Les eaux chaudes océaniques font fondre la glace antarctique par en dessous // Warm ocean waters melt Antarctic ice from below

Une nouvelle étude publiée dans la revue Nature Geoscience confirme ce que nous savions déjà, à savoir que les plates-formes glaciaires de l’Antarctique fondent sous l’effet du réchauffement des eaux océaniques, même pendant la saison où la neige s’accumule à leur surface. Cet étrange paradoxe est susceptible de s’accentuer à cause du phénomène El Niño. En se basant sur 23 années de données satellitaires concernant les plates-formes glaciaires de l’Antarctique occidental, l’étude révèle qu’un fort épisode El Niño fait perdre aux plates-formes davantage de glace qu’elles n’en récupèrent avec les chutes de neige à leur surface.
Le phénomène El Niño provoque une augmentation des chutes de neige, en particulier dans le secteur de la mer d’Amundsen. Bien que cette neige augmente l’épaisseur des plates-formes glaciaires, les différents épisodes El Niño donnent naissance à des vents qui poussent les eaux océaniques plus chaudes vers les plates-formes, ce qui entraîne leur fonte par en dessous

Selon l’étude, les données satellitaires de 1994 à 2017 ont révélé que la hauteur de glace a diminué de 20 centimètres par an en raison de la fonte provoquée par l’eau océanique. Cependant, lors de l’événement El Niño en 1997 et 1998, cette hauteur a augmenté de 25 centimètres. Malgré tout, la neige fraîche a une densité beaucoup plus faible que celle de la glace qui compose la majeure partie de la plate-forme. La masse, qui est le paramètre le plus important en termes d’élévation du niveau de la mer, a continué à diminuer malgré l’augmentation de la hauteur pendant les épisodes neigeux. L’apport constitué par le manteau neigeux était minime par rapport à la fonte de la glace par en dessous. Les plates-formes glaciaires ont perdu cinq fois plus de glace par le bas qu’elles n’en ont gagné par les chutes de neige fraîche à leur surface.
Les événements El Niño devraient s’intensifier avec le changement climatique et pourraient affecter la rapidité de la fonte de la glace. Il est urgent de prendre en compte ce facteur dans les modèles d’élévation du niveau de la mer. .
Les relevés satellitaires effectués depuis deux décennies ont permis aux chercheurs de se pencher sur les processus qui influent sur les plates-formes glaciaires et de mieux comprendre leur fonte dans les prochaines années. Cela pourrait aider à déterminer avec quelle rapidité le niveau de la mer augmentera. Il est toutefois utile de rappeler que les plates-formes glaciaires ne provoquent pas d’élévation du niveau de la mer car elles flottent déjà sur l’eau de mer comme un glaçon dans un verre d’eau. Elles jouent un rôle important en retenant les glaciers et en contrôlant la vitesse à laquelle ils viennent vêler dans l’océan. C’est la fonte de ces glaciers qui contribue à l’élévation du niveau de la mer.
Source: Newsweek.

————————————-

A new study published in Nature Geoscience confirms that Antarctica’s ice shelves are melting from warming ocean waters below, even during seasons when snowfall on top of them is increasing. This strange paradox could worsen because of El Niño. Based on 23 years of satellite data from the West Antarctic ice shelves, the study reveals that a strong El Niño event causes the shelves to lose more ice from melting beneath than they gain back from snowfall on top of it.

The El Niño phenomenon causes snowfall to increase, especially in the Amundsen Sea sector. Though the snowfall increases the actual height of this ice shelf, El Niño events cause wind patterns in Antarctica to push warmer ocean waters towards the ice shelf, which results in the basal melting.

According to the study, the satellite data from 1994 to 2017 revealed the height of the ice decreased by 20 centimetres per year overall from ocean melting. However, during the El Niño event in 1997 and 1998, the height increased by 25 centimetres. The fresh snowfall, however, is much less dense than the solid ice that makes up most of the shelf. The mass, which is the most important measurement in terms of sea level rise, was decreasing although the height increased during the event. The extra snowpack was minimal compared to how much solid ice melted from below. Ice shelves lost five times more ice from below than they gained back from fresh snowfall.

El Niño events are expected to worsen and intensify in the wake of climate change and could affect how quickly ice shelves melt. That factor needs to be integrated into sea level rise models.  .

Satellite records over two decades allowed researchers to look at the processes that affect ice shelves, which helps scientists better understand how ice sheets may melt in the future. Understanding the processes behind the melting of ice shelves could help pinpoint how soon and how much sea levels will rise. Ice shelves don’t cause sea level rise on their own as they are already floating on sea water like an ice cube in a glass of water. The ice shelf, rather, plays an important role in holding back the glaciers and controlling the speed at which they discharge ice. It is the melting of these glaciers that would contribute to increasing sea level rise.

Source : Newsweek.

Glacier Thwaites dont la fonte provoquerait inévitablement une hausse du niveau des océans (Crédit photo: NASA)

Publicités

Deux nouveaux volcans découverts en Antarctique // Two new volcanoes discovered in Antarctica

D’après le Prague Daily Monitor,  un journal local, une équipe de chercheurs tchèques a détecté deux volcans sous la banquise antarctique. Cependant, aucun détail n’est donné sur l’emplacement exact de ces volcans sur le continent. L’équipe scientifique, de l’Institut Astronomique Tchèque, les a localisés au moyen d’une analyse gravimétrique qui montre le champ gravitationnel de la Terre et ses anomalies locales. Les scientifiques ont nommé les volcans Dana et Zuzana, prénoms féminins répandus en République tchèque.
Les deux chercheurs ont découvert les volcans en utilisant les données gravimétriques fournies par un satellite en orbite à basse altitude autour de la Terre depuis 2009. Les données permettent de détecter différentes structures sur et sous la surface du sol. Les analyses ont révélé des phénomènes tels que des dépôts de sel ou de fer, des vallées et un ancien lit de rivière.
Les scientifiques ont complété les données gravimétriques par des informations topographiques fournies par des mesures radar qui permettent de déterminer l’altitude de la surface de la banquise et du substrat qui se trouve en dessous. Dans le cas des deux volcans, les mesures ont confirmé leur forme typique.
L’équipe scientifique a également découvert cinq lacs sous la glace antarctique. Les chercheurs les ont baptisés du nom de leurs épouses ou de leurs filles. Ce n’est pas la première fois que des noms de femmes sont à l’honneur en Antarctique. Une partie du continent porte le nom de Marie Byrd, l’épouse de l’explorateur polaire Richard Evelyn Byrd.
En plus des volcans, la méthode utilisée par l’équipe tchèque est capable de mettre en évidence des gisements de pétrole, [NDLR : …ce qui n’est pas le plus souhaitable pour l’environnement !]
Source: The Prague Daily Monitor.

——————————————-

According to the Prague Daily Monitor, a local newspaper, Czech researchers have detected two volcanoes under Antarctic ice layer. However, no details are given about the exact location of the volcanoes on the continent. The team, from the Czech Astronomical Institute (ASU), has detected them by means of a gravimetric analysis that shows the Earth’s gravitational field and its local anomalies. The scientists named the volcanoes Dana and Zuzana, which are female first names widespread in the Czech Republic.

The two researchers discovered the volcanoes by using the gravimetric data supplied by a special satellite that has been orbiting the Earth at a low altitude since 2009. The data enable to detect various structures on and below the ground surface. The analyses helped detect phenomena such as salt or iron deposits, valleys and a long defunct former river bed.

The scientists complemented the gravimetric data by topographic information provided by radar measurements, which ascertain the altitude of both the surface and the ground surface below the ice layer. In the case of the two volcanoes, the measurements confirmed their shape typical of volcanoes.

Members of the scientific team have also uncovered five lakes under the Antarctic ice, naming them all after their wives or daughters. It is not by chance that female names have a tradition in Antarctica. A part of the continent bears the name of Marie Byrd, the wife of polar explorer Richard Evelyn Byrd.

Apart from volcanoes, the method developed by the team can also be used to detect oil deposits.

Source: The Prague Daily Monitor.

Source: Wikipedia

Les glaciers Pine Island et Thwaites (Antarctique) : un danger pour l’humanité ? // Are the Pine Island and Thwaites glaciers (Antarctica) a danger to mankind ?

Dans plusieurs notes publiées entre 2014 et 2016, j’ai attiré l’attention sur les conséquences inquiétantes de la fonte de deux glaciers majeurs du continent antarctique: Pine Island et Thwaites.
S’étirant sur plus de 240 km de long, les glaciers Pine Island et Thwaites avancent depuis des millénaires vers la mer d’Amundsen, un recoin du vaste Océan Austral. Une fois à l’intérieur des terres, les glaciers prennent du volume pour former une masse de glace de 3 km d’épaisseur qui occupe une superficie équivalente à celle du Texas.
Il ne fait aucun doute que cette glace est destinée à fondre avec le réchauffement climatique à venir. La question de savoir QUAND se produire cette fonte. Ces deux glaciers de Pine Island Bay font partie des plus grands et des plus rapides de tout l’Antarctique. Ensemble, ils forment un rempart qui retient suffisamment de glace pour faire monter de 3,50 mètres le niveau des océans dans le monde, ce qui submergerait toutes les villes côtières de la planète. Pour cette raison, comprendre à quelle vitesse ces glaciers vont s’effondrer dans la mer est l’une des questions les plus importantes auxquelles les scientifiques essayent de répondre aujourd’hui.
Dans ce but, les chercheurs se sont penchés sur la fin de la dernière période glaciaire, il y a environ 11 000 ans, lorsque les températures de la planète étaient à peu près au niveau actuel. Il y a de plus en plus de preuves que les glaciers de Pine Island Bay se sont effondrés rapidement dans la mer à l’époque, avec une hausse des océans qui a inondé les côtes, en partie à cause de «l’instabilité des falaises de glace».
Le plancher océanique atteint de plus grandes profondeurs en se rapprochant du centre de cette partie de l’Antarctique, de sorte que chaque nouvel iceberg qui se détache révèle des falaises de plus en plus hautes. La glace devient si lourde que ces hautes falaises s’effondrent sous leur propre poids. Une fois qu’elles commencent à s’effondrer, la destruction totale est inévitable. Les scientifiques pensent aujourd’hui que  l’instabilité des falaises de glace pourrait déclencher la désintégration de toute la calotte glaciaire de l’Antarctique de l’Ouest au cours de ce siècle, donc beaucoup plus rapidement qu’on ne le pensait auparavant.
Un effondrement massif des glaciers Pine Island et Thwaites provoquerait une catastrophe. Des icebergs géants envahiraient l’Antarctique. Partout dans le monde, la mer lors des hautes marées recouvrirait les côtes de la planète, inondant les villes côtières, avec des centaines de millions de réfugiés climatiques. Tout cela pourrait se jouer dans un laps de temps de 20 à 50 ans, beaucoup trop vite pour que l’humanité puisse s’adapter.
Cette nouvelle source d’inquiétude est largement motivée par les recherches effectuées par deux climatologues de l’Université du Massachusetts-Amherst et de la Penn State University. L’étude qu’ils ont publiée l’année dernière a été la première à incorporer les dernières données sur l’instabilité des falaises de glace dans une modélisation globale de l’Antarctique.
Leurs résultats ont conduit à des estimations de l’élévation des mers au cours de ce siècle. Au lieu de la hausse de 90 centimètres prévue jusqu’à présent, les scientifiques affirment qu’une élévation de 1,80 mètre est plus probable. De plus, si les émissions de carbone continuent de croître et donnent naissance à un scénario catastrophe,  on pourrait atteindre une hausse de 3,30 mètres.
Une hausse de 90 centimètres du niveau de la mer serait déjà désastreuse, avec des inondations plus fréquentes dans des villes américaines telles que la Nouvelle-Orléans, Houston, New York et Miami. Les nations insulaires du Pacifique, comme les îles Marshall, perdraient la plus grande partie de leur territoire. Malheureusement, il semble maintenant que ces 90 centimètres ne soient envisagés que dans les scénarios les plus optimistes. Avec une hausse de 1,80 m, environ 12 millions de personnes aux États-Unis seraient déplacées, et les mégapoles les plus vulnérables du monde, comme Shanghai, Mumbai et Ho Chi Minh-Ville, pourraient être rayées de la carte. Avec une hausse de 3,30 mètres, les terres actuellement occupées par des centaines de millions de personnes dans le monde se retrouveraient sous l’eau. Le sud de la Floride serait en grande partie inhabitable; les inondations semblables à celles provoquées par l’ouragan Sandy se produiraient deux fois par mois à New York et dans le New Jersey car l’attraction lunaire suffirait à elle seule à envoyer l’eau dans les maisons et les bâtiments.

Les chercheurs ont observé les anciens niveaux de la mer et les ont confrontés au comportement actuel des calottes glaciaires. Il y a environ 3 millions d’années, alors que les températures à l’échelle de la planète étaient semblables à celles prévues au cours de ce siècle, le niveau des océans était des dizaines de centimètres plus haut qu’aujourd’hui.
Les modèles présentés ces dernières années indiquaient qu’il faudrait des centaines ou des milliers d’années pour qu’une élévation du niveau de la mer de cette ampleur se produise. Après avoir intégré l’instabilité des falaises de glace dans leur modèle, les chercheurs américains ont annoncé une catastrophe si le monde ne réduisait pas de façon spectaculaire ses émissions de carbone.
Les scientifiques pensaient jusqu’à présent que les calottes glaciaires prendraient probablement des millénaires pour réagir au changement climatique. Toutefois, la dernière étude démontre qu’une fois qu’un certain seuil de température est atteint, les plates-formes glaciaires qui avancent dans la mer, comme celles à proximité de Pine Island Bay, commenceront à fondre à la fois par dessus et par dessous, ce qui affaiblira leur structure et accélérera leur disparition via l’instabilité des falaises de glace.
Le glacier Jakobshavn au Groenland, l’un des glaciers qui s’effondrent le plus rapidement dans la mer, est le seul endroit au monde où l’instabilité des falaises de glace se manifeste aujourd’hui. Afin de construire leurs modèles informatiques, les chercheurs de l’Université du Massachusetts-Amherst et Penn State University ont pris en compte la vitesse d’effondrement du Jakobshavn, l’ont réduite de moitié, puis l’ont appliquée aux glaciers Thwaites et Pine Island. Il y a toutefois des raisons de penser que Thwaites et Pine Island pourraient s’effondrer encore plus vite que Jakobshavn car il y a des signes d’une possible déstabilisation rapide de toute la calotte glaciaire de l’Antarctique de l’Ouest au cours de ce siècle. Qui plus est, d’autres glaciers de l’Antarctique seront également vulnérables. Et puis il y a le Groenland, qui pourrait contribuer jusqu’à 6 mètres d’élévation du niveau de la mer si ses glaciers se mettaient à fondre.
Certains scientifiques ne sont pas entièrement convaincus par l’alarme déclenchée par leurs collègues américains. Un chercheur pense qu’il est peu probable que les glaciers Thwaites ou Pine Island s’effondrent d’un seul coup. De plus, si un effondrement rapide se produisait, le phénomène générerait un amas d’icebergs qui pourrait jouer le rôle de une plate-forme de glace temporaire, ralentissant ainsi la vitesse de recul glaciaire.
Malgré ces divergences d’opinion, il existe un consensus au sein de la communauté scientifique sur le fait que nous devons faire beaucoup plus d’études pour déterminer le risque d’élévation rapide du niveau de la mer. Evénement rare et qui montre l’urgence de la situation, en 2015, les gouvernements des États-Unis et du Royaume-Uni ont commencé à planifier un programme d’étude et de recherche sur le glacier Thwaites. Intitulé “How much, how fast?” – « De combien et à quelle vitesse? » – le projet devrait débuter au début de l’année prochaine et durer cinq ans.
Source: Presse scientifique américaine.

Voici un aperçu de ce qui nous attend si nous continuons à émettre des gaz à effet de serre : Effondrement majeur d’un glacier au Groenland (Extrait du superbe film « Chasing Ice » de James Balog)

https://youtu.be/hC3VTgIPoGU

—————————————————-

In several posts written between 2014 and 2016, I have drawn attention to the worrying consequences of the melting of two major glaciers on the Antarctic continent: Pine Island and Thwaites.

Stretching across a frozen plain more than 240 km long, the Pine Island and Thwaites glaciers have steadily moved forward for millennia toward the Amundsen Sea, part of the vast Southern Ocean. Further inland, the glaciers widen into a 3-km-thick reserve of ice covering an area the size of Texas.

There is no doubt this ice will melt as the world gets warmer and warmer. The vital question is when. These glaciers of Pine Island Bay are two of the largest and fastest-melting in Antarctica. Together, they act as a plug holding back enough ice to pour 3.50 metres of sea-level rise into the world’s oceans, an amount that would submerge every coastal city on the planet. For that reason, finding out how fast these glaciers will collapse is one of the most important scientific questions in the world today.

To figure that out, scientists have been looking back to the end of the last ice age, about 11,000 years ago, when global temperatures stood at roughly their current levels. There is growing evidence that the Pine Island Bay glaciers collapsed rapidly back then, flooding the world’s coastlines, partially the result of “marine ice-cliff instability.”

The ocean floor gets deeper toward the center of this part of Antarctica, so each new iceberg that breaks away exposes taller and taller cliffs. Ice gets so heavy that these taller cliffs can’t support their own weight. Once they start to crumble, the destruction becomes unstoppable. In the past few years, scientists have identified marine ice-cliff instability as a feedback loop that could trigger the disintegration of the entire West Antarctic ice sheet this century, much more quickly than previously thought.

A wholesale collapse of Pine Island and Thwaites would set off a catastrophe. Giant icebergs would stream away from Antarctica. All over the world, high tides would creep higher, slowly burying every shoreline on the planet, flooding coastal cities and creating hundreds of millions of climate refugees. All this could play out in a mere 20 to 50 years, much too quickly for humanity to adapt.

A lot of this newfound concern is driven by the research of two climatologists at the University of Massachusetts-Amherst and Penn State University. A study they published last year was the first to incorporate the latest understanding of marine ice-cliff instability into a continent-scale model of Antarctica.

Their results drove estimates for how high the seas could rise this century. Instead of a 90-centimetre increase in ocean levels by the end of the century, 180 centimetres was more likely. But if carbon emissions continue to track on something resembling a worst-case scenario, the full 3.30 metres of ice locked in West Antarctica might be freed up.

90 centimetres of sea-level rise would be bad, leading to more frequent flooding of U.S. cities such as New Orleans, Houston, New York, and Miami. Pacific Island nations, like the Marshall Islands, would lose most of their territory. Unfortunately, it now seems like 90 centimetres is possible only under the most optimistic scenarios. At 180 centimetres, though, around 12 million people in the United States would be displaced, and the world’s most vulnerable megacities, like Shanghai, Mumbai, and Ho Chi Minh City, could be wiped off the map. At 3.30 metres, land currently inhabited by hundreds of millions of people worldwide would wind up underwater. South Florida would be largely uninhabitable; floods on the scale of Hurricane Sandy would strike twice a month in New York and New Jersey, as the tug of the moon alone would be enough to send tidewaters into homes and buildings.

The researchers observed ancient sea levels at shorelines around the world with current ice sheet behaviour. Around 3 million years ago, when global temperatures were about as warm as they are expected to be later this century, oceans were dozens of centimetres higher than today.

Previous models suggested that it would take hundreds or thousands of years for sea-level rise of that magnitude to occur. But once they accounted for marine ice-cliff instability with their model, the researchers pointed toward a catastrophe if the world does not dramatically reduce carbon emissions.

Scientists used to think that ice sheets could take millennia to respond to changing climates.

The new evidence, though, says that once a certain temperature threshold is reached, ice shelves of glaciers that extend into the sea, like those near Pine Island Bay, will begin to melt from both above and below, weakening their structure and hastening their demise, and paving the way for ice-cliff instability to kick in.

The only place in the world where you can see ice-cliff instability in action today is at Jakobshavn glacier in Greenland, one of the fastest-collapsing glaciers in the world. In order to construct their models, the researchers at the University of Massachusetts-Amherst and Penn State University took the collapse rate of Jakobshavn, cut it in half to be extra conservative, then applied it to Thwaites and Pine Island.  But there’s reason to think Thwaites and Pine Island could go even faster than Jakobshavn as there are signals of the possible rapid destabilization of the entire West Antarctic ice sheet in this century. What is more, other glaciers around Antarctica will be similarly vulnerable. And then there is Greenland, which could contribute as much as 6 metres of sea-level rise if it melts.

Still, some scientists aren’t fully convinced the alarm is warranted. Another scientist thinks it is unlikely that Thwaites or Pine Island would collapse all at once. For one thing, if rapid collapse did happen, it would produce a pile of icebergs that could act like a temporary ice shelf, slowing down the rate of retreat.

Despite the differences of opinion, however, there is growing agreement within the scientific community that we need to do much more to determine the risk of rapid sea-level rise. In 2015, the U.S. and U.K. governments began to plan a rare and urgent joint research program to study Thwaites glacier. Called “How much, how fast?”, the effort is set to begin early next year and run for five years.

Source : U.S. scientific press.

Here’s a glimpse of what lies ahead if we continue to emit greenhouse gases: Major glacier collapse in Greenland (Excerpt from James Balog’s superb movie « Chasing Ice »).

https://youtu.be/hC3VTgIPoGU

Plate-forme glaciaire flottante au niveau du front du glacier de Pine Island. Une fracture montre qu’un vêlage d’iceberg est imminent (Crédit photo : NASA)

Les forêts de l’Antarctique // Antarctica’s forests

Quand on contemple aujourd’hui l’univers immaculé de l’Antarctique, il est difficile de se faire à l’idée que ce continent n’a pas toujours été recouvert par la glace. Il y a des millions d’années, alors qu’il faisait encore partie du Gondwana, les arbres poussaient en abondance près du pôle Sud.
Des chercheurs de l’Université du Wisconsin-Milwaukee ont découvert des fossiles de certains de ces arbres ; ils nous apprennent comment les plantes ont prospéré et à quoi pourraient bientôt ressembler nos forêts qui progressent vers le nord sous l’effet du réchauffement climatique. Les scientifiques indiquent que l’Antarctique préserve une histoire écologique des biomes polaires sur environ 400 millions d’années, ce qui représente fondamentalement l’intégralité de l’évolution des plantes.
Il y a environ 400 à 14 millions d’années, le continent austral était très différent de ce qu’il est aujourd’hui ; c’était un endroit beaucoup plus vert. Le climat était plus chaud, même si les plantes qui ont survécu dans les basses latitudes méridionales ont dû faire face, comme de nos jours, à des hivers pendant lesquels le soleil disparaît à l’horizon et des étés pendant lesquels il ne se couche jamais.
Les chercheurs de l’Université du Wisconsin-Milwaukee concentrent leur étude sur une période qui se situe autour de 252 millions d’années, ce qui correspond à l’extinction massive du Permien-Trias. Au cours de cet événement, 95% des espèces sur Terre ont disparu. L’extinction a pu être causée par des émissions colossales de gaz à effet de serre produites par des éruptions volcaniques, ce qui a fait grimper les températures de la planète à des niveaux extrêmes et provoqué l’acidification des océans. Il y a des points communs évidents avec le changement climatique actuel qui est certes moins extrême mais qui est également influencé par les gaz à effet de serre.
Avant la fin de l’extinction massique du Permien, les forêts polaires du Sud étaient dominées par un type d’arbre, celui du genre Glossopteris. C’étaient de grands arbres pouvant atteindre des hauteurs de 20 à 40 mètres, avec de larges feuilles plates. Avant l’extinction du Permien, le Glossopteris dominait le paysage austral entre le 35ème  parallèle et le pôle Sud.
L’an dernier, alors qu’ils cherchaient des fossiles en Antarctique, les scientifiques ont découvert la forêt la plus ancienne de la région du pôle sud. Elle s’est probablement développée il y a environ 280 millions d’années avant de disparaître rapidement sous la cendre volcanique qui a  préservé les végétaux jusqu’au niveau cellulaire.
De nouvelles fouilles devraient être effectuées très prochainement sur deux sites qui contiennent des fossiles d’une période allant d’avant à après l’extinction du Permien. Après l’extinction, les forêts n’ont pas disparu, mais elles ont changé. Le Glossopteris n’existait plus, mais de nouveaux d’arbres à feuilles persistantes et à feuilles caduques, y compris des espèces proches des gingkos d’aujourd’hui, ont fait leur apparition. Les chercheurs essaient de comprendre ce qui a causé cette évolution.
Les plantes sont si bien conservées dans la roche que certains des blocs d’acides aminés qui composent les protéines des arbres peuvent encore être extraits. L’étude de la composition chimique de ces blocs permettra peut-être de comprendre comment les arbres ont pu s’adapter aux conditions de  lumière très particulières dans les latitudes méridionales, ainsi que les facteurs qui ont permis à ces plantes de prospérer, tout en entraînant la mort du Glossopteris.
Source: Live Science.

————————————–

When looking at Antarctica’s immaculate universe today, it is hard to imagine that this continent was not always a land of ice. Millions of years ago, when it was still part of Gondwana, trees flourished near the South Pole.

Now, newfound fossils of some of these trees by researchers at the University of Wisconsin-Milwaukee are revealing how the plants thrived, and what forests might look like as they march northward in today’s warming world. The scientists tell us that Antarctica preserves an ecologic history of polar biomes that ranges for about 400 million years, which is basically the entirety of plant evolution.

Fom about 400 million to 14 million years ago, the southern continent was a very different from what it is today, and a much greener place. The climate was warmer, though the plants that survived at the low southern latitudes had to cope with winters of 24-hour-per-day darkness and summers during which the sun never set, just as today.

The University of Wisconsin-Milwaukee researchers are focused on an era centered around 252 million years ago, during the Permian-Triassic mass extinction. During this event, as many of 95 percent of Earth’s species died out. The extinction may have been driven by massive greenhouse gas emissions from volcanoes, which raised the planet’s temperatures to extreme levels and caused the oceans to acidify. There are obvious parallels to contemporary climate change, which is less extreme but similarly driven by greenhouse gases.

Prior to the end-Permian mass extinction, the southern polar forests were dominated by one type of tree, those in the Glossopteris genus. These were huge trees that grew from 20 to 40 metres tall, with broad, flat leaves. Before the Permian extinction, Glossopteris dominated the landscape below the 35th parallel south to the South Pole.

Last year, while looking for fossils in Antarctica, the researchers found the oldest polar forest on record from the southern polar region. It probably flourished about 280 million years ago before being rapidly buried in volcanic ash, which preserved it down to the cellular level.

More excavations are due to be performed very soon at two sites which contain fossils from a period spanning from before to after the Permian extinction. After the extinction, the forests did not disappear, but they changed. Glossopteris was out, but a new mix of evergreen and deciduous trees, including relatives of today’s gingkoes, moved in. The researchers are trying to understand what exactly caused those transitions to occur.

The plants are so well-preserved in rock that some of the amino acid building blocks that made up the trees’ proteins can still be extracted. Studying these chemical building blocks may help clarify how the trees handled the southern latitudes’ weird sunlight conditions, as well as the factors that allowed those plants to thrive but drove Glossopteris to its death.

Source : Live Science.

La photo montre une souche d’arbre datant de 280 millions d’années, encore attachée à ses racines en Antarctique. (Crédit photo: Université du Wisconsin-Milwaukee)

Impact de la fonte des glaciers sur les systèmes situés en aval // Impact of glaciers melting on downstream systems

Les glaciers couvrent près de 10 % de la surface terrestre de la Terre, mais reculent rapidement dans la plupart des régions du monde. Comme je l’ai répété à plusieurs reprises, c’est dans les régions du Golfe de l’Alaska, de l’Arctique canadien, du Groenland et de l’Antarctique que ce recul glaciaire est le plus évident. En conséquence, l’attention des scientifiques s’est focalisée jusque-là sur la hausse du niveau des mers qui résulte de la fonte de ces glaciers. Un nouveau document publié par des chercheurs des universités de Birmingham (Angleterre) et de Fairbanks (Alaska / Etats-Unis) décrit d’autres effets en aval qui auront des implications sociétales importantes dans les prochaines années. Les auteurs demandent que l’on mette davantage l’accent sur la planification des mesures d’adaptation et d’atténuation dans toutes les régions touchées. Les régions les plus concernées par ces remarques sont les Alpes en Europe, et les Andes sud-américaines. Comme le soulignent les chercheurs, l’espace alpin s’est particulièrement réchauffé durant les trente dernières années et en particulier pendant les mois d’été. Combiné à une diminution des chutes de neige, les surfaces de glace ont reculé de plus de moitié (54 %) depuis 1850. Selon les calculs actuels, les glaciers pourraient atteindre à la fin du 21ème siècle entre 4 et 13 % de la surface qu’ils avaient en 2003. Les effets de ce rétrécissement à l’échelle mondiale pourraient avoir de grosses conséquences.

Les chercheurs indiquent que des changements dans l’hydrologie et la morphologie des rivières sont à prévoir. Le débit des rivières deviendra plus imprévisible puisqu’il dépendra moins des eaux de fonte et davantage des précipitations. Le rétrécissement des glaciers permettra également le transport des polluants, y compris les produits d’émission issus de l’activité industrielle, tels que le carbone noir et les composés associés comme le mercure, les pesticides et d’autres polluants organiques persistants contaminant les océans et nappes phréatiques. Le recul des glaciers aura aussi un impact direct sur les populations dépendantes des rivières alimentées par les glaciers. Cela couvre l’approvisionnement en eau, l’agriculture, la pêche, mais aussi des aspects culturels ou même religieux.

Comme le fait remarquer l’un des auteurs de l’étude, « nous pensons que l’impact du retrait glaciaire sur nos écosystèmes en aval n’a pas été entièrement intégré à ce jour. Cela va de la diversité des espèces au tourisme, des centrales hydrauliques à la fourniture d’eau potable… les risques sont très vastes. La première étape consiste à repenser la façon dont nous considérons le rétrécissement glaciaire et mettre en place un programme de recherche qui reconnaît le risque pour les régions susceptibles d’être les plus touchées ».

Les chercheurs insistent sur le fait que des stratégies de gestion appropriées devront être développées et adoptées pour atténuer les impacts sociétaux des changements profonds dans le ruissellement glaciaire. Ils proposent quelques recommandations essentielles qui devraient soutenir un programme de recherche mondial impliquant une recherche interdisciplinaire. Cela implique notamment une cartographie détaillée du changement de masse des glaciers à partir de nouvelles technologies d’imagerie et de traitement, ou encore un effort de recensement des principales variables biogéochimiques, des charges de contaminants et de la biodiversité dans les rivières alimentées par les glaciers via des réseaux de surveillance largement répandus avec des méthodes d’échantillonnage standardisées.

———————————–

Glaciers cover nearly 10% of Earth’s land surface, but are rapidly retreating in most parts of the world. As I have written it many times, it is in the Gulf of Alaska, the Canadian Arctic, Greenland and Antarctic regions that this glacial retreat is most evident. As a result, the attention of scientists has hitherto focused on the rise in sea levels that results from the melting of these glaciers. A new paper published by researchers from the Universities of Birmingham (England) and Fairbanks (Alaska / USA) describes other downstream effects that will have significant societal implications in the coming years. The authors call for greater emphasis on adaptation and mitigation planning in all affected regions. The regions most affected by these remarks are the Alps in Europe and the South American Andes. As the researchers point out, the Alps have warmed up particularly during the last thirty years and especially during the summer months. Combined with a decrease in snowfall, ice surfaces have decreased by more than half (54%) since 1850. According to current calculations, glaciers could reach at the end of the 21st century between 4 and 13% of the surface area. they had in 2003. The effects of glacial retreat on a global scale could have major consequences.
Researchers say changes in river hydrology and morphology are expected. River flow will become more unpredictable as it will depend less on meltwater and more on rainand snowfall. The shrinking of glaciers will also allow the transport of pollutants, including emission products from industrial activity, such as black carbon and associated compounds such as mercury, pesticides and other persistent organic pollutants contaminating the oceans and groundwater. The retreat of glaciers will also have a direct impact on populations dependent on glacier-fed rivers. This includes water supply, agriculture, fishing, but also cultural or even religious aspects.
As one of the authors of the study notes, « We believe that the impact of glacier retreat on our downstream ecosystems has not been fully integrated to date. It ranges from species diversity to tourism, from hydroelectric plants to the supply of drinking water … The risks are very vast. The first step is to rethink the way we look at glacial shrinkage and implement a research program that recognizes the risk to the areas that may be most affected.  »
The researchers emphasize that appropriate management strategies will need to be developed and adopted to mitigate the societal impacts of deep changes in glacial runoff. They propose some key recommendations that should support a global research agenda involving interdisciplinary research. This includes a detailed mapping of glacier mass change from new imaging and treatment technologies, or an effort to identify key biogeochemical variables, contaminant loads, and biodiversity in glacier-fed rivers. via widely used surveillance networks with standardized sampling methods.

Photos: C. Grandpey

 

Un panache mantellique sous l’Ouest Antarctique ? // A mantle plume beneath West Antarctica ?

Des chercheurs de la NASA ont découvert sous la Terre Marie-Byrd en Antarctique, entre la Barrière de Ross et la Mer de Ross, un panache mantellique produisant presque autant de chaleur que le super volcan de Yellowstone. Ce point chaud donne naissance à de vastes lacs et de longues rivières sous la calotte glaciaire. La présence d’un énorme panache mantellique pourrait expliquer pourquoi la région est si instable aujourd’hui, et pourquoi elle s’est effondrée si rapidement à la fin de la dernière période glaciaire, il y a 11 000 ans.
Depuis 30 ans, les scientifiques sont persuadés qu’un panache mantellique existe sous la Terre Marie-Byrd. Sa présence expliquerait l’activité volcanique observée dans la région, ainsi que le dôme qui s’y trouve. Cependant, il n’y avait jusqu(à présent aucune preuve pour étayer cette idée. Aujourd’hui, les scientifiques du Jet Propulsion Laboratory (JPL) de la NASA ont créé des modèles numériques performants pour montrer quelle quantité de chaleur devrait exister sous la glace pour confirmer leurs observations. Ces dernières incluent le dôme et les rivières, ainsi que les lacs souterrains géants présents sur le substrat rocheux de l’Antarctique. Au fur et à mesure que les lacs se remplissent et se vident, la glace située à des centaines de mètres au-dessus monte et descend, parfois avec des variations de niveau allant jusqu’à 6 mètres.
Pour avoir une meilleure idée du fonctionnement d’un point chaud, les chercheurs du JPL ont examiné l’un des panaches mantelliques les plus étudiés sur Terre, le point chaud de Yellowstone. L’équipe scientifique a créé un modèle de panache mantellique afin de déterminer la quantité de chaleur nécessaire pour expliquer ce qui se passe au niveau de la Terre Marie-Byrd. Ils ont ensuite utilisé l’Ice Sheet System Model (ISSM), qui montre les propriétés physiques de la banquise, pour étudier les sources naturelles de chaleur et de transport de cette chaleur. Ce modèle a permis aux chercheurs de tester différents scénarios montrant comment la chaleur est produite en profondeur sous la glace.
Leurs résultats montrent qu’en général l’énergie produite par le panache mantellique ne dépasse pas 150 milliwatts par mètre carré; une énergie supérieure ferait trop fondre la glace. La chaleur produite dans le Parc National de Yellowstone est en moyenne de 200 milliwatts par mètre carré. Les scientifiques ont également identifié une zone où le flux de chaleur doit être d’au moins 150-180 milliwatts par mètre carré, mais les données laissent supposer que la chaleur en provenance du manteau à cet endroit sort d’une fracture dans la croûte terrestre.
Dans la conclusion de leur étude, les chercheurs du JPL expliquent que le panache mantellique de la Terre Marie-Byrd s’est formé il y a entre 50 et 110 millions d’années, bien avant que la terre qui se trouve au-dessus ait été recouverte par la glace. Ils ajoutent que la chaleur produite par le panache a un «impact local important» sur la calotte glaciaire. Comprendre ces processus permettra aux chercheurs de déterminer le comportement de la banquise dans les années à venir.
Source: Jet Propulsion Laboratory de la NASA.

—————————————–

Researchers at NASA have discovered a mantle plume producing almost as much heat as Yellowstone supervolcano under Marie Byrd Land in Antarctica, which lies between the Ross Ice Shelf and the Ross Sea. This hotspot is creating vast lakes and rivers under the ice sheet. The presence of a huge mantle plume could explain why the region is so unstable today, and why it collapsed so quickly at the end of the last Ice Age, 11,000 years ago.

For 30 years, scientists have suggested that a mantle plume may exist under Marie Byrd Land. Its presence would explain the volcanic activity seen in the area, as well as a dome feature that exists there. However, there was no evidence to support this idea. Now, scientists from NASA’s Jet Propulsion Laboratory (JPL) have created advanced numerical models to show how much heat would need to exist beneath the ice to account for their observations which include the dome and the giant subsurface rivers and lakes that are present on Antarctica’s bedrock. As lakes fill and drain, the ice hundreds of metres above rises and falls, sometimes by as much as 6 metres.

To have a better idea of how a hotspot works, the JPL researchers looked at one of the most well studied magma plumes on Earth, the Yellowstone hotspot. The team developed a mantle plume model to look at how much geothermal heat would be needed to explain what is seen at Marie Byrd Land. They then used the Ice Sheet System Model (ISSM), which shows the physics of ice sheets, to look at the natural sources of heating and heat transport. This model enabled researchers to test out different scenarios of how much heat was being produced deep beneath the ice.

Their findings showed that generally the energy being generated by the mantle plume is no more than 150 milliwatts per square metre; any more would result in too much melting. The heat generated under Yellowstone National Park, on average, is 200 milliwatts per square meter. Scientists also found one area where the heat flow must be at least 150-180 milliwatts per square metre, but data suggests mantle heat at this location comes from a rift in the Earth’s crust where heat can rise up.

In the conclusion of their study, the JPL researchers say the Marie Byrd Land mantle plume formed 50-110 million years ago, long before the land above was hidden by ice. They add that heat from the plume has an “important local impact” on the ice sheet. Understanding these processes will allow researchers to work out what will happen to it in the future.

Source: NASA’s Jet Propulsion Laboratory.

L’Ouest Antarctique et la terre Marie-Byrd (Source: Wikipedia)

Vue de la Terre Marie-Byrd (Crédit photo: NASA)

 

Images de l’iceberg géant en Antarctique // Images of the giant iceberg in Antarctica

Tout le monde se rappelle qu’en juillet 2017 l’un des plus grands icebergs jamais observés, d’une taille équivalente au département de la Lozère en France, s’est détaché de la plate-forme glaciaire Larsen C dans le nord-ouest de l’Antarctique.
L’événement, qui a eu lieu pendant la nuit de l’hiver antarctique, a été détecté à l’aide d’instruments satellitaires capables de percer l’obscurité. À l’aube du printemps austral, les scientifiques peuvent maintenant voir le nouvel iceberg à la lumière du jour.
La première photo satellite prise de jour a été diffusée par la NASA le 11 septembre, grâce au Spectroradiomètre d’imagerie – ou MODIS – embarqué sur le satellite Terra. Peu de temps après, d’autres satellites de la NASA, y compris le Landsat 8, ont obtenu de nouvelles images publiées par la NASA le 30 septembre.
Les nouvelles images montrent que l’iceberg s’est divisé en morceaux plus petits et révèlent qu’il a commencé à s’éloigner de la plate-forme glaciaire qui l’a vu naître, poussé par les vents du large. Bien que le vêlage des icebergs proprement dit soit un événement essentiellement naturel, il menace néanmoins d’accélérer la fonte de la glace dans la région, provoquée par le réchauffement climatique.

https://earthobservatory.nasa.gov/IOTD/view.php?id=91052

A l’origine, l’iceberg, connu sous le nom de A-68A, avait une superficie d’environ 5 700 kilomètres carrés. À la fin du mois de juillet, il a perdu plusieurs morceaux en se déplaçant lentement dans la mer. L’un de ces morceaux est maintenant connu sous le nom de A-68B, selon le National Ice Center qui suit les déplacements des gros icebergs car ils représentent un danger pour les navires. (voir la photo ci-dessous)
Les scientifiques expliquent que de nouvelles fractures sont apparues sur la plate-forme Larsen C, ce qui pourrait annoncer de nouveaux vêlages dans les mois à venir. Celui de l’iceberg A-68A menace d’accélérer la fonte de la glace dans la région en affaiblissant la plate-forme et les glaciers derrière elle.

Comme je l’ai déjà mentionné, la fonte et la rupture de la plate-forme glaciaire n’affectent pas directement le niveau global des océans car la glace flottait déjà avant le vêlage. Cependant, lorsque des plates-formes comme Larsen C fondent, elles ne retiennent plus les glaciers terrestres derrière elles. Ils peuvent avancer plus rapidement dans la mer, ce qui contribue à faire monter le niveau des océans.

——————————————

Everybody can remember that in July 2017 one of the largest icebergs ever recorded — measuring in at about the size of Lozère in France broke off the Larsen C Ice Shelf in northwest Antarctica.

The event, which took place during the darkness of the Antarctic winter, was detected using satellite instruments that could pierce the darkness to sense the ice below. As the austral spring dawns, scientists are now able to see the new iceberg during the daytime.

The first daytime satellite photo to be released by NASA came on September 11th , via the Moderate Resolution Imaging Spectroradiometer, or MODIS on NASA’s Terra satellite. Soon after, other NASA satellites, including Landsat 8, captured detailed images that NASA published on September 30th.

The new data shows how the massive iceberg has split into smaller pieces and reveals that it has begun to push away from the ice shelf that birthed it, thanks to offshore winds.  While the iceberg calving event itself is likely mostly natural, it nevertheless threatens to speed up the already quickening pace of ice melt in the region due in large part to global warming.

https://earthobservatory.nasa.gov/IOTD/view.php?id=91052

In its original shape, the iceberg was about 5,700 square kilometres in area. In late July, the main iceberg, known as A-68A, lost several chunks of ice as it began to slowly drift out to sea. One of those large chunks is now known as A-68B, according to the National Ice Center, which tracks large icebergs because they pose a danger to ships. (see photo below)

Scientists reveal that new cracks are developing on the Larsen C ice shelf, potentially signalling additional breakup events in the coming months to years.

The calving of the A-68A iceberg threatens to speed up the already quickening pace of ice melt in the region by leaving the ice shelf and the glaciers behind it in a weakened state, with new cracks that may develop additional icebergs in the future.

As I put it before, the melting of the ice shelf does not affect global sea levels directly, since the ice was already floating before the calving event. However, when ice shelves like Larsen C melt, they can free up the ice of land-based glaciers behind them to flow faster into the sea, which does raise sea levels.

Image acquise le 16 septembre 2017 par le satellite Landsat 8 (Crédit photo: NASA)