Le 8 mai, une journée particulière…

Le 8 mai est une date riche en événements.

Ce jour a marqué en 1945 la capitulation de l’Allemagne et, avec elle, la fin de la Seconde Guerre Mondiale.

Le 8 mai 1902, la Montagne Pelée se mettait en colère à la Martinique, avec une éruption qui a tué quelque 29 000 personnes.

Le 8 mai 2019 était l’anniversaire d’Antonio Nicoloso qui nous a quittés le 14 décembre 2007. Chef des guides de l’Etna, il a conduit mes premiers pas sur le volcan sicilien. Une très solide amitié est née entre nous et nous évoquions souvent Haroun Tazieff qui m’avait mis en relation avec Antonio.

En cliquant sur le lien ci-dessous, vous verrez une vidéo dans laquelle Antonio Nicoloso descend dans le cratère central de l’Etna. On y voit également sa découverte d’une grotte qui débouchait sur une coulée active pendant l’éruption de 1991-1994. Le séjour dans cette grotte reste l’un de mes grands souvenirs sur l’Etna.  Je l’ai décrit dans mon livre Volcanecdotes, aujourd’hui épuisé.

J’en profite pour saluer ici son frère, Orazio, et les guides de l’Etna.

https://www.youtube.com/watch?v=LUMW9EagUVw

…et au fond coulait une rivière… (Photos: R. Clocchiatti & C. Grandpey)

La technologie muonique pour étudier le Stromboli (Sicile) // Muon technology to study Stromboli (Sicily)

Dans des notes publiées en novembre 2015 et 2017, et en juillet 2016, j’ai attiré l’attention sur l’intérêt que représentait la technologie muonique dans le domaine volcanique. Déjà en 2007, les scientifiques japonais essayaient d’observer l’intérieur des volcans en utilisant cette nouvelle technologie basée sur l’utilisation de particules chargés positivement ou négativement, en provenance des couches supérieures de l’atmosphère

La technique de radiographie muonique est basée sur un principe similaire à celle utilisant les rayons X, mais elle présente l’avantage de pouvoir être utilisée pour étudier des objets beaucoup plus volumineux, tels que les pyramides ou les volcans.
La Protection Civile italienne nous apprend aujourd’hui que la radiographie muonique a été appliquée au Stromboli. C’est le fruit de la collaboration d’un groupe de chercheurs de l’Institut National de Physique Nucléaire (INFN) et de l’Institut National de Géophysique et de Volcanologie (INGV), sans oublier des instituts de recherche japonais. Les résultats de l’étude sur le Stromboli ont été publiés dans la revue Scientific Reports qui couvre toutes les sciences naturelles. Ils révèlent la présence d’une zone de faible densité dans la région sommitale du volcan. Cette zone correspond à une structure d’effondrement formée dans la zone des cratères lors de l’éruption effusive de 2007. Cette zone a ensuite été remplie de matériaux pyroclastiques produits par l’activité explosive strombolienne. Cette structure, qui a influencé le style éruptif du volcan après l’éruption de 2007, a une densité de plus de 30% inférieure à celle du reste du substrat rocheux.
Les muons produits par l’interaction des rayons cosmiques avec l’atmosphère pénètrent dans la roche volcanique et peuvent la traverser de part et d’autre. Cependant, en fonction de la densité et de l’épaisseur de la roche, seule une partie est absorbée. Par le nombre de muons arrivant sur le détecteur, on peut comprendre la densité de la matière qu’ils ont traversée. Des radiographies périodiques du sommet du volcan peuvent être utilisées pour suivre l’évolution de sa structure interne. Le résultat obtenu servira à mieux comprendre les processus éruptifs stromboliens et la dynamique de la Sciara del Fuoco qui a été à plusieurs reprises affectée par des glissements de terrain générateurs de tsunamis.
Le détecteur de muons utilisé pour analyser le Stromboli est basé sur les technologies développées pour l’expérience OPERA ; elles ont étudié les propriétés du faisceau de neutrinos du CERN au Laboratoire national du Gran Sasso de l’INFN. Le premier défi auquel les scientifiques ont été confrontés a été la nécessité de concevoir un détecteur compact à haute résolution angulaire ne nécessitant pas d’alimentation électrique et pouvant être transporté sur les pentes d’un volcan tout en résistant aux éléments. Le détecteur est constitué de 320 films d’émulsions nucléaires, plaques photographiques spéciales qui permettent de « photographier » avec une grande précision le passage des particules qui les traversent. La surface du détecteur est d’environ un mètre carré. Le détecteur a été placé sur le site de Le Roccette, à une altitude de 640 mètres, et a recueilli les traces des muons qui ont traversé le volcan pendant environ 5 mois.

Source : Revue de la Protection Civile Italienne.

 ——————————————————

 In several posts published in November 2015 and 2017, and in July 2016, I drew attention to the interest of the muon technology in the volcanic field. Already in 2007, Japanese scientists had tried to observe the interior of volcanoes using this new technology based on the use of positively or negatively charged particles from the upper layers of the atmosphere
The muon radiography technique is based on a principle similar to that using X-rays, but it can also be used to study much larger objects, such as pyramids or volcanoes.
The Italian Civil Protection informs us today that muon radiography has been applied to Stromboli. This is the result of the collaboration of a group of researchers from the National Institute of Nuclear Physics (INFN) and the National Institute of Geophysics and Volcanology (INGV), not to mention Japanese research institutes. The results of the study on Stromboli were published in the journal Scientific Reports which covers all natural sciences. They reveal the presence of a low density area in the summit area of the volcano. This zone corresponds to a collapse structure formed in the crater zone during the effusive eruption of 2007. This area was then filled with pyroclastic materials produced by strombolian explosive activity. This structure, which influenced the eruptive style of the volcano after the eruption of 2007, has a density more than 30% lower than the rest of the bedrock.
The muons produced by the interaction of cosmic rays with the atmosphere penetrate the volcanic rock and can cross it on both sides. However, depending on the density and thickness of the rock, only a part is absorbed. By the number of muons arriving on the detector, one can understand the density of the material which they crossed. Periodic radiographs of the summit of the volcano can be used to follow the evolution of its internal structure. The result will be used to better understand Strombolian eruptive processes and the dynamics of the Sciara del Fuoco which has been repeatedly affected by tsunami-generating landslides.
The muon detector used to analyze Stromboli is based on the technologies developed for the OPERA experiment; they studied the properties of the CERN neutrino beam at the INFN’s Gran Sasso National Laboratory. The first challenge that scientists had to face was the need to design a compact, high-resolution angular detector that does not require power and can be transported on the slopes of a volcano while resisting the elements. The detector consists of 320 films of nuclear emulsions, special photographic plates that allow to « photograph » with a great precision the passage of the particles which cross them. The surface of the detector is about one square metre. The detector was placed on the site of Le Roccette, at an altitude of 640 metres; it collected traces of muons that crossed the volcano for about 5 months.
Source: Journal of Italian Civil Protection.

Photo: C. Grandpey

Le Stromboli vu par les muons (Source: Protection Civile / INFN)