Les verrues islandaises // Icelandic warts

Voici une autre plaie du tourisme de masse en Islande: les cairns. Les rangers viennent de passer leur temps à éliminer ces «verrues», mot utilisé par les Islandais pour décrire ces tas de pierres édifiés par les touristes. L’agence islandaise pour l’environnement a publié une note sur Facebook, demandant aux gens de ne pas construire de tels cairns.
Jusqu’à présent, les cairns servaient de points de repères pour se déplacer dans le paysage islandais, mais les nouvelles «verrues» ne servent à rien. Ces cairns indésirables ont été baptisés verrues. En effet, le mot islandais pour ‘cairn’ est ‘varða’, qui ressemble un peu au mot ‘varta’, qui signifie verrue dans la langue nordique.
Les touristes empilent les pierres pour former des cairns dans les réserves naturelles, où ils sont rapidement démantelés par les rangers, car il est illégal de déplacer des objets dans la nature. Le problème, c’est que les pierres enlevées pour édifier les cairns laissent souvent des marques disgracieuses dans une zone de végétation. De plus, l’enlèvement de roches dans un paysage où le sol est fragile favorise la dénudation, l’érosion et l’hydrolyse du sol. Enlever des pierres pour construire des cairns est aussi néfaste que conduire hors piste avec un véhicule, et c’est formellement interdit en Islande.

Source : Iceland Review.

———————————————-

Here is one more plague of mass tourism in Iceland: cairns. Park rangers have been busy lately removing these « warts », a word used by Icelanders to describe the cairns tourists make for fun. The Environment Agency of Iceland has posted a statement on Facebook, asking people not to make such cairns.

Cairns used to be stacked to serve as guideposts, but the “warts” serve no such purpose. The unwanted cairns are called warts. Indeed, the Icelandic word for cairn is varða, which is a bit similar to the word varta, meaning wart.

Rocks are stacked to form cairns in nature reserves, where they are quickly taken down by park rangers, since moving relics in nature is illegal. Rocks removed can also leave ugly marks in a vegetated area. Moreover, removing rocks in a landscape where the soil is delicate creates the basis and beginning for soil denudation, soil erosion and hydrolysis. Removing rocks to build cairns is like the tracks left by off-road driving which is strictly prohibited in Iceland.

Source: Iceland Review.

Ce cairn n’a pas été édifié par les touristes. Il se trouve dans un désert du centre de l’Islande, dans une zone habitée par les elfes. Le conducteur de mon bus s’est arrêté pour apporter sa pierre à l’édifice…et conduire en toute sécurité…

 

La fonte des glaciers islandais (suite) // The melting of Icelandic glaciers (continued)

L’Islande est l’une des régions du monde où la fonte des glaciers est particulièrement visible. J’ai eu l’occasion d’écrire plusieurs notes expliquant à quel point le phénomène était inquiétant.
Grâce à une série de huit photos prises entre 2012 et 2019, un garde-forestier islandais vient d’apporter une nouvelle preuve de la fonte de la glace dans son pays. Pendant chacune de ces huit années, il a réalisé un cliché du glacier Skaftafell dans le sud de l’île, du même endroit, à la même époque de l’année (entre février et avril) avec le même angle de prise de vue. Les résultats ne laissent pas le moindre doute sur les effets du réchauffement climatique. Le glacier se réduit comme peau de chagrin.
Le recul du Skaftafellsjökull n’a rien de surprenant. Un rapport du Met Office islandais indique que les 269 glaciers islandais ont perdu 750 km2 de surface depuis l’an 2000. En 2018, certains glaciers ont reculé jusqu’à 300 mètres pendant une seule année. Comme ailleurs dans le monde, la fonte rapide des glaciers islandais aura inévitablement de sérieuses conséquences, notamment pour les réserves d’eau potable et pour les écosystèmes des zones humides proches des glaciers.
Source: France Info.

————————-

Iceland is one of the regions in the world where the melting of glaciers can clearly be seen. I have written several notes explaining how disturbing the phenomenon was.
Through a series of eight photos taken between 2012 and 2019, an Icelandic ranger has just brought new evidence of melting ice in his country. During each of these eight years, he made a snapshot of the Skaftafell glacier in the south of the island, from the same place, at the same time of the year (between February and April) with the same angle of view. The results leave no doubt about the effects of global warming. The glacier is shrinking.
The retreat of Skaftafellsjökull is not surprising. A report from the Icelandic Met Office indicates that the 269 Icelandic glaciers have lost 750 km2 of surface area since 2000. In 2018, some glaciers retreated by 300 metres in a single year. As elsewhere in the world, the rapid melting of Icelandic glaciers will inevitably have serious consequences, especially for drinking water supplies and for ecosystems in wetlands near glaciers.
Source: France Info .

Vues du Skaftafelljökull dans les années 2000 (Photo: C. Grandpey)

L’Islande continue d’enterrer le gaz carbonique ! // Iceland keeps burying carbon dioxide !

Dans des notes publiées le 16 juin 2016 et le 15 novembre 2017, j’ai expliqué que l’Islande était probablement un bon endroit pour stocker dans le sol l’excès de dioxyde de carbone (CO2) contenu dans l’atmosphère.
https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

À l’époque, l’objectif du projet CarbFix était de capter le gaz et de le réinjecter dans le sous-sol. Le processus était réalisé avec un puits d’injection foré dans le soubassement basaltique. Si elle était opérationnelle, cette technologie aurait l’avantage de débarrasser l’atmosphère d’une partie de son CO2, l’un des principaux gaz à effet de serre qui contribuent au réchauffement de la planète.
La technologie imite, dans un format accéléré, un processus naturel qui peut prendre des milliers d’années, et qui consiste à injecter du dioxyde de carbone dans les pores du basalte où il se minéralise et reste stocké pour l’éternité.
En Islande, le projet CarbFix inclut des chercheurs et des ingénieurs du distributeur d’électricité Reykjavik Energy, de l’Université d’Islande, du CNRS et de la Columbia University aux États-Unis.
En Islande, au moins la moitié de l’énergie qui est produite provient de sources géothermiques. C’est une aubaine pour les chercheurs de CarbFix, qui ont transformé en laboratoire la centrale géothermique de Hellisheidi, l’une des plus grandes au monde.
La centrale, située sur le volcan Hengill dans le sud-ouest de l’Islande, repose sur une couche de roche basaltique et dispose de quantités d’eau pratiquement illimitées. L’usine pompe l’eau qui se trouve sous le volcan pour faire fonctionner six turbines qui fournissent de l’électricité et de la chaleur à la capitale, Reykjavik, située à une trentaine de kilomètres.

Le dioxyde de carbone de l’usine est capté par la vapeur, liquéfié par condensation, puis dissous dans de grandes quantités d’eau. Cette eau gazeuse est canalisée sur plusieurs kilomètres jusqu’à une zone où trônent des dômes gris en forme d’igloo. C’est ici que l’eau gazeuse est injectée sous haute pression dans la roche à 1 000 mètres de profondeur. La solution remplit les cavités de la roche basaltique et c’est alors que commence le processus de solidification. On a affaire à une réaction chimique qui se produit lorsque le gaz entre en contact avec le calcium, le magnésium et le fer dans le basalte.
Presque tout le dioxyde de carbone injecté s’est retrouvé minéralisé en deux ans au cours de l’opération pilote il y a trois ans; c’était beaucoup plus rapide que lors des expériences effectuées en laboratoire. Une fois que le CO2 est transformé en roche, il reste définitivement dans cet état.
Le projet CarbFix réduit d’un tiers les émissions de dioxyde de carbone de la centrale de Hellisheidi, ce qui représente le stockage et l’entreposage de 12 000 tonnes de dioxyde de carbone à un coût d’environ 25 dollars la tonne. En comparaison, les volcans islandais rejettent chaque année entre un et deux millions de tonnes de dioxyde de carbone.
Le principal inconvénient de cette méthode est qu’elle nécessite de gros volumes d’eau dessalée qui est abondante en Islande mais rare dans de nombreuses autres parties de la planète. Il faut 25 tonnes d’eau pour injecter chaque tonne de dioxyde de carbone. Des expériences sont en cours pour adapter la méthode à l’eau salée.
Dans le cadre de l’accord de Paris sur le climat, l’Islande a accepté de réduire ses émissions de gaz à effet de serre de 40% d’ici 2030, mais ses émissions ont augmenté de 2,2% entre 2016 et 2017 ; elles ont augmenté de 85% depuis 1990, selon un rapport de l’Agence islandaise de l’environnement. Un tiers de ces émissions provient du transport aérien qui est essentiel pour le tourisme de l’île. Les usines d’aluminium et de silicium représentent un autre tiers. Le ministère islandais de l’Environnement et des Ressources naturelles a encouragé ces usines à développer elles aussi des mécanismes de captage et de stockage du carbone.
Source: Philippine Daily Inquirer.

—————————————————-

In posts released on 16 June 2016 and 15 November 2017, I explained that Iceland could also be the right place to store in its ground the excess of carbon dioxide (CO2) in the atmosphere.

https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

By that time, the goal of the CarbFix project was to capture that gas and stick it back underground. This was done with an injection well drilled down into basalt bedrock. If it worked, the technology would have the advantage of getting the atmosphere rid of some of its CO2, one of the main greenhouse gases that contribute to global warming.

The technology mimics, in an accelerated format, a natural process that can take thousands of years, injecting carbon dioxide into porous basalt rock where it mineralizes, capturing it forever.

Iceland’s CarbFix project includes researchers and engineers from utility company Reykjavik Energy, the University of Iceland, France’s National Centre for Scientific Research (CNRS) and Columbia University in the United States.

In Iceland, at least half of the energy produced comes from geothermal sources. That is a bonanza for CarbFix researchers, who have turned the Hellisheidi geothermal power plant, one of the world’s biggest, into their own laboratory.

The plant, located on the Hengill volcano in southwestern Iceland, sits on a layer of basalt rock formed from cooled lava, and has access to virtually unlimited amounts of water. The plant pumps up the water underneath the volcano to run six turbines providing electricity and heat to the capital, Reykjavik, about 30 kilometres away.

The carbon dioxide from the plant is captured from the steam, liquified into condensate, then dissolved in large amounts of water. The fizzy water is piped several kilometres to an area where grey, igloo-shaped domes dot the landscape. Here the fizzy water is injected under high pressure into the rock 1,000 metres under the ground. The solution fills the rock’s cavities and begins the solidification process — a chemical reaction that occurs when the gas comes in contact with the calcium, magnesium and iron in the basalt.

Almost all of the injected carbon dioxide was mineralized within two years in the pilot injection three years ago, which was much faster than during the experiments in a laboratory. Once the CO2 is turned to rock, it is captured there for good.

The CarbFix project reduces the plant’s carbon dioxide emissions by a third, which amounts to 12,000 tons of carbon dioxide captured and stored at a cost of about 25 dollars a ton. By comparison, Iceland’s volcanoes spew out between one and two million tons of carbon dioxide each year.

The main drawback of the method is that it requires large volumes of desalinated water, which, while abundant in Iceland, is rare in many other parts of the planet. Around 25 tons of water is needed for each tonne of carbon dioxide injected. Experiments are currently underway to adapt the method to saltwater.

Under the Paris climate agreement, Iceland has agreed to slash its greenhouse gas emissions by 40% by 2030, yet its emissions rose by 2.2% from 2016 to 2017, and have risen by 85% since 1990, according to a report by Iceland’s Environment Agency. A third of its emissions come from air transport, which is vital to the island for its tourism sector. Its aluminum and silicon plants account for another third. The Icelandic Environment and Natural Resources Ministry has encouraged those plants to also develop carbon capture and storage mechanisms.

Source : Philippine Daily Inquirer.

Image de la calcite formée dans le basalte par interaction entre la roche et l’eau chargée en CO2 (Source : CarbFix).

Pour mieux comprendre les noms islandais… // To better understand Icelandic names…

On peut lire sur le site web Iceland Monitor un article intéressant qui explique la signification des noms de certains lieux et volcans d’Islande.

Le mont Hekla (1491m) est l’un des volcans les plus connus et les plus actifs d’Islande. Ses éruptions sont fréquentes et commencent en général par des explosions accompagnées de panaches de cendre, suivies par des fontaines et de grandes coulées de lave. Les dernières éruptions ont eu lieu en 1980, 1981, 1991 et 2000.
Le mot Hekla fait référence à un manteau ou une cape. L’origine du nom tient peut-être au fait que l’Hekla se couvre d’un manteau de neige plus tôt que la plupart des montagnes islandaises, avant de s’en débarrasser au printemps lorsque le temps le permet.

Lakagígar est une fissure éruptive longue de 27 km jalonnée de 130 cratères au sud-ouest du Vatnajökull. Une éruption de 8 mois, entre juin 1783 et février 1784, a tué 50% à 80% du bétail et 25% de la population islandaise.
L’origine du mot Lakagígar est assez surprenante. Il désigne les cratères du Laki, la montagne en leur centre. Le mot Laki désigne, quant à lui, le feuillet*, l’un des compartiments de l’estomac d’un ruminant. On pense que le nom vient du fait que la forme de la montagne rappelait aux gens celle du feuillet.

* Ceux qui, comme moi, ont passé le certificat d’études primaires, se souviennent que la vache et plus généralement les ruminants ont un système digestif composé d’un estomac (la caillette) et de trois pré-estomacs (la panse, le bonnet et le feuillet).

L’Esja est une montagne au sommet plat située à environ 10 kilomètres de Reykjavík. En fait, ce n’est pas vraiment une montagne ; c’est davantage une chaîne volcanique dont le plus haut sommet culmine à 914 mètres. L’origine du nom est intéressante. Il existe de vieilles histoires sur une femme irlandaise appelée Esja, qui vivait à Esjuberg. C’est pourquoi certaines personnes sont persuadées que le nom est irlandais. Cependant, il s’agit plus probablement d’un prénom féminin scandinave, comme il en existe dans toute la Scandinavie. Il signifie à la fois l’âtre et un type de roche de couleur claire que l’on trouve sur la montagne.

Fnjóskadalur est une vallée du nord de l’Islande; c’est aussi le site de la forêt de Vaglaskógur. Le nom est composé des mots fnjóskur qui désigne un morceau de bois sec, et dalur, qui signifie ‘vallée’. Des découvertes archéologiques dans la vallée montrent qu’il y a très longtemps, on fabriquait du charbon à partir du bois sec de la forêt.

Eyjafjallajökull est le célèbre volcan qui est entré en éruption en 2010, menntant des voyageurs en détresse et bloquant des aéroports dans de nombreuses régions du monde. La prononciation du nom a posé bien des problèmes aux étrangers, alors qu’il est assez facile de le comprendre. Le mot est dérivé de deux mots: Eyjafjöll et jökull. ‘Jökull’ signifie glacier et ‘Eyjafjöll’ les montagnes de l‘île. L’Eyjafjöll est la montagne sous la calotte glaciaire de l’Eyjafjallajökull. Les îles en question sont peut-être les îles Vestmann, au sud, ou Landeyjar, la région située à l’ouest des montagnes.

—————————————————-

One can read on the website Iceland Monitor an interesting article that explains the meaning of the names of some of Iceland’s places and volcanoes.

Mount Hekla (1491m) is one of Iceland’s best known and most active volcanoes. It has frequent eruptions that start with explosions producing eruption plumes, and followed by lava fountains and large lava flows. The last eruptions occurred in 1980, 1981, 1991 and 2000.

The word Hekla can mean coat or outer garment. The origin of the name may have to do with the fact that Hekla puts on a coat of snow earlier than most mountains, only to throw it off in spring when weather allows.

Lakagígar is a 27-km long eruptive fissure consisting of 130 giant craters on the southwest side of Vatnajökull. An 8-month long eruption, which lasted from June 1783 until February 1784 killed 50%- 80% of the livestock and 25% of the Icelandic population died.

The origin of the word Lakagígar  comes as a surprise. It means the craters of Laki, which is the mountain at their center. Laki is the word for one of the compartments of a ruminant’s stomach, more precisely the omasum. The name is believed to stem from the fact that the shape of the mountain reminded people of that of an omasum.

 

Esja, is a flat-topped mountain about 10 kilometres from Reykjavík. Actually, it is not a true mountain in itself, but a volcanic range, the highest peak of which reaches 914 metres tall. It has an interesting name. Old stories exist of an Irish woman by the name of Esja, who lived in Esjuberg. Therefore, some believe the name is Irish. More likely, though, it is a Scandinavian female name, as it exists all over Scandinavia, meaning both fireplace and a type of rock. It may refer to a light-colored rock type, found in the mountain.

 

Fnjóskadalur is a valley in North Iceland; it is also the site of Vaglaskógur forest. The name is made from the words fnjóskur, meaning a dry piece of wood, and dalur, meaning valley. Archaeological finds in the valley suggest that ages ago, coal was made from dry wood in the forest.

 

Eyjafjallajökull is the volcano which famously erupted in 2010, stranding passengers and blocking airports in many parts of the world. Pronouncing the word proved difficult for many foreigners, whereas understanding it is quite easy. The word is derived from two words: Eyjafjöll and jökull. Jökull means glacier and Eyjafjöll means island mountains. Eyjafjöll is the name of the mountain under the Eyjafjallajökull ice cap. The islands referred to may be Vestmannaeyjar islands, to the south, or Landeyjar, the area to the west of the mountains.

Vue de l’Hekla (Crédit photo: Wikipedia)

Lakagigar (Photo: C. Grandpey)

Eruption de l’Eyjafjallajökull en 2010 (Crédit photo: Wikipedia)

Fonte des glaciers islandais : Les derniers chiffres // Melting of Icelandic glaciers : Latest figures

Selon le National Land Survey of Iceland, organisme qui gère les relevés topographiques en Islande, la superficie des glaciers islandais a diminué de 215 km2 entre 2012 et 2018. Depuis 2000, leur superficie a diminué de 647 km2, soit en moyenne 36 km2 par an. Cela représente un recul de 5,8% en 18 ans.
Ces chiffres sont les résultats du projet CORINE d’occupation des sols, la première classification détaillée de la couverture des sols pour l’ensemble du pays. Trente-neuf nations européennes participent à ce projet.
Les images satellites sont utilisées pour cartographier la topographie selon un système de catégorisation. Les modifications d’occupation des sols sont cartographiées tous les six ans. La classification CORINE a été réalisée pour la première fois en Islande en 2000 et a depuis été mise à jour à trois reprises: en 2006, 2012 et 2018.
Selon la dernière cartographie CORINE achevée en 2018, la superficie représentée par tous les changements d’occupation des sols en Islande depuis 2012 couvrait environ 770 km2.
La catégorie 332 montre que la zone où la lave et les rochers ont été mis à découvert, a augmenté de 266,5 km2. Cela est dû principalement au recul d’un glacier, mais cette surface mise à nue par la fonte du glacier s’est trouvée réduite de 112,7 km2 du fait de la couverture des sols de façon naturelle par la végétation. Ainsi, l’augmentation référencée dans la catégorie 332 a été de 153,8 km2.
De la même manière, la zone sableuse de Hólasandur dans le nord de l’Islande a enregistré une évolution positive. En effet, une surface rocheuse qui était apparue sur une superficie de 41,6 km2 a été en partie recouverte par la végétation, principalement par des lupins, et une superficie de 7,8 km2 a été entièrement végétalisée. .
Source: Iceland Monitor.

La figure ci-dessous montre le Síðujökull, une langue glaciaire à l’ouest du glacier Vatnajökull, qui a peu à peu reculé. Au cours des 18 dernières années, le Síðujökull a reculé de 1 200 à 1 300 mètres, soit 70 mètres par an en moyenne. Un recul semblable a été observé sur le glacier Snæfellsjökull (voir mon post du 16 mai 2019).

———————————————

According to the National Land Survey of Iceland, the area of Icelandic glaciers decreased by 215 km2 from 2012 to 2018. Since 2000, their area has decreased by 647 km2, or on average by 36 km2 a year. This constitutes a 5.8 percent shrinkage in 18 years.

These figures are the result of the CORINE land cover project, the first detailed land use/land cover classification to be completed that includes the whole country. Thirty-nine European nations participate in this project.

Satellite pictures are used to map land forms, according to a certain categorization system. Changes in land forms are mapped every six years. The CORINE classification was first done in Iceland in 2000 and has since been updated three times: in 2006, 2012 and 2018.

According to the latest CORINE mapping, completed in 2018, the area of all land form changes in Iceland since 2012 encompassed about 770 km2.

Category 332, bare lava and rocks, grew by 266.5 km2, mainly as land emerged as the result of a receding glacier, but was reduced by 112.7 km2 as the result of soil reclamation or natural increase in ground cover. Thus, the total increase in this category was 153.8 km2.

A positive development has occurred at Hólasandur sand in North Iceland, where a rocky surface developed into semi-vegetated land, mostly lupine-covered, in an area of 41.6 km2, and semi-vegetated land changed to fully vegetated in an area of 7.8 km2.

Source : Iceland Monitor.

The figure below shows the example of Síðujökull, a glacier tongue on the west side of Vatnajökull glacier, which has gradually retreated. During the last18 years, it has retreated 1,200-1,300 metres, or 70 metres a year on average. A similar development has taken place on Snæfellsjökull glacier (see my post of May 16th, 2019).

Source: National Land Survey of Iceland

 

Le Snæfellsjökull (Islande) : un glacier en péril // A glacier at risk

Le Snæfellsjökull (1446 m) est un stratovolcan coiffé par un glacier, dans la partie occidentale de la péninsule de Snæfellsnes en Islande. La montagne est l’un des sites les plus célèbres du pays, principalement à cause du roman Voyage au centre de la Terre (1864) de Jules Verne, dans lequel les protagonistes trouvent l’entrée d’un passage menant au centre de la terre. Le Snæfellsjökull a inspiré l’imagination d’autres écrivains, comme l’auteur islandais Halldór Laxness, Prix Nobel de Littérature, dans son roman Kristnihald undir Jökli (1968), publié en français sous le titre Úa ou Chrétiens du glacier.

En août 2012, pour la première fois de son histoire, le sommet du Snæfellsjökull avait perdu sa calotte de glace (voir ma note du 2 septembre 2012). En raison du réchauffement climatique, le glacier recule rapidement depuis 25 ans. Selon un glaciologue du Met Office islandais, si la tendance actuelle se poursuit, il aura pratiquement disparu vers le milieu de ce siècle.
Les scientifiques viennent d’effectuer les dernières mesures de masse du glacier Snæfellsjökull au sortir de l’hiver. Ils mesurent la position du front du glacier tous les ans depuis 1931. Le bilan de masse permet d’évaluer directement la variation annuelle du volume de glace. Divers échantillons sont prélevés par forage dans la glace et des mesures sont également effectuées. Elles montrent que les précipitations au sommet du glacier sont jusqu’à trois fois supérieures à celles d’une station météorologique située à proximité, au niveau de la mer.
Le glacier a considérablement reculé au cours de ce siècle. Une langue glaciaire du côté nord a reculé de 1 000 mètres depuis les premières mesures en 1931. En 1910, la superficie du glacier était d’environ 22 kilomètres carrés, et elle n’est plus que de 10 kilomètres carrés aujourd’hui. L’épaisseur moyenne de la calotte glaciaire au sommet du volcan n’est plus que de 30 mètres et elle n’existera probablement plus au milieu de ce siècle.
Le Met Office islandais souhaiterait initier une coopération avec le Parc National du Snæfellsjökull et les structures locales en matière de mesure du bilan de masse (grâce à des forages et des jauges), ce qui permettrait d’évaluer l’ampleur du recul annuel du glacier sous l’effet du réchauffement climatique. Ces mesures sont effectuées sur les plus grands glaciers islandais depuis deux ou trois décennies, mais aucune donnée de ce type n’a été obtenue pour le Snæfellsjökull.
Source: Iceland Review.

—————————————————-

Snæfellsjökull (1446 m) is a  glacier-capped stratovolcano on the most western part of the Snæfellsnes peninsula in Iceland. The mountain is one of the most famous sites in the country, primarily due to the novel Journey to the Center of the Earth (1864) by Jules Verne, in which the protagonists find the entrance to a passage leading to the centre of the earth on Snæfellsjökull. It inspired the imagination of other writers, like Nobel Halldór Laxness in his novel Kristnihald undir Jökli (1968).

In August 2012 the summit of Snæfellsjökull was ice-free for the first time in recorded history (see my post of 2 September, 2012). Due to climate warming, the glacier has been fast retreating for the past 25 years. According to a glaciologist at the Icelandic Met Office, it will be mostly gone around the middle of this century, if the current melting trend continues.

Scientists have just performed the latest mass balance measurements of Snæfellsjökull glacier performed after the winter. The position of the glacier toe has been measured annually since 1931. The mass balance measurement provides a direct assessment of the annual change in volume. Various samples were taken by drilling into the ice and measurements were made. Those showed that precipitation at the top of the glacier is up to three times what it is at a nearby weather station at sea level.

The glacier has retreated considerably this century. One toe on the north side of the glacier has retreated by 1,000 metre since initial measurements in 1931. In 1910, the area of the glacier was about 22 square kilometres, but is now only 10 square kilometres. On average, the thickness of the glacier cap is only 30 metres, and it will likely be gone for the most part by the middle of this century.

The Icelandic Met Office would like to initiate cooperation with Snæfellsjökull National Park and with the locals in terms of mass balance measurements through drilling and yardsticks to make it possible to assess how much the glacier recedes annually in a warming climate. Such measurements have been done for the country’s largest glaciers for two or three decades, but no such data has been obtained for Snæfellsjökull glacier.

Source: Iceland Review.

Le Snæfellsjökull   vu depuis le ciel… (Photo: C. Grandpey)

…et depuis le sol (Icelandic Met Office)

Vêlage en Islande // Calving in Iceland

Comme je l’explique au cours de ma conférence « Glaciers en péril », en glaciologie le ‘vêlage’ est la production d’icebergs par un glacier lorsque des masses de glace se détachent de son front et s’écroulent dans une étendue d’eau. On peut observer ce phénomène dans des pays comme le Groenland, l’Islande, l’Argentine, ou encore en Alaska.

Le vêlage est un phénomène normal pour un glacier qui se forme par accumulation de neige. Cette dernière se tasse et devient de la glace qui s’écoule sous son propre poids jusque dans la mer. Normalement, la quantité de neige qui tombe sur la zone d’accumulation compense à l’échelle annuelle la perte de masse par vêlage. Or, ce n’est plus le cas aujourd’hui du fait du changement climatique. Le vêlage est un phénomène normal ; le problème est la fréquence du vêlage.

La presse vient de faire état du vêlage du Breidamerkurjökull, un glacier islandais qui est une attraction touristique. Ce glacier s’est effondré devant une quinzaine de touristes accompagnés de leur guide. La chute des énormes blocs de glace dans le lagon glaciaire a provoqué plusieurs vagues impressionnantes qui se sont dirigées vers le rivage. Par prudence, le guide a demandé à ses clients de s’éloigner et aucune personne n’a été blessée.

Dire que ce seul vêlage est causé par le réchauffement climatique, comme l’ont affirmé certains, est aller un peu vite en besogne. Ce n’est pas au vu d’un seul événement que l’on peut tirer des conclusions globales. Il n’empêche que les glaciers fondent à une vitesse impressionnante en Islande. S’agissant du glacier Breidamerkurjökull, les glaciologues pensent qu’il pourrait complètement disparaître d’ici 200 ans.

Voici une petite vidéo montrant le vêlage de ce glacier.

https://www.francetvinfo.fr/meteo/climat/islande-un-glacier-s-effondre-devant-des-touristes_3262063.html

Source : Plusieurs organes de presse, dont France Info.

J’ai eu l’occasion d’assister à plusieurs vêlages en Alaska. C’est vrai qu’il faut se montrer prudent car les vagues générées par ces effondrements sont spectaculaires et pourraient menacer une embarcation qui se trouverait trop près du glacier. Voici une petite vidéo que j’ai réalisée devant le glacier Sawyer, au sud de Juneau en Alaska.

https://www.youtube.com/watch?v=jZtvNMxoxdY&t=1s

——————————————-

As I explain in my conference “Glaciers at Risk”, in glaciology the word ‘calving’ refers to the production of icebergs by a glacier when masses of ice break off from its front and collapse into the water. This phenomenon can be observed in countries such as Greenland, Iceland, Argentina and Alaska.
Calving is a normal phenomenon for a glacier that is formed by snow accumulation. The latter settles and becomes ice that flows under its own weight into the sea. Normally, the amount of snow that falls on the accumulation area compensates for the calving mass loss on an annual scale. This is no longer the case today because of climate change. Calving is a normal phenomenon; the problem is its frequency.
The press has just reported the calving of Breidamerkurjökull, an Icelandic glacier which is a tourist attraction. This glacier collapsed in front of fifteen tourists accompanied by a guide. The fall of huge blocks of ice in the glacial lagoon caused several impressive waves that rushed toward the shore. As a precaution, the guide asked his clients to walk away and no one was injured.
Saying that this calving was caused by global warming, as some have said, is going a little fast. It is not in the light of a single event that one can draw global conclusions. Still, glaciers are melting at an impressive speed in Iceland. Regarding the Breidamerkurjökull glacier, glaciologists think that it could completely disappear within 200 years.
Here is a short video showing the calving of this glacier.
https://www.francetvinfo.fr/meteo/climat/islande-un-glacier-s-effondre-devant-des-touristes_3262063.html

Source: Several media outlets, including France Info.

I had the opportunity to watch several calvings in Alaska. It is true that one must be cautious because the waves generated by these collapses are spectacular and could threaten a boat that wiuld be too close to the glacier. Here is a short video I made in front of Sawyer Glacier, south of Juneau, Alaska.
https://www.youtube.com/watch?v=jZtvNMxoxdY&t=1s

Episode de vêlage sur le Columbia Glacier en Alaska (Photo: C. Grandpey)