially useful for tracking unmonitored volcanoes in remote regions. Out of the roughly 1,500 active volcanoes across the globe, fewer than 10 percent are monitored.

The algorithm works by scanning images taken by U.S. and Japanese weather satellites that zip around the equator, snapping pictures of large swaths of the Earth as frequently as every 30 seconds.

The challenge is to tell the difference between different types of clouds. To distinguish the eruption of volcanic ash clouds and the formation of large thunderstorms, for example, the algorithm analyzes the “brightness temperature”. Indeed, as superheated ash clouds surge into the sky, they cool quickly as they near the stratosphere.

The researchers trained the algorithm on 79 volcanic eruptions seen in satellite data from 2002 to 2017. When the algorithm used data from earlier satellite generations, it accurately identified ash clouds about 55 percent of the time. Using data from newer satellites, the program spotted the clouds in nearly 90 percent of cases.

Source : Science News.

The article shows us that progress is being made, but confronting Science with Nature can be dangerous as Nature is by no means an exact science. I would not like to be in a plane confronted with the 10 percent of ash clouds that were not spotted by the scientific program described in the article!

Nuage de cendre produit par l’éruption de l’Eyjafjallajökull (Islande) en 2010 (Crédit photo: Wikipedia)

Eruption du Manam (Papouasie-Nouvelle-Guinée) // Eruption at Manam (Papua New Guinea)

Selon le site web The Watchers, une violente éruption a commencé le 8 décembre 2018 vers 03h00 (TU) sur le volcan de l’île Manam, avec d’importantes retombées de cendre sur l’île. Selon le VAAC de Darwin, le panache de cendre s’est élevé à plus de 13 km au dessus du niveau de la mer, obligeant les autorités à faire passer la couleur de l’alerte aérienne au Rouge.
La couverture nuageuse dissimule le sommet du volcan de sorte qu’il est difficile de savoir si les émissions de cendres continuent. Les panaches devraient se dissiper d’ici 3 heures.
La dernière puissante éruption de ce volcan a eu lieu le 25 août 2018.
Source: The Watchers

———————————————

According the website The Watchers, a powerful eruption started at Manam volcano around 03:00 UTC on December 8th, 2018, with havy ashfall falling on the island. According to the Darwin VAAC, the ash plumes rose up to more than 13 kilometres above sea level, forcing authorities to raise the Aviation Colour Code to Red.

With meteorological clouds obscuring the summit, it is difficult to determine if ash emissions are ongoing.

The ash is expected to dissipate within the next 3 hours.

The previous high-impact eruption of this volcano took place on August 25th, 2018.

Source : The Watchers

Activité éruptive du Manam en juillet 2009 (Crédit photo: Wikipedia)

L’éruption du Kilauea officiellement terminée ? // Kilauea eruption officially over ?

Dans une note publiée le 5 décembre, le HVO a indiqué que toute activité avait cessé sur le Kilauea. Cela fait maintenant trois mois qu’aucune activité de surface n’est observée. La lave est apparue pour la dernière fois dans la Lower East Rift Zone (LERZ) le 4 septembre 2018.
Selon le GVN de la Smithsonian Institution, les volcans sans activité éruptive sur une période de trois mois ne sont plus considérés comme étant en éruption. Sur la base de ce critère, l’éruption dans la LERZ pourrait être considérée comme terminée.
Cependant, le HVO reste prudent, er rappelle que dans l’histoire du Kilauea il existe un exemple connu (éruption du Mauna Ulu entre1969 et 1974) au cours duquel l’activité du Kilauea a repris après plus de trois mois d’arrêt. [NDLR : Il serait tout de même intéressant de savoir s’il s’agissait effectivement d’une reprise de l’éruption ou d’un nouvel épisode éruptif, ce qu’il est très difficile de prouver sur le Kilauea où la composition de la lave n’évolue guère].
Le HVO a-t-il raison de dire que l’éruption n’est pas terminée en faisant référence à la seule exception dans l’activité volcanique du Kilauea? Je peux comprendre la déception des géologues américains qui se sont plantés dans leurs prévisions concernant la durée de la dernière éruption. Elle s’est arrêtée quelques semaines après leur prévision d’un événement de plusieurs mois ou d’un an.
Tous les paramètres montrent actuellement qu’aucune éruption ne se produira dans les prochaines semaines. Il ne fait guère de doute que la dernière éruption est bel et bien terminée !

A noter que le Lava Tree State Monument a rouvert au public le 6 décembre. Il avait été fermé à cause de la proximité de la dernière éruption mais a été épargné par la lave.

————————————————–

In a note released on December 5th, 2018, HVO indicated that Kilauea Volcano is still not erupting. There have been three months with no eruptive activity at the surface; September 4th, 2018 was the last time active lava was observed along the Lower East Rift Zone.

According to the Smithsonian Institution’s Global Volcanism Program, volcanoes with no eruptive activity over a three-month period are no longer classified as having a “continuing” eruption. Based on this criterion, the LERZ eruption could be considered to be over.

However, HVO remains cautious, pointing again to Kilauea history. There is one known example (Mauna Ulu, 1969-74) in which Kilauea’s rift zone activity resumed after more than three months had passed.

Is HVO right to say the eruption might not be over by pointing to the only exception in Kilauea’s volcanic activity? I can understand US geologists are disappointed because their predictions concerning the duration of the last eruption were wrong. It stopped a few weeks after their prediction of a several-month or one-year event.

All parameters show that no eruption will occur in the coming weeks. There is little doubt the eruption is definitely over.

It should be noted that the Lava Tree State Monument reopened to the public on December 6th. It had been closed because it was lying close to the last eruption but was spared by the lava.

Source: USGS / HVO

L’un des arbres du Lava Tree State Monument (Photo: C. Grandpey)

Volcans du monde // Volcanoes around the world

Voici quelques nouvelles de l’activité volcanique dans le monde, telle qu’elle est décrite dans le dernier rapport hebdomadaire de la Smithsonian Institution:

On observe quotidiennement une incandescence nocturne dans le cratère du Mayon (Philippines). Les 27 et 30 novembre 2018, des explosions phréatiques ont généré des panaches de cendre s’élevant à 300-500 mètres au-dessus du volcan. Le niveau d’alerte reste à 2, avec des zones d’exclusion de 6 km et 7 km.
Source: PHIVOLCS.

L’éruption se poursuit sur le Veniaminof (Aléoutiennes / Alaska). Les données satellitaires et les images de la webcam indiquent des températures de surface élevées dans la caldera. Des panaches de vapeur et de cendre sont périodiquement identifiés sur les images. La couleur de l’alerte aérienne reste à Orange et le niveau d’alerte volcanique à Vigilance.
Source: AVO.

Entre le 23 et le 29 novembre, le dôme de lave dans le cratère du Merapi (Indonésie) a augmenté à un rythme de 2 500 mètres cubes par jour. Le 29 novembre, le volume du dôme était estimé à 329 000 mètres cubes. Le niveau d’alerte reste à 2 (sur une échelle de 1 à 4) et il est demandé à la population de rester en dehors de la zone d’exclusion de 3 km.

On observe les émissions de vapeur et de gaz habituelles sur le Popocatépetl (Mexique). Des épisodes de tremor sont enregistrés presque quotidiennement. Le 2 décembre 2018, des explosions ont éjecté des matériaux incandescents sur les flancs supérieurs du volcan et ont généré des panaches de cendre s’élevant à 2,5 km au-dessus du cratère. Le niveau d’alerte reste à Jaune, Phase Deux.

Une moyenne quotidienne de 21 explosions est observée actuellement sur le Sabancaya (Pérou). Des événements sismiques longue période sont toujours enregistrés. Les panaches de gaz et de cendres s’élèvent habituellement jusqu’à 2,5 km au-dessus du cratère. Le 28 novembre, les émissions de SO2 atteignaient 4600 tonnes par jour. Le public ne doit pas s’approcher du cratère à moins de 12 km.

————————————————-

Here is the latest news of volcanic activity around the world, as reported in the Smithsonian Institution’s Weekly Report:

Crater incandescence can be seen at night on Mayon (Philippines). On November 27th and 30th, 2018, phreatic explosions generated ash plumes that rose 300-500 metres above the volcano. The alert level remains at 2, with 6-km and 7-km exclusion zones.

Source: PHIVOLCS.

The eruption continues at Veniaminof (Aleutians / Alaska). Satellite and webcam data show elevated surface temperatures in the caldera. Steam and ash plumes are periodically identified in webcam and satellite images. The aviation colour code remains at Orange and the volcano alert level is kept at Watch.

Source: AVO.

Between November 23rd and 29th, the lava dome in Merapi’s summit crater (Indonesia) grew at a rate of 2,500 cubic metres per day. By November 29th, the volume of the dome was an estimated 329,000 cubic metres. The alert level remains at 2 (on a scale of 1-4), and residents are asked to remain outside of the 3-km exclusion zone.

One observes the usual steam-and-gas emissions at Popocatépetl (Mexico). Periods of volcanic tremor are detected almost daily. Explosions on December 2nd ejected incandescent material onto the upper flanks, and generated ash plumes that rose 2.5 km above the crater. The alert level remains at Yellow, Phase Two.

An average of 21 explosions per day currently occurs at Sabancaya (Peru). Long-period seismic events are still recorded. Gas-and-ash plumes usually rise as high as 2.5 km above the crater. On November 28th, SO2 emissions reached 4,600 tons per day. The public should not approach the crater within a 12-km radius.

Hawaii: Concurrence entre hydrogène sulfuré et dioxyde de soufre // H2S vs. SO2

Au cours des derniers mois, avec l’éruption du Kilauea, les Hawaiiens ont souvent eu l’occasion de sentir le dioxyde de soufre (SO2), un gaz typique émis au moment des éruptions. Il apparaît lorsque le magma se trouve à faible profondeur. Actuellement, le volcan émet moins de 200 tonnes de SO2 chaque jour. C’est plus de 20 fois moins que la moyenne enregistrée au cours des 10 années d’activité du lac de lave dans l’Halema’uma’u et au moins 200 fois moins que le pic des émissions au cours de l’éruption dans la Lower East Rift Zone en 2018.
Depuis la fin de l’éruption, les gens respirent parfois un autre gaz: l’hydrogène sulfuré (H2S), le cousin malodorant du SO2. En ce moment, le magma se trouve à plus grande profondeur, ce qui induit des températures plus basses au niveau des bouches éruptives. Comme il n’y a plus de magma à faible profondeur pour faire évaporer les eaux souterraines, le sous-sol est également beaucoup plus humide. Ces conditions moins chaudes et plus humides sont parfaites pour provoquer la formation de petites quantités de H2S. On sent en général le gaz lorsque les alizés cessent de souffler et dans les endroits sous le vent à proximité du sommet du Kilauea, du Pu’u O’o, et du système de fractures dans la Lower East Rift Zone, site de l’éruption de 2018.
Le SO2, qui a une odeur âcre et piquante, comme celle émise par les feux d’artifice ou lorsqu’on craque une allumette, est perceptible à raison de 0,3 à 1 partie par million (ppm), c’est-à-dire 0,3 à 1 partie de gaz par million de parties d’air.
A côté de cela, les gens perçoivent généralement l’odeur d’œuf pourri du H2S à des concentrations allant de 0,0005 à 0,3 ppm. L’odeur du H2S est bien connue des habitants des sources thermales ou des zones géothermales comme le parc national de Yellowstone. Ce gaz est également produit par la décomposition de matières organiques et on le rencontre dans les égouts et les marécages. Même le corps humain produit une petite quantité de H2S. Au cours des dernières semaines, une forte odeur de H2S a envahi les Caraïbes, provoquant de graves problèmes de santé parmi la population. La cause en était les énormes quantités de sargasses, un type d’algues qui ont atteint les côtes des îles.
L’État d’Hawaï a fixé le «niveau de nuisance» pour le H2S à 0,025 ppm, sur la base du seuil olfactif. Les symptômes négatifs de l’exposition au H2S ne se manifestent que lorsque les concentrations sont bien supérieures au seuil olfactif. Selon l’OSHA (Occupational Safety and Health Administration), une exposition prolongée à des quantités de 2-5 ppm peut provoquer des maux de tête, une irritation des yeux, des nausées ou des problèmes respiratoires chez certains asthmatiques. Les concentrations mesurées dans les zones habitées autour du Kilauea sont inférieures à 1 ppm.
Bien que l’être humain puisse détecter le H2S à de très faibles concentrations, son odorat ne le détecte plus à des concentrations élevées. Par exemple, une exposition de deux à cinq minutes à 100 ppm peut provoquer une adaptation sensorielle appelée «fatigue olfactive». Il est rassurant de noter que les concentrations de H2S mesurées sur le Kilauea, même directement au niveau des bouches éruptives, sont bien inférieures à ce niveau.
Pour les Hawaïens qui vivent depuis des décennies avec l’odeur familière du vog empreinte de SO2, l’arrivée du H2S malodorant peut être quelque peu déconcertante. Quand surviendra la prochaine éruption du Kilauea, avec une remontée du magma vers la surface, il faudra s’attendre à une diminution des émissions de H2S et à un retour à l’odeur plus familière du SO2 et du vog à dominance particulaire.
Source: USGS / HVO.

———————————————————

In the past months, with the eruption of Kilauea Volcano, Hawaiians could often smell sulphur dioxide (SO2), a typical gas emitted during eruptions. It is released when magma is at a shallow depth. Currently, less than 200 tons of SO2 are emitted from the volcano each day. This is more than 20 times less than the average emissions during the 10 years of lava lake activity at Halema’uma’u, and at least 200 times less than peak emissions during the 2018 lower East Rift Zone eruption.

Since the end of the eruption, people have smelled another gas: hydrogen sulphide (H2S), the smelly cousin of SO2. With the current volcanic conditions, deeper magma has led to cooler vent temperatures. Without shallow magma to boil off ground water, the sub-surface environment is also much wetter. These cooler and wetter conditions cause a small amount of H2S to form. H2S is most commonly detected during interruptions in trade wind conditions and in locations downwind of Kilauea’s summit, Pu’u O’o, and the 2018 lower East Rift Zone fissure system.

SO2, which produces a sharp pungent aroma like that emitted when setting off fireworks or striking a kitchen match, is noticeable to most people at 0.3 to 1 parts per million (ppm) – 0.3 to 1 parts gas in 1 million parts of air.

On the other hand, people can usually smell the rotten egg odor of H2S at lower concentrations ranging from 0.0005 to 0.3 ppm. The smell of H2S is a familiar odour to people from hot spring or geothermal areas like in Yellowstone National Park. It is also produced by decaying organic material and is released by sewers and swamps. Even the human body produces a small amount of H2S. During the past weeks, a strong H2S smell invaded the Caribbean which caused severe health problems among the population. The cause lay with the huge amounts of sargassum that had reached the coasts of the islands.

The State of Hawaii has set a “nuisance level” for H2S at 0.025 ppm, based on the odour threshold. Negative symptoms of H2S exposure do not occur until concentrations are well above the odour threshold. According to the Occupational Safety and Health Administration (OSHA), prolonged exposure to 2-5 ppm may cause headaches, eye irritation, nausea or breathing problems in some asthmatics. Measured concentrations in populated areas around Kilauea are less than 1 ppm.

Although H2S can be detected by humans at very low concentrations, a person’s sense of smell to the gas is lost at high concentrations. For instance, two to five minutes of exposure at 100 ppm can cause a sensory adaptation known as “olfactory fatigue.” But concentrations of H2S measured at Kilauea, even directly at volcanic vents, are well below this level.

For Hawaiians who have spent decades living with the familiar aroma of “classic” vog, the introduction of smelly H2S can be curious or even disconcerting. When the next eruption of Kilauea occurs, when magma eventually rises toward the surface,  a decrease in H2S emissions is to be expected, with a return to the more familiar smell of the SO2 and particle-dominated vog.

Source: USGS / HVO.

Panache de gaz riche en SO2 au sommet du Kilauea

L’odeur de H2S est présente aux abords des zones géothermales

(Photos: C. Grandpey)

 

Un système automatique d’alerte éruptive sur l’Etna (Sicile) // An automatic eruptive alert system on Mt Etna (Sicily)

Selon la presse sicilienne, un système automatique destiné à alerter la population en cas d’éruption a été testé avec succès sur l’Etna  pendant 8 ans, de 2008 à 2016. Il a pu détecter 57 des 59 épisodes éruptifs une heure à l’avance. Basé sur un réseau de capteurs acoustiques, le système a été mis au point par un groupe de scientifiques de l’Université de Florence. Les résultats des tests ont été publiés dans le Journal of Geophysical Research.
Les scientifiques ont placé des capteurs sonores à environ 6 kilomètres du plus haut volcan actif d’Europe. Ces capteurs sont capables d’envoyer des signaux d’avertissement par le biais de messages et de courriers électroniques. À l’aide de ce système, le gouvernement italien a pu mettre au point en 2015 un plan d’alerte prêt à être déclenché une heure avant une éventuelle éruption.

Les chercheurs expliquent que les volcans génèrent des ondes sonores de basse fréquence qui ne peuvent pas être entendues par l’oreille humaine avant une éruption. Ces infrasons peuvent parcourir des milliers de kilomètres à l’intérieur du volcan et sont plus étroitement liés à une éruption que les ondes sismiques.
L’un des scientifiques a fait remarquer que la plupart des 1 500 volcans actifs dans le monde ne sont pas surveillés en temps réel. L’étude des ondes sismiques liées aux mouvements du magma est souvent insuffisante ; elle devrait être accompagnée d’une alerte automatique capable d’accélérer les procédures et réduire les risques. Après les premiers tests positifs sur l’Etna, les capteurs seront également testés sur d’autres volcans. L’objectif est de créer un réseau mondial de surveillance.

Source : Presse sicilienne.

—————————————————

According to the Sicilian press, an automatic system intended to alert the population in the event of an eruption has been successfully tested for 8 years on Mount Etna, from 2008 to 2016. It was able to detect 57 of the 59 eruptive episodes one hour in advance. Based on a network of acoustic sensors, the system was developed by a group of scientists from the University of Florence. The test results were published in the Journal of Geophysical Research.
Scientists set up sound sensors about 6 kilometres from the highest active volcano in Europe. These sensors are capable of sending warning signals through messages and emails. Using this system, the Italian government could develop in 2015 an alert plan ready to be triggered one hour before an eruption.
The researchers explain that volcanoes generate low frequency sound waves that can not be heard by the human ear before an eruption. These infrasounds can travel thousands of kilometres inside the volcano and are more closely related to an eruption than the seismic waves.
One of the scientists pointed out that most of the 1,500 active volcanoes in the world are not monitored in real time. The study of seismic waves related to the movements of magma is often insufficient; it should be accompanied by an automatic alert capable of speeding up procedures and reducing risks. After the first positive tests on Mt Etna, the sensors will also be tested on other volcanoes. The goal is to create a global surveillance network.
Source: Sicilian newspapers.

Photo: C. Grandpey