Très fort essaim sismique sur la Zone de Fracture de Tjörnes (Islande) // Very strong seismic swarm on the Tjörnes Fracture Zone (Iceland)

Alors que la situation est relativement calme sur la Péninsule de Reykjanes, c’est la région de la Péninsule de Tjörnes qui attire l’attention aujourd’hui. Plus précisément, la sismicité est particulièrement élevée depuis quelques heures sur la Zone de fracture de Tjörnes qui mesure environ 150 km de longueur et 80 km de largeur.. Un essaim sismique est en cours ; un événement a atteint la magnitude de M 5,2 à 15h06 et un autre la magnitude de M 5,6 à 19h26 ce samedi 20 juin 2020. Leurs hypocentres ont été localisés respectivement à 9,2 km et 10 km de profondeur.

Située au large de la péninsule du même nom, la zone de fracture de Tjörnes est une section de failles transformantes. Elle sépare la zone volcanique septentrionale de l’Islande de la dorsale de Kolbeinsey qui fait elle-même partie de la dorsale médio-atlantique. La Smithsonian Institution nous apprend qu’une éruption sous-marine a pu avoir lieu en 1867-1868 dans la partie SE du système de fractures, au large de la côte septentrionale de l’Islande, juste au nord de Manareyjar Island. La sismicité a déjà été forte dans cette région au début de l’année 2018. On a alors pensé qu’il pouvait s’agir d’une possible éruption sous-marine.

Les essaims sismiques sont fréquents dans cette partie de l’Islande et ont en général une origine purement tectonique, sans manifestation volcanique associée. Ils peuvent atteindre des magnitudes de M 7 – 7,5, comme cela s’est produit en 1963.

——————————————

While the situation is relatively calm on the Reykjanes Peninsula, it is the Tjörnes Peninsula region that is drawing attention today. More specifically, the seismicity has been particularly high for a few hours over the Tjörnes Fracture Zone which measures approximately 150 km in length and 80 km in width. A seismic swarm is underway and one of the events has reached the magnitude of M 5, 2 at 3:06 pm this Saturday June 20, 2020. The hypocentre was located 9.2 km deep.

Located off the peninsula with the same name, the Tjörnes fracture zone is a section of transform faults. It separates the northern volcanic area of Iceland from the Kolbeinsey Ridge which is itself part of the Mid-Atlantic Ridge. The Smithsonian Institution informs us that a submarine eruption may have occurred in 1867-1868 in the SE part of the fracture system, off the north coast of Iceland, just north of Manareyjar Island. Seismicity was already strong in this region at the beginning of 2018. It was then thought the cause could be a possible submarine eruption.

Seismic swarms are common in this part of Iceland and are generally of purely tectonic origin, with no associated volcanism. They can reach magnitudes of M 7 – 7.5, as happened in 1963.

Source : IMO

Nouvelle carte sismique des Etats Unis // New seismic map of the United States

Des scientifiques de l’Université de Stanford ont compilé la carte la plus détaillée à ce jour des contraintes sismiques en Amérique du Nord. La carte et l’étude qui l’accompagne fournissent des informations précises sur les régions les plus exposées aux séismes ainsi que les types de séismes susceptibles de se produire.
La nouvelle carte est apparue dans une étude publiée le 22 avril 2020 dans la revue Nature Communications. Grâce à l’incorporation de près de 2 000 «orientations de contraintes» (mesures indiquant la direction dans laquelle la pression s’exerce sous terre) ainsi que 300 mesures non incluses dans les études précédentes, la carte fournit une image de bien meilleure résolution de l’activité sismique régionale.
Pour élaborer la carte, les chercheurs ont compilé des mesures nouvelles et anciennes obtenues à partir de forages, puis ils ont utilisé des informations relatives aux séismes passés pour en déduire quels types de failles étaient susceptibles de se trouver en différents endroits.
Connaître l’orientation d’une faille et le niveau de contrainte à proximité permet de savoir dans quelle mesure elle est susceptible de s’activer et si les gens doivent s’inquiéter, que ce soit dans le cadre de scénarios de séismes naturels ou de ceux déclenchés par l’industrie. L’expression « séismes déclenchés par l’industrie» fait référence à l’activité sismique causée par l’homme, en particulier dans certaines parties de l’Oklahoma et du Texas où la fracturation hydraulique est monnaie courante. Il est utile de rappeler que cette méthode d’extraction du pétrole et du gaz consiste à injecter de l’eau en profondeur dans des couches de roches pour forcer l’ouverture de crevasses et extraire le pétrole ou le gaz qui se trouve à l’intérieur. Le risque, c’est que cette technique déstabilise le sol. En 2018, l’USGS a constaté que le niveau de risque sismique dans l’Oklahoma était à peu près le même qu’en Californie.
Tout en confirmant les connaissances existantes, certaines caractéristiques de la nouvelle carte donnent des indications supplémentaires sur les types de séismes les plus susceptibles de se produire à travers le continent. Ces informations peuvent jouer un rôle majeur dans la façon dont les régions se préparent aux catastrophes. Dans l’ouest des États-Unis, par exemple, les chercheurs ont observé que la direction des contraintes sous la surface de la Terre avait changé jusqu’à 90 degrés sur des distances de seulement 10 kilomètres. Cela signifie que les fluides injectés dans le sol dans le processus de fracturation hydraulique peuvent être chahutés, même à une courte distance de l’endroit où ils sont injectés.

Sur la carte ci-dessous, des lignes noires indiquent la direction de la pression dans les zones de contrainte maximale. Les zones bleues représentent des failles d’extension où la croûte s’étire horizontalement. Les zones vertes représentent des failles transformantes, comme la faille de San Andreas. Les zones rouges représentent les failles de chevauchement, où la Terre se déplace sur elle-même.
Source: Business Insider.

————————————————

Scientists at Stanford University have compiled the most detailed map to date of seismic stress across North America. The map and accompanying study offer precise information about the regions most at risk of earthquakes, and which types of quakes are likely to occur.

The new map was described in a study published on April 22nd, 2020 in the journal Nature Communications. By incorporating nearly 2,000 « stress orientations » (measurements indicating the direction that pressure gets exerted underground in high-stress areas) as well as 300 measurements not included in previous studies, the map provides a higher-resolution picture of regional seismic activity than ever before.

To make the map, the researchers compiled new and previously published measurements from boreholes, then used information about past earthquakes to infer which types of faults were likely to be found in different locations.

Knowing the orientation of a fault and the state of stress nearby allows to know how likely it is to fail and whether people should be concerned about it in both naturally triggered and industry-triggered earthquake scenarios. The term « industry-triggered » earthquakes refers to seismic activity caused by humans, which is most common in parts of Oklahoma and Texas where hydraulic fracturing, or « fracking, » commonly occurs. This method of oil and gas extraction involves injecting water deep into the Earth’s layers of rocks to force open crevices and extract the oil or gas buried inside. But it destabilizes the ground. In 2018, USGS found that Oklahoma’s earthquake threat level was roughly the same as California’s.

While some of the researchers’ findings in the new map reaffirm existing knowledge, they also reveal new discoveries about the types of earthquakes that are most likely to occur across the continent. That information could have profound implications for how regions prepare for disasters. In the Western US, for example, the researchers observed that the direction of pressure under the Earth’s surface changed by up to 90 degrees over distances as short as 10 kilometres. That means the fluids injected into the ground in the fracking process could get pushed around in completely different ways even just a short distance from where they get injected.

In the map below, black lines indicate the direction of pressure in maximum stress areas. Blue areas represent extensional, or normal faulting, where the crust extends horizontally. Green areas represent strike-slip faulting, where the Earth slides past itself, like the San Andreas fault. Red areas represent reverse, or thrust faulting, where the Earth moves over itself.

Source: Business Insider.

Source : Stanford University

Séismes et Yellowstone // Earthquakes and Yellowstone

La sismicité a été particulièrement intense dans l’ouest des États-Unis en mars 2020, avec une secousse de M5,7 près de Salt Lake City, Utah, le 18 mars, et un événement de M6,5 dans l’Idaho le 31 mars. Comme c’est souvent le casa lorsque de tels séismes se produisent dans la région, beaucoup de gens se sont demandé s’ils pouvaient être liés au volcan de Yellowstone qui n’est pas si loin.
L’Observatoire Volcanologique de Yellowstone (YVO) a rassuré la population et indiqué dans sa mise à jour mensuelle du 1er avril 2020 qu’il n’y avait aucun lien apparent entre cette sismicité et Yellowstone. En fait, ces dernières secousses n’avaient qu’une origine tectonique et étaient dues à l’extension tectonique de la région.
Cependant, il convient de noter que dans le passé, plusieurs séismes enregistrés dans la région ont influencé le comportement des geysers à Yellowstone. Ce fur le cas du séisme de M 6,9 à Borah Peak, Idaho, en 1983 et celui du lac Hebgen, Montana (M 7,3) en 1959. Le YVO explique qu’ils ont agi sur les conduits superficiels des geysers..
Pour le moment, les scientifiques ne savent pas si le séisme de M6.5 dans le centre de l’Idaho aura un impact semblable. L’observation de l’activité des geysers au cours des prochains jours et des prochaines semaines permettra de répondre à cette question.
Le Steamboat Geyser a connu trois éruptions en mars, ce qui porte à neuf le nombre de ses manifestations pour l’année en cours.
En mars 2020, 111 séismes ont été enregistrés dans la région du Parc National de Yellowstone. Le plus significatif avait une magnitude de M 3,1 près de West Yellowstone.
Plusieurs essaims sismiques sont régulièrement enregistrés dans la région de Yellowstone. Ils sont essentiellement provoqués par l’activité hydrothermale intense dans le sous-sol.
Le YVO indique que l’activité sismique de Yellowstone reste à un niveau normal. De plus, la déformation globale reste inchangée. L’affaissement de la caldeira se poursuit à un rythme moyen de 2 à 3 cm par an. C’est le signe qu’il n’y a pas d’intrusion de magma sous le volcan et qu’il n’y aura donc pas d’activité éruptive dans les prochains mois. Rese à savoir si l’épidémie de COVID-19 permettra de visiter le Parc cet été.
Source: YVO, The Watchers.

——————————————

Seismicity was unusually high in Western United States in March 2020, with an M5.7 earthquake near Salt Lake City, Utah, on March 18th, and an M6.5 event in Idaho on March 31st. As is often the casa when such earthquakes occur in the region, many people wondered whether they might be linked to the Yellowstone Volcano which is not that far away.

The Yellowstone Volcano Observatory (YVO) reassured there people, sayingin its monthly update of April 1st, 2020 that there was no apparent link between this seismicity and Yellowstone. Actually, these earthquakes had a merely tectonic origin and were caused by tectonic extension of the region.

However, it should be noted that in the past several strong similar earthquakes in the region impacted geyser behaviour at Yellowstone: the M 6.9 quake of Borah Peak, Idaho, in 1983 and the 1959 M 7.3 tremor of Hebgen Lake, Montana .YVO said it was due to the response of the shallow and fragile geyser conduits to shaking.

It is not yet clear if the M6.5 in central Idaho will have a similar impact. Observations of geyser activity over the coming days to weeks will answer that question.

Steamboat geyser experienced three eruptions in March, bringing the total number of eruptions for the current year to nine.

During March 2020, 111 earthquakes were recorded in the Yellowstone National Park region. The largest event had a magnitude of M 3.1 near West Yellowstone.

Several seismic swarms are regularly recorded in the Yellowstone area. They are mostly caused by the intense hydrothermal activity in the underground.

YVO indicates that Yellowstone earthquake activity remains at background levels. Moreover, the overall deformation remains unchanged. Subsidence of the caldera continues at an average rate of 2 – 3 cm per year. This is the sign that there is no magma intrusion beneath the volcano and there will be no eruptive activity in the coming months. The question ids to know whether the COVID-19 epidemec will allow to visit the Parc this summer.

Source: YVO, The Watchers.

Steamboat Geyser

Castle Geyser

Lone Star Geyser

Old Faithful

[Photos: C. Grandpey]

 

Mayotte : Sérieuses mesures de prévention // Mayotte: Serious prevention measures

Vous connaissez le proverbe française : Mieux vaut prévenir que guérir. Les autorités mahoraises semblent l’avoir bien compris et envisagent des mesures pour le cas où la situation sismique et volcanique évoluerait dans le mauvais sens. L’essaim sismique découvert à environ 5 à 15 km à l’est de Mayotte est pris très au sérieux par le gouvernement. D’importants moyens sont mis en oeuvre pour l’étudier alors que l’éruption sous-marine se poursuit à 50 km à l’est. Des études scientifiques et des actions de prévention à grande échelle vont ponctuer les prochains mois.

L’activité sismique a diminué ces derniers mois à Mayotte, à l’exception de deux séismes ressentis début janvier. Malgré tout, l’éruption sous-marine se poursuit et la sismicité également. On enregistre entre 25 à 40 séismes quotidiennement, avec des magnitudes généralement inférieures à M 3.5.

Les autorités sont toutefois préoccupées par l’essaim sismique découvert juste à côté des côtes mahoraises, à environ 5 km à l’est, entre 25 et 40 km de profondeur. Les scientifiques pensent que cette sismicité est d’origine volcanique, et l’hypothèse de conséquences pour Mayotte n’est pas écartée : intensification des secousses ? Seconde éruption plus proche des côtes, voire sur terre ? La volcanologie actuelle ne permet pas d’aller plus loin dans les prévisions.

Pour parfaire les connaissances scientifiques de ce phénomène encore bien mystérieux, l’Etat français a décidé de renforcer le réseau de surveillance. Comme je l’ai indiqué précédemment, des scientifiques compétents vont être recrutés pour surveiller la sismicité 24 heures sur 24 Des moyens maritimes sont aussi prévus. Le Marion-Dufresne sera de retour fin avril ou début mai. Un navire privé devrait être également affrété pour d’autres études. Les capteurs de fond de mer seront modernisés pour fournir des données en temps réel. A terre, on va contrôler plus étroitement les émissions de CO2.

La sécurité civile élabore de son côté avec les scientifiques une échelle d’alerte afin de prévenir le préfet, et à travers lui la population, de tout risque éventuel. Par exemple, le rectorat va élaborer un programme pour que les élèves acquièrent, dès le début de leur scolarité, les bons gestes en cas d’alerte sismique. A plus grande échelle, la préfecture a planifié des exercices d’évacuation dans plusieurs communes de Mayotte. L’objectif est de “permettre à la population de savoir ce qu’elle doit faire si un risque nous menace sur la côte est” et de “lui donner un certain nombre de repères.” L’île sera par ailleurs équipée en sirènes d’alerte dès octobre 2020 pour alerter sur le risque tsunami.
Source : Journal de Mayotte.

—————————————–

You know the French proverb: Prevention is better than cure. The Mahoran authorities seem to have understood this well and are considering measures in the event of a dangerous evolution of the seismic and volcanic activity. The seismic swarm discovered about 5 to 15 km east of Mayotte is taken very seriously into account by the government. Significant means are used to study it while the underwater eruption continues 50 km to the east. Large-scale scientific studies and preventive actions will punctuate the coming months.
Seismic activity has decreased in recent months in Mayotte, with the exception of two earthquakes felt in early January. However, the underwater eruption continues and so does the seismicity. Between 25 and 40 earthquakes are recorded daily, with magnitudes generally less than M 3.5.
Authorities are concerned, however, about the seismic swarm discovered just off the coast of Mayotte, about 5 km east, between 25 and 40 km deep. Scientists believe that this seismicity has a volcanic origin, and the hypothesis of consequences for Mayotte is not ruled out: intensification of tremors? Second eruption closer to the coast, or even on land? Current volcanology does not allow us to go further in the prediction.
To improve scientific knowledge of this very mysterious phenomenon, the French State has decided to strengthen the surveillance network. As I mentioned earlier, competent scientists will be recruited to monitor seismicity 24 hours a day. Maritime means are also planned. The Marion-Dufresne will be back in late April or early May. A private ship should also be chartered for other studies. Sea bottom sensors will be modernized to provide real-time data. On land, scientists will monitor CO2 emissions more closely.
Civil security, for its part, is developing an alert scale with the scientists in order to warn the prefect, and through him the population, of any possible risk. For example, the rectorate will develop a program so that students may acquire, from the start of their schooling, the right gestures in the event of an earthquake alert. On a larger scale, the prefecture has planned evacuation exercises in several municipalities in Mayotte. The objective is to “allow the population to know what to do if a risk threatens us on the east coast” and “to give it a certain number of benchmarks.” The island will also be equipped with sirens from October 2020 to warn of the tsunami risk.
Source: Journal de Mayotte.

Eruption du Taal (Philippines): Volcano Island restera inhabitée // No more residents on Volcano Island

Les quelque 6 000 familles philippines qui vivaient sur Volcano Island, au cœur du volcan Taal, devront trouver de nouvelles maisons. Il y a longtemps, l’île a été déclarée parc national mais il était interdit de s’y implanter définitivement. Le problème est que cette interdiction n’était pas respectée.

Suite à l’éruption du Taal, une évacuation a été ordonnée sur un rayon de 14 km autour du volcan, qui se trouve à une soixantaine de kilomètres au sud de manille, la capitale. Plus de 150 000 personnes ont été déplacées par l’ordre d’évacuation. La garde côtière philippine a intercepté chaque jour une dizaine de bateaux qui tentaient d’atteindre l’île.
Le président philippin Rodrigo Duterte a approuvé un décret visant à transformer l’île en «no man’s land», mais sa publication n’est pas encore officielle. Il a été demandé aux autorités de la province de Batangas, où se trouve le volcan, de rechercher un terrain d’au moins 3 hectares pour construire des logements à l’attention des familles déplacées.
Les personnes qui vivaient sur Volcano Island étaient essentiellement des guides touristiques, des agriculteurs et des exploitants de parcs à poissons. On pense que des milliers d’animaux sont morts depuis le début de l’éruption. Il a été demandé à la population de ne pas consommer les poissons du lac autour de l’île.
Source: Manila Bulletin.

Dernières nouvelles : Le PHIVOLCS recommande en permanence l’évacuation totale de la « zone de danger » d’un rayon de 14 km autour du Taal et le long de la rivière Pansipit où des fissures ont été observées. En se référant à la carte publiée dans l’une de mes dernières notes, cela signifie l’évacuation d’environ 460 000 personnes !! Jusqu’à présent, environ 125 000 Philippins ont quitté leur domicile. Une évacuation totale de la zone de danger de 14 km ne sera pas facile, notamment en ce qui concerne l’hébergement de tous ces habitants.
Du dimanche 19 janvier 2020 au matin au lundi 21 janvier au matin, le PHIVOLCS a enregistré 23 séismes volcaniques, de magnitude M 1,2 à M 3,8. Un événement de M 4.6 qui a secoué Mabini, dans la province de Batangas, le 19 janvier au cours de la nuit a été causé par des mouvements de faille. L’Institut pense que ces mouvements prouvent que le magma pousse vers le haut.
Le PHIVOLCS a enregistré des émissions de SO2 atteignant en moyenne 4 353 tonnes par jour au cours des derniers jours, soit plus que les 1 442 tonnes enregistrées du 18 au 19 janvier. Ce SO2 est généré par le même magma qui provoque l’inflation du volcan. .
Dans le même temps, le  PHIVOLCS observe toujours des émissions de vapeur et de rares explosions de faible intensité qui génèrent des panaches de cendres de 500 à 1 000 mètres de hauteur. .
Source: Philippine News Agency.

En cliquant sur ce lien, vous verrez une galerie d’images montrant la situation dans la région du Taal :

https://edition.cnn.com/2020/01/12/asia/gallery/taal-volcano-eruption/index.html

———————————————–

About 6,000 Philippine families who lived on Taal’s Volcano Island will have to find new homes. The island was declared a national park long ago and was off limits to permanent villages, but the rules weren’t enforced. With the current eruption, evacuations have been ordered for everyone living within a 14-kilometre radius of the volcano, which is about 60 kilometres south of the capital city of Manila. More than 150,000 people have been displaced by the evacuation order. The Philippine coast guard has been turning away about 10 boats a day that are trying to reach Volcano Island.

Philippine President Rodrigo Duterte has approved a recommendation for the island to be turned into a “no man’s land,” but he has yet to issue formal guidelines. Officials in Batangas province, where the volcano is located, have been asked to look for at least 3 hectares that could be used to build housing for the displaced families.

Volcano Island’s residents worked as tourist guides, farmers and fish pen operators. Thousands of animals are thought to have died in the eruptions, and people have been warned to not eat fish from the lake surrounding the island.

Source: Manila Bulletin.

By clicking on this link, you will see a great photo gallery showing the situation in the Taal area:

https://edition.cnn.com/2020/01/12/asia/gallery/taal-volcano-eruption/index.html

Latest news: PHIVOLCS reiterates its recommendation for the total evacuation of the identified « danger zone » with a 14-km radius around Taal Volcano, and along the Pansipit River where fissures have been observed. Referring to the map in one of my previous posts, this means the evacuation of about 460,000 persons!! Up to now, about 125,000 people have left their homes. A total evacuation of the 14-km danger zone will not be easy, especially concerning the relocation of all these residents.

From 5 a.m. Sunday until 5 a.m. Monday, PHIVOLCS recorded 23 volcanic earthquakes, with magnitudes M 1.2 to M 3.8. An M 4.6 quake that hit Mabini, Batangas, on January 19th during the night was caused by fault movements. The Institute thinks these movements definitely prove that magma is pushing upward.

PHIVOLCS has registered SO2 emissions at an average of 4,353 tonnes per day in the last days, higher than the 1,442-tonne emissions it recorded from January 18th to 19th. Again, this SO2 is produced by the same magma that causes the inflation of the volcano. .

Meanwhile, steady steam emission and infrequent weak explosions that generate ash plumes 500 to 1,000 metres tall are observed by PHIVOLCS. .

Source : Philippine News Agency.

La cendre a tout détruit sur Volcano Island qui est devenue inhabitable (Source: The Weather Channel)

Alerte sismique par smartphone pour les Californiens // Seismic alert by smartphone for Californians

On peut lire sur l’excellent site Web The Watchers que le nouveau système d’alerte précoce aux séismes en Californie – via l’application MyShake – a envoyé sa première alerte le 17 décembre 2019. L’alerte a été envoyée au moment d’un séisme de M4.3 enregistré dans la région de Monterey et San Luis Obispo, le long de la faille de San Andreas. 40 personnes ont reçu le message d’alerte qui a mis 8,7 secondes pour arriver sur les smartphones. Ces personnes étaient des les habitants de Paso Robles, une localité située à environ 35 km de distance.
La magnitude du séisme a d’abord été estimée à M 4,8 par l’USGS, ce qui était suffisant pour que l’application envoie l’alerte. Le séisme a finalement été abaissé à MM 4,3 sur l’échelle d’intensité de Mercalli (différente de l’échelle de Richter qui désigne la magnitude). Il était d’intensité modérée et personne n’a appelé les pompiers.
L’application avait été rendue publique le 18 octobre 2019. Elle utilise les données fournies par le système ShakeAlert de l’USGS.
Source : The Watchers.

Si j’ai bien compris, l’alerte est arrivée sur les smartphones APRÈS le déclenchement du séisme qui est un événement très soudain. Cela signifie que des dégâts – des effondrements de maison, par exemple – se seraient déjà produits s’il s’était agi d’un séisme majeur. L’application MyShake est-elle un bon moyen de prévention? Est-ce vraiment une alerte? Les gens sont-ils prévenus assez tôt ? J’ai des doutes. Au moment où ils reçoivent le message, je pense qu’il est déjà trop tard!

———————————————-

On the excellent website The Watchers, one can read that California’s new statewide earthquake early warning system- the MyShake app- sent out its first public alert on December 17th, 2019. The warning was sent for an M4.3 event that took place in Monterey and San Luis Obispo counties, along the San Andreas Fault. 40 people received the alert that took 8.7 seconds to go out. The warning reached people in the town of Paso Robles, roughly 35 km away.

The quake was initially estimated at M 4.8 by USGS. The magnitude was high enough for the app to send the alert. The quake eventually registered at M 4.3 on the Modified Mercalli scale which refers to the intensity (not the magnitude) of a quake. It was mild and no one called the fire department.

The app was released publicly on October 18, 2019. It uses data provided by the USGS’s backbone ShakeAlert system.

Source: The Watchers.

As far as I can understand, the warning arrived on people’s smartphones AFTER the quake which is a very sudden event. This means that damage would have already happened if the earthquake had been a major one. Is the MyShake app a good means of prevention? Is it really an alert? By the time people receive it, I think it is too late!

 

La faille de San Andreas dans le comté de San Luis Obispo

(Photo: C. Grandpey)

Une balise pour prévoir séismes, tsunamis et éruptions // A buoy to predict earthquakes, tsunamis and eruptions

Des géophysiciens de l’Université de Floride du Sud (USF) ont mis au point et testé avec succès une balise de haute technologie, utilisable en eau peu profonde, capable de détecter les moindres variations du plancher océanique, souvent annonciateurs de catastrophes naturelles dévastatrices, telles que les séismes, les tsunamis et les éruptions volcaniques.

Le système flottant, mis au point avec l’aide d’une subvention de 822 000 dollars allouée par la National Science Foundation, a été installé à Egmont Key dans le Golfe du Mexique en 2018 et a déjà livré des données sur le mouvement tridimensionnel du plancher océanique. Ainsi, il sera capable de détecter de petites variations de contrainte dans la croûte terrestre.
En attente de brevet, ce système de géodésie présente l’aspect d’une balise ancrée au fond de la mer et surmontée d’un GPS de haute précision. L’orientation de la balise est mesurée à l’aide d’une boussole numérique fournissant des informations sur le cap, le tangage et le roulis, ce qui permet de mesurer latéralement  les mouvements de la Terre et diagnostiquer les principaux séismes déclencheurs de tsunamis.
Bien que plusieurs autres techniques de surveillance des fonds marins soient actuellement disponibles, la technologie mise au point en Floride fonctionne généralement mieux dans les milieux océaniques profonds où les interférences sonores sont moindres. Les eaux côtières peu profondes (moins de quelques centaines de mètres de profondeur) constituent un environnement plus difficile à analyser, mais également important pour de nombreuses applications, notamment certains types de séismes dévastateurs. Les processus d’accumulation et de libération de contraintes au niveau de la croûte terrestre au large sont essentiels à la compréhension des puissants séismes et des tsunamis.
Le système flottant est relié au fond de la mer à l’aide d’un lest en béton et il a pu résister à plusieurs tempêtes, dont l’ouragan Michael dans le Golfe du Mexique. Le système est capable de détecter des mouvements du plancher océanique de seulement deux centimètres.
La technologie a plusieurs applications potentielles dans l’industrie pétrolière et gazière en mer et pourra être utilisée pour la surveillance de certains volcans. Toutefois, la principale application concerne l’amélioration de la prévision des séismes et des tsunamis dans les zones de subduction. Les puissants séismes et tsunamis qui ont frappé Sumatra en 2004 et le Japon en 2011 sont des événements que les scientifiques souhaiteraient mieux comprendre et prévoir.
Le système mis au point par l’Université de Floride est conçu pour les applications de zones de subduction de la Ceinture de Feu du Pacifique, où les processus d’accumulation et de libération de contraintes de l’écorce terrestre en mer sont actuellement mal connus. Les scientifiques espèrent pouvoir installer le nouveau système dans les eaux côtières peu profondes de l’Amérique Centrale, où se produisent souvent des tremblements de terre.
Le site d’Egmont Key où le système a été testé présente une profondeur de 23 mètres. Bien que la Floride ne soit pas sujette aux séismes, les eaux au large d’Egmont Key se sont avérées un excellent site de test. Ce lieu est exposé à de forts courants de marée qui ont permis de tester le système de correction de la stabilité et de l’orientation de la balise. La prochaine étape consistera à installer un système semblable dans les eaux plus profondes du Golfe du Mexique, au large de la côte ouest de la Floride.
Source: Université de Floride du Sud.

—————————————

University of South Florida (USF) geoscientists have successfully developed and tested a new high-tech shallow water buoy that can detect the small movements and changes in the Earth’s seafloor that are often a precursor to deadly natural hazards, like earthquakes, volcanoes and tsunamis.

The buoy, created with the assistance of an $822,000 grant from the National Science Foundation, was installed off Egmont Key in the Gulf of Mexico in 2018 and has been producing data on the three-dimensional motion of the sea floor.  Ultimately the system will be able to detect small changes in the stress and strain the Earth’s crust.

The patent-pending seafloor geodesy system is an anchored spar buoy topped by high precision Global Positioning System (GPS). The buoy’ orientation is measured using a digital compass that provides heading, pitch, and roll information – helping to capture the crucial side-to-side motion of the Earth that can be diagnostic of major tsunami-producing earthquakes.

While there are several techniques for seafloor monitoring currently available, that technology typically works best in the deeper ocean where there is less noise interference. Shallow coastal waters (less than a few hundred metres deep) are a more challenging environment but also an important one for many applications, including certain types of devastating earthquakes. Offshore strain accumulation and release processes are critical for understanding powerful earthquakes and tsunamis.

The experimental buoy rests on the sea bottom using a heavy concrete ballast and has been able to withstand several storms, including Hurricane Michael up the Gulf of Mexico. The system is capable of detecting movements as small as one to two centimetres.

The technology has several potential applications in the offshore oil and gas industry and volcano monitoring in some places, but the big one is for improved forecasting of earthquakes and tsunamis in subduction zones. The giant earthquakes and tsunamis in Sumatra in 2004 and in Japan in 2011 are examples of the kind of events scientists would like to better understand and forecast in the future.

The system is designed for subduction zone applications in the Pacific Ocean’s “Ring of Fire” where offshore strain accumulation and release processes are currently poorly monitored. One example where the group hopes to deploy the new system is the shallow coastal waters of earthquake prone Central America.

The Egmont Key test location sits in just 23 metres depth.  While Florida is not prone to earthquakes, the waters off Egmont Key proved an excellent test location for the system. It experiences strong tidal currents that tested the buoy’s stability and orientation correction system. The next step in the testing is to deploy a similar system in deeper water of the Gulf of Mexico off Florida’s west coast.

Source: University of South Florida.

Vue de la balise haute technologie mise au point par l’Université de Floride (Source : USF)

Vue du site d’Egmont Key, sur la côte ouest de la Floride, où la balise a été testée (Source : Google maps)