Californie : Inquiétude autour de la Faille de Garlock // California: Concern over the Garlock Fault

Quand on parle des failles qui cisaillent la Californie, on pense avant tout à celle de San Andreas qui est capable de déclencher un puissant séisme, comme celui qui a détruit San Francisco en 1906 et tué 3000 personnes. Toutefois, la San Andreas Fault n’est pas la seule à menacer la région.

Les scientifiques californiens du Jet Propulsion Laboratory de la NASA ont détecté il y a quelques jours des mouvements de la faille de Garlock. Longue de 250 km, elle s’étire le long de la bordure septentrionale du Mojave Desert, dans le sud de l’Etat. Les données fournies par les sismomètres et les images satellitaires ont révélé un soulèvement du sol visible depuis l’espace.

La faille de Garlock ne s’était pas manifestée depuis 500 ans et son comportement récent  pourrait être annonciateur d’un puissant séisme. Une étude publiée dans la revue Science alerte sur le mouvement de cette grande faille tectonique car elle a bougé de plusieurs centimètres en un an et de deux centimètres depuis le mois de juillet 2019. Ce réveil semble avoir été provoqué par des séismes enregistrés ces derniers mois à proximité de la ville de Ridgecrest. Certains d’entre eux ont atteint la magnitude M 7,1 et on redoute un séisme de M 8.0. On se souvient qu’un événement d’une telle magnitude a secoué la ville de Mexico en 1985 et causé de très graves dégâts.

Les sismologues savent que les mouvements des failles californiennes sont interdépendants. Ainsi, la faille de Garlock croise la faille de San Andreas qui s’étend sur plus de 1.300 km et passe notamment par San Francisco et Los Angeles. Un séisme provoqué par la faille de Garlock aurait des conséquences désastreuses sur l’agriculture, l’extraction pétrolière et les bases militaires de la région.

Les dernières observations concernant la faille de Garlock mettent à mal la théorie selon laquelle des séismes mineurs, en libérant de l’énergie, empêchent un séisme majeur de se produire. Dans le cas de la faille de Garlock, c’est plutôt le contraire qui risque de se produire : des séismes locaux peuvent perturber la faille et induire des mouvements de cette dernière, avec le risque d’un puissant séisme.

Source : NASA, presse californienne.

————————————————–

When we talk about the California shearing faults, we think of San Andreas, which is capable of triggering a powerful earthquake, like the one that destroyed San Francisco in 1906 and killed 3000 people. However, the San Andreas Fault is not the only one to threaten the region.
A fewgo, Californian scientists at NASA’s Jet Propulsion Laboratory detected movements of the Garlock Fault. 250 km long, it stretches along the northern edge of the Mojave Desert, in the south of the State. The data provided by the seismometers and the satellite images revealed a bulge of the ground, visible from space.
The Garlock Fault had not been active for 500 years and its recent behaviour could be a harbinger of a powerful earthquake. A study published in the journal Science alerts to the movement of this great tectonic fault because it has moved several centimetres in one year and two centimetres since July 2019. This new activity seems to have been caused by earthquakes recorded in recent months near the city of Ridgecrest. Some of them reached the magnitude M 7.1 and scientists fear an M 8.0 earthquake. One should remember that an event of such magnitude shook Mexico City in 1985 and caused very serious damage.
Seismologists know that the movements of California faults are interdependent. For example, the Garlock Fault crosses the San Andreas Fault that stretches for more than 1,300 km, including San Francisco and Los Angeles. An earthquake caused by the Garlock Fault would have disastrous consequences for agriculture, oil industry and military bases in the region.
The latest observations about the Garlock Fault undermine the theory that minor earthquakes, by releasing energy, prevent a major earthquake from occurring. In the case of the Garlock Fault, the opposite is likely to happen: local earthquakes can disrupt the fault and induce motions of the latter, with the risk of a powerful earthquake.
Source: NASA, California Press.

Vue de la faille de Garlock proposée par la NASA d’après des images satellite. La faille, qui marque la limite nord-ouest du Mojave Desert, se situe au pied des montagnes. Elle part du coin inférieur droit et se dirige vers la partie centrale cette image.

Volcans du monde // Volcanoes of the world

Comme indiqué précédemment, l’activité de l’Ubinas (Pérou) a été intense ces derniers jours. Elle a culminé avec de violentes explosions le 19 juillet 2019. Cette activité explosive a débuté vers 2 h 35 (heure locale) ce même jour. Les images satellite ont montré que le nuage éruptif avait atteint une hauteur de 12,1 km au dessus du niveau de la mer. Des retombées de cendre ont été signalées dans plusieurs villages de la vallée d’Ubinas et de la région d’Arequipa
L’IGP a recommandé de relever le niveau d’alerte de Jaune à Orange.
Source: IGP.

++++++++++

Le VSI indique qu’une brève éruption s’est produite sur le Bromo (Indonésie) le 19 juillet 2019. Elle a duré environ 7 minutes et a déclenché une vague de panique parmi la population locale. Les mauvaises conditions météorologiques ont empêché une bonne observation de l’événement.
Parallèlement à l’éruption, il a été fait état d’un lahar dans le village de Ngadas. Cependant, le VSI a expliqué que la coulée de boue n’était pas directement liée à l’éruption. Elle était plutôt causée par les fortes précipitations qui se sont abattues sur la caldeira du Tengger et sur le Bromo ; elles ont remobilisé la cendre émise par le volcan.
Le niveau d’alerte du Bromo reste à 2 sur une échelle de 1 à 4. Il est toujours conseillé aux visiteurs de rester en dehors de la zone de danger d’un rayon de 1 km autour du cratère.
Source: VSI.

++++++++++

L’éruption de l’Etna observée le 19 juillet 2019 n’a pas été l’événement majeur décrit par plusieurs organes de presse. Ce fut une simple activité strombolienne avec un épanchement de lave classique sur ce volcan. Cependant, les nuages ​​de cendre produits par l’éruption ont fermé les aéroports de Catane et de Raguse pendant quelques heures.
L’intense activité strombolienne qui avait débuté sur le Nouveau Cratère Syd-Est (NCSE) le 19 juillet dans l’après-midi, a cessé brusquement entre 20h30 et 22h30. Au cours de la nuit, la vitesse d’écoulement de la lave sur le flanc nord du NCSE a fortement diminué et les fronts de coulées se sont arrêtés après avoir parcouru environ 2 200 mètres sur la paroi occidentale de la Valle del Bove où ils ont commencé à se refroidir, comme on pouvait le voir sur les caméras thermiques. Cependant, l’émission de lave a continué quelques heures. De petites explosions sporadiques se sont produites pendant la nuit dans le NCSE. À partir de 3h30 GMT), l’activité explosive au NCSE s’est de nouveau intensifiée avant de diminuer par la suite. Actuellement, les caméras thermiques confirment que les fronts de coulées ne bougent plus et sont en phase de refroidissement,
La sismicité et le tremor éruptif ont retrouvé des niveaux de base.

++++++++++

Dans son dernier bulletin hebdomadaire sur le Stromboli (Sicile), le laboratoire de Géophysique Expérimentale indique que l’activité éruptive reste soutenue, avec une augmentation de l’activité effusive, en particulier dans le secteur sud-ouest de la Sciara del Fuoco. On observe une vingtaine d’explosions stromboliennes chaque jour. Les projections de lave et de cendre atteignent souvent 400 mètres de hauteur. La coulée de lave qui émane du cratère sud-ouest présente un débit  d’environ 2 mètres cubes par seconde. La lave avance sur la partie supérieure de la Sciara del Fuoco sur une longueur d’environ 600 mètres et une largeur de 80 mètres. Le front de lave se situe à environ 300 mètres au-dessus du niveau de la mer. Des blocs se détachent régulièrement du front de coulée et roulent jusqu’à la mer.
Les émissions de SO2 montrent une tendance à la hausse et a atteignaient 255 tonnes par jour le 15 juillet, la valeur la plus élevée depuis 2014.

Source : Laboratorio Geofisica Sperimentale.

++++++++++

Le Marion Dufresne reprend la mer en direction du volcan sous-marin de Mayotte. Une nouvelle mission intitulée « Mayobs4 » a appareillé le 19 juillet 2019 pour observer le nouveau volcan  formé au large de l’île. Les scientifiques tentent toujours de comprendre le mécanisme des séismes qui ont secoué Mayotte pendant plus d’un an.

Prévue pour durer jusqu’au 31 juillet, cette mission va observer la dorsale volcanique entre le nouveau volcan et la zone sismique. Elle s’étire en Petite Terre et le nouveau volcan à 50 km à l’Est (voir carte ci-dessous). Cette dorsale est constituée d’une série de cônes volcaniques où l’on observe une instabilité depuis l’année dernière. Les séismes se situeraient beaucoup plus près de Petite Terre que du volcan, 5 à 15 kilomètres seulement. On a également détecté des émanations de gaz en cours d’analyse dans cette zone.

On suppose que la lave circule à l’intérieur d’un réseau de tunnels sous la croûte terrestre, et ressort au niveau du nouveau volcan. Dans ce cas les séismes seraient provoqués par ces remontées de magma. Cette circulation du magma a lieu à 20 ou 30 kilomètres de profondeur ; raison pour laquelle la magnitude des séismes serait atténuée en surface. Il faut parler au conditionnel car ces différentes hypothèses restent à vérifier.
Il faut rappeler que la Petite Terre est un volcan, comme en témoigne le cratère éteint du lac Dziani. Deux autres cratères se sont effondrés, formant les plages de Moya.
Source : FranceTV Info.

—————————————————

As I put it before, activity at Ubinas (Peru) has been intense in the past days. It culminated with violent explosions on July 19th, 2019. This explosive activity started at about 2:35 (local time) on that day. Satellite imagery showed that the eruptive cloud reached a height of 12.1 km above sea level. Ashfall was reported in several villages across the Ubinas Valley and the Arequipa region

IGP has recommended raising the alert level from Yellow to Orange.

Source: IGP.

++++++++++

VSI indicates that a short eruption occurred at Mount Bromo (Indonesia) on July 19th, 2019. It lasted about 7 minutes and sent a wave of panic along the local population. Poor weather conditions prevented a good observation of the event.

Parallel to the eruption, there were reports of a lahar in the village Ngadas. However, VSI indicated that the mudflow was not directly related to the eruption. It was rather caused by the heavy rainfall around the Tengger Caldera and the summit of Bromo which mixes with the ash produced by the volcano

The alert level for Mt Bromo remains at 2, on a scale of 1 – 4. Visitors are still advised to stay outside the 1-km radius danger zone around the crater.

Source: VSI.

++++++++++

The eruption of Mt Etna that was observed on July 19th, 2019, was not the major event mentioned by several news media. It was a simple strombolian activity with a minor lava effusion. However, the ash clouds produced by the eruption closed Catania and ragusa airports for a few hours.

The intense strombolian activity at the New Southeast Crater (NSEC), which had resumed on July 19th in the afternoon ceased between 8:30 and 10:30 p.m. During the night, the effusion rate at the vent on the northern flank of the NSEC was strongly reduced, and the lava fronts stagnated at about 2,200 metres on the western wall of the Valle del Bove and started cooling, as could be seen on the thermal cameras. However, lava effusion persisted a few hours. Sporadic small explosions occurred at the NSEC during the night. Starting at 3:30 a.m.(UTC), there was a renewed intensification of the explosive activity at the NSEC which later declined. Currently, the thermal cameras confirm that the most advanced lava flow fronts are not moving and are cooling,

Seismicity and the eruptive tremor have regained background levels.

In the meantime, activity is still quite intense at Stromboli, as can be seen on the Skyline webcam.

++++++++++

In its latest weekly bulletin on Stromboli (Sicily), the Laboratorio Geofisica Sperimentale reports that eruptive activity remains strong, with an increase in effusive activity, especially in the southwest sector of Sciara del Fuoco. About twenty strombolian explosions are observed every day. The projections often reach 400 metres in height. The lava flow from the southwestern crater has a flow rate of about 2 cubic metres per second. Lava advances on the upper part of the Sciara del Fuoco over a length of about 600 metres and a width of 80 metres. The lava front is about 300 metres above sea level. Blocks regularly break away from the front and roll to the sea.
SO2 emissions show an upward trend and reached 255 tonnes per day on July 15th, the highest value since 2014.
Source: Laboratorio Geofisica Sperimentale.

++++++++++

The Marion Dufresne is again taking the sea towards Mayotte’s submarine volcano. A new mission – Mayobs4 – left the port on July 19th, 2019 to observe the new volcano formed off the island. Scientists are still trying to understand the cause and process of earthquakes that have shaken Mayotte for more than a year.
Scheduled to last until July 31st, this mission will observe the volcanic ridge between the new volcano and the seismic zone. It stretches between Petite Terre and the new volcano, 50 km to the East (see map below). This ridge consists of a series of volcanic cones where there has been instability since last year. The earthquakes might be much closer to Petite Terre than the volcano, only 5 to 15 kilometers away. Gases that have been detected in this area are being analyzed.
It is suggested that the lava travels inside a network of tunnels under the earth’s crust, and comes out at the new volcano. In this case the earthquakes might be caused by these magma ascents. This circulation of magma takes place at a depth of 20 to 30 kilometres; This is why the magnitude of the earthquakes is probably attenuated on the surface. We must use the conditional because these different hypotheses remain to be verified.
It must be remembered that Petite Terre is a volcano, as evidenced by the extinct crater of Lake Dziani. Two other craters collapsed, forming the beaches of Moya.
Source: FranceTV Info.

Cratère et lac Dziani sur Petite Terre (Crédit photo: Wikipedia)

Comment lire un sismogramme du HVO (Hawaii) // How to read a HVO seismogram (Hawaii)

L’Observatoire des Volcans d’Hawaii, le HVO, exploite un réseau de stations de surveillance sismique sur la Grande Ile d’Hawaï et dans tout l’État. Le personnel du HVO recueille les données en temps réel à partir de nombreuses stations grâce à un logiciel de traitement informatique permettant de détecter, localiser et publier des informations sur les séismes survenus à Hawaii. Contrairement à ce qui se passe sur les volcans français, toutes les données sismiques sont librement accessibles au public.
La page consacrée aux séismes sur le site web du HVO (https://volcanoes.usgs.gov/observatories/hvo/) indique les emplacements des derniers séismes et on peut voir les stations de surveillance sur une carte (voir ci-dessous) où elles sont symbolisées par des triangles rouges.
Si vous cliquez sur le symbole d’une station particulière sur la carte, une fenêtre va apparaître avec l’affichage de quatre panneaux de webicorders (enregistreurs sismiques) pour des durées de 6 heures, 12 heures, 24 heures et 48 heures. Vous pouvez cliquer sur chaque période pour agrandir le webicorder.
Les tracés séismiques visibles sur les webicorders sont les versions numériques des vieux enregistreurs à tambour en papier utilisés au cours des dernières décennies. Chaque ligne correspond à un enregistrement sismique de 15 minutes, en partant du coin supérieur gauche, la dernière heure étant affichée en bas à droite. Ainsi, on lit un webicorder comme un livre, de gauche à droite et de haut en bas. L’heure de début de chaque ligne est affichée en heure locale (Heure de l’Etat d’Hawaii, ou HST) à gauche, et l’heure de fin de chaque ligne en temps universel (UTC) à droite.
Les données sismiques sont indiquées en bleu sur les webicorders, avec une alternance de tons bleu foncé et bleu clair pour chaque plage de 15 minutes. Les lignes bleues imitent le mouvement du sol sous le capteur sismique: la ligne monte si le sol se déplace vers le haut, la ligne descend si le sol se déplace vers le bas, et la ligne serait droite au niveau «zéro» si aucun mouvement du sol n’est détecté. Plus l’amplitude du mouvement du sol est élevée, plus la ligne bleue est haute. Ce qui est immédiatement évident, c’est que le sol monte et descend toujours très légèrement.
Les instruments sismiques sont très sensibles et enregistrent tout ce qui secoue le sol. Ils peuvent même enregistrer le vent, le tonnerre, la foudre, les vagues de l’océan qui viennent se briser contre l’île, ainsi que des séismes bien localisés dus aux chutes de pierres, aux tirs de mines dans des carrières ou à d’autres explosions.
Les séismes apparaissent sous forme de taches bleues. Chacune a certaines caractéristiques bien reconnaissables, notamment les ondes P (primaires) et S (secondaires ou de cisaillement), qui peuvent avoir un début net avant de décroître pour retrouver leur niveau de base. Une plus grande séparation entre les ondes P et S indique une distance croissante entre la station sismique et le séisme. D’autres types de séismes, par exemple ceux dus au mouvement de magma ou de gaz, ont une apparence différente, généralement avec une période d’énergie plus longue pouvant persister sur de plus longues périodes.
Source: USGS / HVO.

——————————————–

The Hawaiian Volcano Observatory (HVO) operates a network of seismic monitoring stations on the Island of Hawaii and throughout the state. The HVO staff collects real-time data from numerous stations using computer processing software to detect, locate, and publish information about earthquakes that are recorded in Hawaii. Contrary to what happens on French volcanoes, all seismic data are freely available to the public.
The earthquake page on the HVO website (https://volcanoes.usgs.gov/observatories/hvo/) shows recent earthquake locations and the monitoring stations can be seen on a map (see below) where they are symbolised by red triangles.
Clicking on a particular station symbol on the map will reveal a pop-up window that shows four panels of webicorders, for timespans of 6 hours, 12 hours, 24 hours, and 48 hours. You can click on each timespan to enlarge the webicorder.
The seismic webicorder plots are digital versions of the paper seismic drum recorders used in past decades. Each line shows the seismic record for 15 minutes, starting from the upper left, with the latest time in the bottom right. Thus, you read a webicorder like a book, from left to right and top to bottom. The start time of each line is shown in local time (Hawai‘i Standard Time, or HST) on the left, and the end time of each line is shown in Coordinated Universal Time (UTC) on the right.
Seismic data are shown in blue on webicorder plots, with each 15-minute span alternating between dark- and light-blue tones. The blue lines mimic ground motion under the seismic sensor: the line moves up if the ground shifts upwards, the line moves down if the ground moves downwards, and the line would be flat at “zero” if no ground motion is detected. The higher the amplitude of the ground motion, the taller the blue line will be. What is immediately apparent is that the ground is always moving up and down ever so slightly.
Seismic instruments are very sensitive and record anything that shakes the ground. So, wiggles on webicorder plots could be a record of wind, thunder, lightning, ocean waves crashing against the island, as well as of localized shaking from rockfalls, quarry blasts, or other explosions.
Earthquakes appear as blue smudges. Each has certain recognizable characteristics, including P- (primary) and S- (secondary or shear) waves, which may have a sharp onset and then decay to background level. Greater separation between P and S waves indicate increasing distance from the seismic station to the earthquake. Other types of earthquakes, for example those due to the movement of magma or gas, look different, generally with longer period energy that can persist over longer time frames.
Source: USGS / HVO.

Source: USGS / HVO

Capture d’écran d’un webicorder du HVO montrant 24 heures d’enregistrement par une station sismique sur le flanc sud du Mauna Loa. On distingue plusieurs séismes , ainsi que le bruit généré par le vent. (Source: USGS / HVO)

Les anciens sismos à tambour font maintenant figure de pièces de musée (Photo: C. Grandpey)

Le risque sismique sur la Grande Ile d’Hawaii // The seismic hazard on Hawaii Big Island

Hawaii est bien connu pour ses volcans actifs. Les éruptions du Mauna Loa et du Kilauea sont souvent spectaculaires et peuvent être destructrices. Il ne faudrait pas oublier non plus que l’Etat d’Hawaï est aussi sujet à des tremblements de terre. C’est l’un des endroits les plus sismiques des États-Unis, avec des milliers de secousses chaque année. Pas plus tard que le 28 avril 2019, la Grande Ile a été secouée par un séisme de M 4,2 dont l’épicentre se trouvait sous le flanc sud de Kilauea, à environ 20 km au sud-est du sommet et à une profondeur de 7 km. L’événement a été largement ressenti dans toute la partie orientale de Big Island. Il n’a toutefois causé aucune modification d’activité sur le Kileaua.
Les séismes du passé ont causé des dégâts structurels de plusieurs millions de dollars à la petite ville de Hilo. Le tremblement de terre de M 6,2 en 1973 avait une intensité VIII sur l’échelle de Mercali, avec 11 blessés et 5,6 millions de dollars de dégâts.
Le séisme de M 7,7 à Kalapana, en 1975 a été enregistré avec une intensité VIII à Hilo, et il a causé pour 4,1 millions de dollars de dégâts.
Hilo est la quatrième ville de l’État en termes de population, avec environ 43 000 habitants. On compte au moins 40 bâtiments historiques dans cette ville, y compris des écoles, des hôpitaux, des postes de police, des immeubles de bureaux, des magasins et des églises. L’architecture de Hilo lui donne souvent l’aspect d’une ville d’avant la seconde guerre mondiale. Elle est souvent considérée comme la plus ancienne ville de l’État. En fait, son histoire remonte à  l’année 1100. Les bâtiments historiques sont particulièrement vulnérables aux séismes, en particulier ceux construits avant l’adoption des normes parasismiques.
Selon le HVO, c’est l’intensité des ondes sismiques dans une zone donnée qui détermine le risque de dégâts. Une secousse avec une intensité «très forte» de VII peut causer des dégâts considérables aux structures mal construites, mais endommage généralement peu des structures bien conçues. Une secousse avec une intensité «sévère» de VIII causera des dégâts considérables à la plupart des bâtiments ordinaires. Avec une intensité «violente» de IX, même des structures spécialement conçues pour résister aux tremblements de terre peuvent subir des dégâts considérables. L’intensité «extrême» X détruira la plupart des structures. Il a été admis que des séismes de magnitude M 6,0 à Hawaii peuvent causer des dégâts sur de vastes zones.
L’État d’Hawaï a pris des mesures pour remédier aux problèmes de construction. En outre, un rapport de 2017 indique que 29% des routes hawaiiennes sont en mauvais état. Hawaii se situe au cinquième rang des pires villes du pays pour son réseau routier. Pour ce qui est du financement des routes dans le budget fédéral, Hawaii est le 10ème plus bas des Etats Unis. Près de 6% des routes hawaïennes ont été jugées en mauvais état. Les barrages constituent également le plus grand danger à Hawaii, comparés aux autres États.
Compte tenu de ces informations, certains habitants ne se sentent pas en sécurité sur leur lieu de travail et redoutent les séismes. Ils font remarquer que ce qui s’est passé à Christchurch (Nouvelle-Zélande) en 2011 pourrait aussi se produire à Hilo.
Les autorités expliquent que la Grande Ile doit s’attendre à de nouveaux séismes et s’y préparer. Les habitants doivent être conscients que des événements majeurs se produisent de temps en temps, même s’il n’y en a pas eu de secousse d’une magnitude supérieure à M6.9 depuis assez longtemps. Un sismologue du HVO a déclaré: «Le tout n’est pas de savoir si un puissant séisme se produira, mais de savoir quand il se produira. »
Source: Big Island Now.

—————————————————-

Hawai‘i is well known for its active volcanoes. The eruptions of Mauna Loa and Kilauea are often spectacular and can be setructive. One should not forget either that Hawaii is also an earthquake country. It is one of the most seismically active states in the US, experiencing thousands of earthquakes  each year. As recently as April 28th, 2019, Big Island residents experienced an M 4.2 earthquake beneath Kilauea’s south flank, roughly 20 kilometres SE of the summit at a depth of 7 kilometres. The quake was widely felt across East Hawaii. It did not cause any changes on Kileaua Volcano.

Earthquakes in the past have caused millions of dollars in structural damage to the small town of Hilo. The 1973 M 6.2 earthquake produced shaking of intensity VIII on the Mercali scale, injuring 11 people and causing 5.6 million dollars of damage.

The 1975 M 7.7 Kalapana earthquake caused a shaking with an intensity VIII in Hilo, causing 4.1 million dollars in damage.

Hilo is the state’s fourth largest city by population with approximately 43,000 residents. There are at least 40 historic buildings in this town, including schools, hospitals, police stations, office buildings, storefronts and churches. Hilo’s architecture gives it a pre-World War II persona. The city is often considered to be the state’s oldest one. In fact, oral history can be traced back to 1,100 AD. Historic buildings are especially vulnerable to seismic events, particularly those built before seismic codes were adopted.

According to the Hawaiian Volcano Observatory, what determines the potential for damage is how intense the seismic waves generated by the earthquake are in any given area. Shaking with ‘very strong’ intensities of VII can cause considerable damage to poorly-built structures but generally little damage to well-designed structures. It takes shaking at ‘severe’ intensity VIII to cause considerable damage to most ordinary buildings. At ‘violent’ intensity IX, even specially designed earthquake-tolerant structures can have considerable damage. ‘Extreme’ intensity X can destroy most structures. It has been admitted that earthquakes above magnitude M 6.0 in Hawai‘i generally can produce damages over large areas.

The state of Hawaii has taken some action to address building concerns. Besides, a 2017 report indicates that 29% of the state’s roads are in poor condition, ranking Hawaii the fifth worst in the nation. For highway funding as a percentage of the total government spending, Hawaii is the 10th lowest in the nation. Nearly 6% of Hawai‘i roads were deemed deficient. Dams posed the most hazard in Hawaii than any other state.

Given these reports, some residents feel unsafe in their workplace during earthquakes. They say that what happened in Christchurch (New Zealand) in 2011 that could so easily happen in Hilo.

Authorities explain that the Big Island needs to be prepared for earthquakes. Residents need to be aware there are big ones now and then, even though it has been there has not been an event above M6.9 for quite a long time. Said one HVO seismologist “It’s not a matter of if, but when a strong earthquake will occur.”

Source: Big Island Now.

Des séismes sont souvent enregistrés sur le flanc sud du Kilauea (Source: USGS)

Séismes et éruptions volcaniques // Earthquakes and volcanic eruptions

A l’issue de ma conférence « Volcans et risques volcaniques », les gens me demandent souvent s’il existe un lien entre les séismes et les éruptions volcaniques. Je réponds que dans certaines circonstances, on a cru voir un lien et que, dans d’autres, le lien était loin d’être évident. Cependant, j’insiste sur le fait que la sismicité est présente avant une éruption car le magma provoque une fracturation des roches pendant son ascension et cette fracturation est enregistrée par les sismomètres.
Les séismes d’origine tectonique – provoqués par les mouvements des plaques, en particulier dans les zones de subduction – font partie des phénomènes naturels les plus impressionnants sur Terre. Rien d’étonnant à ce qu’ils soient parfois associés au déclenchement des éruptions volcaniques. Les volcans sont souvent situés dans des régions sismiques comme la célèbre Ceinture de Feu du Pacifique. On y enregistre 90% des séismes et on y rencontre 75% de tous les volcans actifs de la planète. Les éruptions et les tremblements de terre ont souvent lieu à peu près au même moment; Cependant, on ne peut affirmer qu’il existe un lien direct entre un séisme et une éruption qui a eu lieu peu de temps après le premier événement. Le volcan était peut-être déjà sur le point d’entrer en éruption, ou bien il était déjà en éruption depuis longtemps.
Des études récentes laissent supposer qu’il pourrait exister un lien entre les séismes et les éruptions volcaniques dans certaines situations. Par exemple, un article paru en 1993 établit un lien entre un séisme de magnitude M 7,3 en Californie et des manifestations volcaniques et géothermales observées immédiatement après. Une étude publiée en 2012 estime qu’un séisme de magnitude M 8,7 au Japon en 1707 a entraîné la pénétration du magma dans une chambre peu profonde du Mont Fuji et déclenché une puissante explosion du volcan 49 jours plus tard. Le séisme de magnitude M 7,2 survenu le 29 novembre 1975 sur le Kilauea à Hawaii a été rapidement suivi d’une éruption de courte durée.

Cependant, il existe d’autres cas où un séisme majeur n’a pas été suivi d’une éruption. L’un des meilleurs exemples se situe au Japon en 2011. Les scientifiques japonais craignaient que le puissant séisme de Tohoku (magnitude M 9.1) le 11 mars 2011 réveille le Mont Fuji, ce qui ne s’est jamais produit!
A l’heure actuelle, les mécanismes de déclenchement des séismes ne sont pas bien compris, et les documents reliant les tremblements de terre à des éruptions ne s’appuient que sur des spéculations. Il est possible que le timing dans tous les exemples mentionnés ci-dessus soit juste une coïncidence. Les géologues doivent avant tout comprendre le déclenchement des séismes et exclure toute intervention du hasard avant d’établir un lien entre séismes et éruptions.

Parfois, il est fait référence à l’histoire pour montrer la corrélation entre les séismes et les éruptions volcaniques. Un document publié en 2009 a utilisé des données historiques pour montrer qu’il existe une relation entre un séisme de M 8,0 au Chili et un nombre d’éruptions en nette hausse sur certains volcans situés à une distance pouvant aller jusqu’à 500 km. Le problème est que de telles données historiques ne sont pas vraiment fiables. En effet, les grands séismes et les grandes éruptions volcaniques sont des événements relativement peu fréquents, et les scientifiques ne disposent pas d’un recul suffisant. Les archives fiables n’existent que depuis un demi-siècle ou un peu plus, selon les régions.
Dans le passé, les données provenaient de récits de voyages et de journaux de bord assez ambigus. Ainsi, en 1840, Darwin a recueilli des informations fournies par des témoins oculaires et relatives à des modifications mineures survenues sur des volcans chiliens à la suite du puissant séisme de 1836. Au final, en lisant les écrits de Darwin, on ignore si des éruptions ont eu lieu.
Des simulations ont été réalisées en laboratoire en 2016 et 2018 pour tenter de comprendre le comportement du magma dans la chambre magmatique et voir si ce comportement pourrait éventuellement déclencher des séismes. Cependant, aucune corrélation réelle entre les séismes et les éruptions volcaniques n’est ressortie de ces expériences.
Adapté d’un article de 2018 dans le National Geographic.

———————————————–

During my conference “Volcanoes and volcanic risks”, people often ask me whether there is a link between earthquakes and volcanic eruptions. I answer that on some occasions there appears to be some link and in other circumstances the link is far from clear. However, I insist that seismicity is always linked to an eruption and present before the event as magma causes the fracturing of rocks during its ascent and this fracturing is recorded by the seismometers.

Tectonic earthquakes – caused by the movement of plates, especially in subduction zones – are among the most powerful natural phenomena on the planet. It’s no surprise that they are sometimes suspected of being able to trigger volcanic eruptions. Earth’s volcanoes are often located in seismic parts of the world like the well-known Ring of Fire around the Pacific Ocean. This area hosts 90 percent of the world’s recorded earthquakes and 75 percent of all active volcanoes. Eruptions and earthquakes are often taking place at roughly the same time; however, you can’t automatically assume that there’s a connection between a given quake and a subsequent eruption. The volcano may have already been preparing to erupt, or it is already been erupting for a long time.

Recent studies suggest that a connection could potentially exist between earthquakes and volcanic eruptions in certain situations. For instance, a 1993 paper links an M 7.3 quake in California to volcanic and geothermal rumblings immediately afterward. And a 2012 study reckons that an M 8.7 earthquake in Japan in 1707 forced deeper magma up into a shallow chamber, triggering a huge blast at Mount Fuji 49 days later. There was also the M 7.2 earthquake on Hawaii’s Kilauea volcano on November 29th, 1975, which was quickly followed by a short-lived eruption.

However, there are other examples showing that a major earthquake has not been followed by an eruption. One of the best example was in Japan in 19 when Japanese scientists feared the powerful M 9.1 Tohoku earthquake on March 11th, 2011 might wake up Mount Fuji, which it never did!

The triggering mechanisms for earthquakes are not well understood, and papers linking quakes to later eruptions can really only speculate. It is quite possible that the timing in all these examples was just a coincidence. Geologists must understand the specific triggering and rule out chance before a connection can be definitively made.

Sometimes, reference is made to history to show the correlation between earthquakes and volcanic eruptions. A 2009 paper used historical data to show that that M 8.0 quakes in Chile are associated with significantly elevated eruption rates in certain volcanoes as far as 500 kilometres away. The problem is that these sorts of historical data are not really reliable. Indeed, major earthquakes and large volcanic eruptions are both relatively infrequent events, and scientists have only been reliably keeping these records for the last half century or more, depending on the region.

Many data points in the past come from fairly ambiguous news reports and journal entries. For instance, in 1840, Darwin gathered eyewitness information on some minor changes at Chilean volcanoes following the powerful quake there in 1836. However, it is unclear if any eruptions took place.

Simulations were performed in laboratory in 2016 and 2018 to try and understand magma behaves within the chamber and how this behaviour might eventually trigger earthquakes. However, no real correlation between earthquakes and volcanic eruptions came out of these experiments.

Adapted from a 2018 article in the National Geographic.

La Ceinture de Feu du pacifique, une zone sismique et volcanique très active (Source: Wikipedia)

Le Mont Fuji, un volcan sous surveillance (Crédit photo: Wikipedia)

Pas de cycle éruptif à Yellowstone // No eruptive cycle at Yellowstone

Je n’ai jamais cru aux cycles éruptifs, encore moins lorsque ces cycles couvrent des périodes de milliers d’années. Certains volcanologues affirment qu’une éruption à Yellowstone est «en retard» car le volcan a un cycle éruptif de 600 000 ans et aucune éruption ne s’est produite depuis 631 000 ans. À mes yeux, cela semble un peu tiré par les cheveux!
Heureusement, de nombreux scientifiques ne sont pas d’accord avec cette théorie et certains d’entre eux ont expliqué dans les Yellowstone Chronicles pourquoi elle n’était pas valable. Ils expliquent d’abord que beaucoup de gens ont tendance à évoquer les puissants séismes en faisant référence à la notion de cycle. Les séismes se produisent lorsque suffisamment de contrainte s’accumule sur une faille et provoque sa rupture. Cette contrainte s’accumule du fait du mouvement constant des roches de part et d’autre de la faille. La vitesse de ce mouvement est généralement constante sur des milliers, voire des millions d’années, de sorte que les séismes qui en résultent peuvent avoir une fréquence assez régulière. C’est pourquoi il est possible de calculer les probabilités à long terme de séismes dans certaines régions.
En suivant cette logique concernant les séismes, on devrait pouvoir prendre en compte les âges des éruptions passées à Yellowstone et calculer un intervalle de récurrence moyen (en supposant que les éruptions à Yellowstone se produisent sur une base régulière). S’agissant des éruptions majeures, Yellowstone en a connu trois: il y a 2,08, 1,3 et 0,631 millions d’années. Cela équivaut à un laps de temps d’environ 725 000 ans en moyenne entre les éruptions. Cela étant, il reste environ 100 000 ans à justifier, mais ce nombre est basé sur très peu de données et n’a donc pratiquement aucun sens.
Le problème, c’est que les volcans ne fonctionnent pas comme les failles qui déclenchent les séismes. À de rares exceptions près, le magma ne s’accumule pas à une vitesse constante à l’intérieur des édifices volcaniques. Au lieu de cela, les éruptions se produisent quand il y a suffisamment de magma dans le sous-sol et quand il y a une pression suffisante pour que ce magma monte à la surface. Cela ne se produit généralement pas selon un planning bien établi. Nous en avons la preuve avec les coulées de lave de Yellowstone qui sont la forme la plus courante l’activité éruptive sur ce volcan; la plus récente remonte à 70 000 ans.

Ces coulées de lave ne sont pas apparues régulièrement dans le temps. Elles sont apparues en tirs groupés, avec plusieurs éruptions en l’espace de quelques milliers d’années, séparées par des centaines de milliers d’années sans aucune éruption. En effet, les réservoirs magmatiques de Yellowstone reçoivent le nouveau magma de manière discontinue, ce qui entraîne plusieurs éruptions sur une courte période, avec de longues périodes de repos entre ces épisodes éruptifs.
Donc, dire que Yellowstone est « en retard » dans son cycle éruptif n’a aucun sens. Yellowstone n’est pas en retard et personne ne sait quand la prochaine éruption aura lieu. Visiter le Parc National de Yellowstone ne présente aucun risque… pour le moment!
Source: Yellowstone Chronicles.

—————————————————-

I have never believed in eruptive cycles, all the less when these cycles include periods of thousands of years. Some volcanologists affirm that an eruption in Yellowstone is “overdue” because the volcano has an eruptive cycle of 600,000 years and no eruption has occurred for 631,000 years. To my eyes, this seems a little far-fetched!

Fortunately, many scientists do not agree with this approach and some of them have explained in the Yellowstone Chronicles why it is not valid. They first explain that many people tend to think of big earthquakes by referring to the notion of cycles. Earthquakes occur when enough stress builds up on a fault and makes the fault snaps. The stress accumulates because of consistent motion of the rocks on either side of the fault. The rate of this motion is generally constant over thousands to millions of years, so the earthquakes that result from the motion can have fairly regular timing. This is why it is possible to calculate the long-term probabilities of earthquakes in some areas.

By this logic, we should be able to look at the ages of past Yellowstone eruptions and calculate an average recurrence interval (assuming Yellowstone eruptions occurred on a regular schedule). In terms of large explosions, Yellowstone has experienced three of them : 2.08, 1.3, and 0.631 million years ago. This comes out to an average of about 725,000 years between eruptions. That being the case, we still have about 100,000 years to go, but this number is based on very little data and so is basically meaningless.

Volcanoes, however, are not like faults. With rare exceptions, volcanoes do not accumulate magma at a constant rate. Instead, they erupt when there is a sufficient supply of liquid magma in the subsurface and sufficient pressure to cause that magma to ascend to the surface. This does not generally happen on a schedule.

We have the proof of this with the Yellowstone lava flows which are the most common form of magmatic eruption at Yellowstone; the most recent one was 70,000 years ago. However, these lava flows did not erupt regularly through time. Instead, they erupted in tight clusters, with several eruptions happening within the space of a few thousand years, separated by up to hundreds of thousands of years with no eruptions. This is because the Yellowstone magma reservoir system receives new magma only in discontinuous batches, causing several eruptions in a short period of time with long periods of quiet in between these episodes.

So, saying that Yellowstone is “overdue” is sheer nonsense. Yellowstone is not overdue and nobody knows when the next eruption will take place. Visiting Yellowstone National Park is safe…for the moment!

Source: Yellowstone Chronicles.

Source : Yellowstone Volcano Observatory

Photos: C. Grandpey

La situation sismique à Mayotte (suite) // The seismic situation in Mayotte (continued)

Dans son bulletin mensuel du mois de mars, l’OVPF fait le bilan de la situation sur le Piton de la Fournaise, mais donne aussi des nouvelles de la sismicité sur l’île de Mayotte. Comme indiqué précédemment, cette sismicité a débuté au début du mois de mai 2018. Elle consiste en essaims sismiques dont les épicentres se situent à 30 à 60km à l’est de la côte de Mayotte. La grande majorité de ces séismes est de faible magnitude, mais plusieurs évènements de magnitude modérée (avec un maximum de M 5,9) ont été ressentis par la population et ont endommagé certaines constructions.

Depuis le mois de juillet l’activité sismique a diminué mais une sismicité persiste et certains événements sont ressentis par les habitants. Cette situation m’a été confirmée par des Mahorais à l’occasion du Salon du Livre de Paris. Mars 2019 a été particulièrement actif avec notamment 24 séismes de magnitude supérieure ou égale à M 4 comptabilisés par le BRGM entre le 1er et le 24 mars. A noter que le 28 mars, lendemain de la publication par le BRGM de son bulletin mensuel évoquant une stabilité des secousses sismiques, les habitants ont été réveillés vers 4h40 par un événement de M 4,6. L’épicentre a été localisé à environ 60 kilomètres de Mamoudzou.

Les données des stations GPS du réseau Teria installées sur l’île de Mayotte indiquent depuis le mois de juillet un déplacement d’ensemble vers l’est d’environ 15 cm et une subsidence d’environ 6-12 cm suivant les sites au cours de cette même période. Pour les 3 derniers mois, la source à l’origine de ces déplacements a pu être localisée à une trentaine ou quarantaine de km à l’est de Mayotte et à environ 35 km de profondeur. Cela laisse supposer que des transferts de fluides dans la croûte se poursuivent toujours dans le secteur de l’essaim sismique.

Source : OVPF, Outremer News, Le Journal de Mayotte.

————————————————–

In its monthly bulletin of March, OVPF explains the situation on Piton de la Fournaise, but also gives news of seismicity on the island of Mayotte. As mentioned previously, this seismicity began in early May 2018. It consists of seismic swarms whose epicentres are located 30 – 60km east of the coast of Mayotte. The vast majority of these earthquakes are of low magnitude, but several events of moderate magnitude (with a maximum of M 5.9) have been felt by the population and have damaged some buildings.
Since the month of July, seismic activity has decreased but seismicity persists and certain events are felt by the inhabitants. This situation was confirmed to me by Mahorais at the Paris Book Festival. March 2019 was particularly active, with 24 earthquakes with magnitudes greater than or equal to M 4 recorded by BRGM between March 1st and 24th. It should be noted that on March 28th, the day after the publication by BRGM of its monthly bulletin evoking a stability of the earthquakes, the inhabitants were awakened around 4.40am by an M 4.6 event. The epicentre was located about 60 kilometres from Mamoudzou.
Data from the Teria network of GPS stations installed on the island of Mayotte have indicated since July an overall displacement to the east of about 15 cm, and a subsidence of about 6-12 cm according to the sites during this same period. For the last 3 months, the source at the origin of these displacements could be located about thirty or forty kilometres east of Mayotte and about 35 km deep. This suggests that fluid transfers in the crust are still continuing
in the sector of the seismic swarm.
Source: OVPF, Outremer News, Le Journal de Mayotte.

Déplacements (en mètres) enregistrés sur 4 stations GPS localisés à Mayotte et au nord de Madagascar à Diego Suarez  sur les composantes est (en haut), nord (au milieu) et vertical (en bas) entre avril 2018 et mars 2019 (Source : OVPF, IPGP)

.