Volcans du monde // Volcanoes of the world

Voici quelques nouvelles de l’activité volcanique dans le monde:

Un nouvel épisode éruptif a commencé à Nishinoshima, dans l’archipel d’Ogasawara (Japon). Des anomalies thermiques ont été observées sur l’imagerie satellite. Les garde-côtes japonais ont confirmé cette nouvelle activité après un survol le 6 décembre 2019. Les explosions se concentrent actuellement au niveau du cône principal. Une nouvelle bouche éruptive à la base nord-est du cône génère une activité de spattering et des coulées de lave.
Les dernières éruptions sur Nishinoshima ont été observées d’avril à juin 2017 et en juillet 2018.
Source: JMA, Garde-côtes japonais.

++++++++++

Une éruption mineure a débuté sur le Semisopochnoi (Aléoutiennes / Alaska) le 7 décembre 2019. Elle a été détectée sur les réseaux locaux sismiques et infrasoniques. En conséquence, la couleur de l’alerte aérienne est passée à l’Orange et le niveau d’alerte volcanique à Vigilance. On observe des explosions intermittentes. La sismicité était légèrement élevée avant la première explosion et se poursuit à un niveau élevé. Aucune émission significative de cendre ou autre activité de surface n’a été détectée sur l’imagerie satellite.
Source: AVO.

++++++++++

A partir de 18 heures (GMT) le 6 décembre 2019, les webcams pointées sur les cratères de l’Etna (Sicile) ont montré une intensification progressive de l’activité strombolienne dans le Nouveau Cratère Sud-Est (NCSE). Cette dernière avait commencé vers 16 heures, avec des explosions sporadiques et de faible intensité. Les matériaux émis retombent sur les flancs de cette bouche éruptive. Aucune variation significative du tremor éruptif n’a été enregistrée.

Source : INGV.

++++++++++

Je n’ai pas de bonnes nouvelles pour ceux qui ont l’intention d’aller à Hawaï pour Noël avec l’espoir de voir des coulées de lave actives. Le Kilauea n’est toujours pas en éruption et l’USGS indique que le niveau d’alerte est maintenu à Normal.
Les instruments de mesure ne montrent aucun changement significatif d’activité. La sismicité consiste un certain nombre d’événements épisodiques correspondant à une reprise de l’inflation sommitale. Les émissions de SO2 sont faibles au sommet et en dessous des seuils de détection sur le Pu’uO’o et le long de la Lower East Rift Zone (LERZ). Le petit lacau fond de Halema’uma’u continue de s’agrandir et de s’approfondir lentement.

Le Mauna Loa n’est pas en éruption lui non plus. Le niveau d’alerte reste à Advisory (surveillance conseillée). Toutefois, cela ne signifie pas qu’une éruption est imminente ou que l’on se dirige vers un tel événement à plus long terme
Plusieurs séismes de faible magnitude (tous inférieurs à M 2,0) sont détectés sous la partie haute du Mauna Loa. Les mesures de déformation montrent une inflation continue au sommet. La température des fumerolles et les concentrations de gaz dans la zone de rift Sud-Ouest restent stables.
Source: USGS / HVO.

———————————————

Here is some news of volcanic activity around the world:

New eruptive activity has started at Nishinoshima (Japan) in the Ogasawara archipelago. Thermal anomalies can be seen on satellite imagery. The Japanese coastguard confirmed this new activity after an overflight on December 6th, 2019. The explosions are currently located at the main cone. A new vent at the northeastern base of the cone is producing spattering and lava flows.

The last eruptions on Nishinoshima were observed from April to June 2017 and July 2018.

Source: JMA, Japanese Coastguard.

++++++++++

A small eruption began at Semisopochnoi (Aleutians / Alaska) on December 7th, 2019. It was detected on the local seismic and regional infrasound networks. As a consequence, the aviation colour code was raised to Orange and the volcano alert level to Watch. Intermittent explosions are observed. Seismicity was slightly elevated prior to the first detected explosion and continues at elevated levels. No significant ash emissions or other surface activity have been detected in satellite imagery.

Source: AVO.

++++++++++

Starting at 6 pm (UTC) on December 6th, 2019, the webcams ditected toward the summit craters of Mt Etna (Sicily) showed a gradual intensification of Strombolian activity in the New Southeast Crater (NCSE). It began around 4 pm, with sporadic, low intensity explosions. The emitted materials fall on the flanks of this eruptive vent. No significant variation in the eruptive tremor has been recorded.
Source: INGV.

++++++++++

I do not have good news for those who intend to go to Hawaii for Christmas with the hope to see active lava flows. Kilauea is not erupting and USGS indicates that the alert level remains at Normal.

Monitoring data show no significant changes in activity. Seismicity is relatively consistent with some episodic increased rates at the summit coincident with inflation. SO2 emission rates are low at the summit and below detection limits at Pu’uO’o and along the Lower East Rift Zone (LERZ). The water lake at the bottom of Halema‘uma‘u continues to slowly expand and deepen.

Mauna Loa is not erupting either. The alert level remains at “advisory.” This does not mean that an eruption is imminent or that progression to an eruption is certain.

Several small-magnitude earthquakes (all less than M2.0) are detected beneath the upper elevations of Mauna Loa. Deformation measurements show continued summit inflation. Fumarole temperature and gas concentrations on the Southwest Rift Zone remain stable.

Source : USGS / HVO.

Nishinoshima (Source: JMA)

Hilo (Hawaii) sous la menace du Mauna Loa // Hilo (Hawaii) under the threat of Mauna Loa

 A Hawaii, la plus célèbre éruption du Mauna Loa ces dernières années est celle de 1984, avec des coulées de lave que l’on pouvait observer depuis Hilo. En tout, au cours des deux derniers siècles, six éruptions ont généré des coulées de lave qui se sont dirigées vers Hilo. Elles ont eu lieu en 1852, 1855-56, 1880-1881, 1935-1936, 1942 et 1984. Sur ces six événements, un seul a envoyé des coulées de lave qui sont arrivées à moins de 10 kilomètres de Hilo. La coulée la plus menaçante a été observée en 1880-1881; la lave a alors progressé jusqu’à 1,7 km de la ville avant d’arrêter sa progression.

Voici l’histoire de l’éruption de 1880-1881. Trois coulées de lave ont été émises par le Mauna Loa en novembre 1880. Les deux premières ont progressé très rapidement au nord et au sud de la zone de rift nord-est, à une vitesse moyenne de 6 km par jour avant de s’arrêter quelques semaines plus tard. La troisième coulée, émise par une bouche située un peu plus en aval, avança directement vers Hilo, mais beaucoup plus lentement, à raison d’une centaine de mètres par jour.
Cette dernière coulée avançait lentement, mais en permanence, sans s’arrêter, de sorte qu’elle s’est rapprochée dangereusement de Hilo, obligeant les représentants du gouvernement à prendre des mesures pour tenter de sauver la ville. Au début du mois de juillet 1881, une journée de prière a été décidée pour arrêter la lave. En vain. La rivière incandescente a continué à avancer, mais les prières ont continué.
À la fin du mois de juillet, la lave avançait toujours vers Hilo et, probablement pour la première fois dans l’histoire hawaïenne, le détournement de la coulée a été envisagé. Un plan d’action a été mis au point. Il comprenait l’édification de digues pour détourner la coulée, la construction d’abris pour les personnes évacuées, et le dynamitage du tunnel de lave qui alimentait la coulée de lave. Ce faisant, on aurait coupé l’alimentation de la coulée. Le plan a été envoyé à Honolulu pour approbation.
Au début du mois d’août 1881, la princesse Ruth Luka Ke’elikolani, une descendante des Kamehameha, s’approcha de la coulée de lave. Elle fit une offrande de brandy et d’écharpes et entonna une mélopée qui demandait à Pelé d’arrêter la lave et de rentrer chez elle. L’histoire raconte que la coulée a cessé d’avancer. À peu près au même moment, les équipements envoyés par le gouvernement pour détourner la coulée de lave sont arrivés à Hilo… mais la coulée s’était arrêtée ! Un seul bâtiment à l’extérieur de Hilo a été détruit par la lave et la ville proprement dite a été épargnée.
Une leçon a été tirée de l’éruption de 1880-1881 : Les autorités ont compris comment les coulées de lave étaient alimentées et étaient persuadées de pouvoir contrôler leur progression en utilisant de la dynamite pour percer le tunnel d’alimentation et tarir la coulée.. Un missionnaire de Hilo avait observé les tunnels de lave et leur fonctionnement en 1843 en étudiant le comportement d’une coulée émise par le Mauna Loa cette année-là.
Source: USGS / HVO.

————————————————-

In Hawaii, the most famous eruption of Mauna Loa in recent years is the one that occurred in 1984, with lava flows that could be seen from Hilo. In all, six eruption in the last two centuries dent lava flows that advanced toward Hilo. These eruptions took place in 1852, 1855-56, 1880-81, 1935-36, 1942 and 1984. Of the six events, only one sent lava flows that arrived less than 10 kilometres from Hilo Bay. The most threatening flow was in 1880-81; it advanced 1.7 kilometres from the shores of Hilo Bay and then stalled.

Here is the story of the 1880-1881 eruption. Three lava flows erupted from Mauna Loa in November 1880. The first two flows were fast-moving, and rapidly advanced both north and south from the Northeast Rift Zone at average speeds of 6 kilometres per day before stalling a few weeks later. The third flow, which erupted from a slightly lower vent, advanced directly toward Hilo, although at a much slower average rate of 100 metres per day.

The Hilo flow was slow but relentless, and got close to Hilo, forcing government officials to take action to try to save the town. A day of prayer was declared in early July 1881 to stop the flow, but it kept advancing and praying continued.

At the end of July, lava was still advancing toward Hilo and probably for the first time in Hawaiian history, lava flow diversion was discussed. A plan of action, including building barriers to divert the flow, building shelters for those displaced by the flow, and placing dynamite somewhere along the lava tube to drain the flow’s supply of lava, was devised and sent back to Honolulu.

In early August, the attendants of Princess Ruth Luka Ke’elikolani, a descendant of the Kamehameha line of chief, was in Hilo and approached the flow. She offered brandy and scarves and chanted, asking Pele to stop the flow and go home. By all reports the flow stopped. About that same time, government supplies for building barriers and shelters and draining the lava flow arrived, but the flow had stopped. Only one homestead outside of Hilo had been destroyed. The town of Hilo was spared.

In retrospect, not only did officials understand how lava flows were supplied with lava from the vent, they felt confident that they could manipulate the flow’s advance by using dynamite to breach the supply conduit and stall the flow. A Hilo missionary had discovered these lava conduits and how they worked in 1843 while observing a Mauna Loa lava flow erupted that year.

Source : USGS / HVO.

Carte montrant les zones de rift du Mauna Loa, avec la Northeast Rift Zone d’où s’échappe la lave qui menaca Hilo (Source: USGS)

Hawaii: Réouverture de la Route 132 // Reopening of Highway 132

La Route132 qui avait été recouverte par la lave dans le secteur de Pahoa durant l’éruption du Kilauea en 2018 a de nouveau été ouverte à la circulation le 27 novembre 2019.
Un tronçon de 2,5 km de la partie amont de la route et un tronçon de 2,4 km de sa partie aval avaient été recouverts par une épaisse couche de lave. La route a retrouvé son aspect initial avec deux voies de circulation goudronnées. Le travail supposait l’évacuation de 120 000 mètres cubes de matériaux volcaniques. Les ouvriers ont parfois été confrontés à une température de plus de 400°C dans la partie basse de la route.
Le coût initial des travaux avait été estimé à 12 millions de dollars, mais les autorités ont finalement déboursé environ 6,5 millions de dollars.
La remise en état de la route permettra aux personnes possédant des biens dans la région de revenir dans leurs maisons et dans leurs entreprises. Elle permettra aussi des trajets plus courts et facilitera les interventions des services d’urgence.
Source: Médias hawaïens.

——————————————

Highway 132 in Pahoa, which had been cut off to travel for more than a year by lava from the 2018 Kilauea eruption reopened on November 27th, 2019.

A 2.5-km stretch of the upper portion of the highway and a 2.4-km section of the lower portion of the road were covered in lava. The road has been restored to its pre-inundation function with two paved travel lanes. The restoration work included the excavation of 120,000 cubic metres of lava rock. Construction personnel encountered hot surface temperatures of more than 400°C in the lower portion of the road .

Initial construction costs were estimated at12 million dollars. However, the final costs were reduced to approximately 6.5 million dollars.

Restoring the road will allow residents with properties in the region to return to their homes and businesses, provide shorter commute, and facilitate emergency response in the area.

Source: Hawaiian news media.

 Crédit photo: USGS / HVO

 

Le lent refroidissement de la lave du Kilauea (Hawaii) // The slow cooling of the Kilauea lava (Hawaii)

Le HVO a publié un article très intéressant qui explique pourquoi et comment la lave émise lors de l’éruption du Kilauea en 2018 se refroidit très lentement. La réponse est facile : c’est parce que la lave bénéficie de son propre pouvoir isolant. .
Depuis la fin de l’éruption de 2018, des mesures précises ont été effectuées sur l’épaisseur des coulées, leur temps de refroidissement et la relation entre le cœur encore très chaud et visqueux des coulées et la croûte solide en surface.
Les travaux effectués par des scientifiques du HVO et publiés en 1994 ont révélé la vitesse de refroidissement des coulées pahoehoe à Kalapana. Les volcanologues ont alors découvert que la croûte qui surmonte une coulée de lave basaltique s’épaissit en fonction de la racine carrée du temps. En d’autres termes, la croûte se développe plus lentement avec le temps. En conséquence, les coulées de lave plus épaisses prendront plus de temps à se solidifier.
La lave émise par le  Kilauea a une température d’environ 1150°C. En 1917, Thomas Jaggar a publié les résultats des mesures de température du lac de lave actif dans le cratère de l’Halema’uma ’u. On y apprend que le basalte pouvait rester encore visqueux à des températures entre 750 et 850°C. Ces chiffres servent aujourd’hui de référence. Ainsi, pour les derniers calculs relatifs à la lave de 2018, la croûte a été considérée comme solide quand elle présentait une température inférieure à 850°C. Cette même croûte montrait encore de l’élasticité (état semi-solide ou malléable) entre 850 et 1070°C.
Des études antérieures effectuées par le HVO sur les lacs de lave actifs dans le cratère du Kilauea Iki fournissent des informations supplémentaires. En forant la croûte refroidie à l’intérieur du cratère, les scientifiques ont constaté que la solidification prenait des décennies. En particulier, le lac de lave qui occupait le Kilauea Iki en 1959 avec une épaisseur de 44 mètres a mis environ 35 ans à se solidifier complètement. La température en profondeur est encore supérieure à 540°C.
En utilisant des drones, le HVO a pu élaborer une carte de l’épaisseur des coulées de lave de l’éruption de 2018. Cette carte indique qu’au carrefour connu sous le nom de «Four Corners», la lave présente une épaisseur d’une quinzaine de mètres. En utilisant cette valeur et les équations relatives à l’éruption de Kalapana en 1994, on peut calculer comment se sont solidifiées les coulées de 2018.  Ainsi, au cours des 14 mois qui ont suivi la fin de l’éruption, la partie supérieure de la coulée de « Four Corners » s’est solidifiée sur 7,80 mètres, tout comme les 5,50 mètres de sa partie inférieure. En revanche, une épaisseur de 1,70 mètre au cœur de la coulée est restée encore visqueuse. On estime qu’il faudra encore environ 3 ans pour que la température de ce cœur de coulée descende à 850°C et que la lave se solidifie complètement. Cela correspond aux dernières observations faites par les services de l’équipement qui ont remarqué des roches encore très chaudes lorsque les bulldozers ont effectué une tranchée le long de la Highway 132. Les géologues du HVO ont confirmé ces observations en août, lorsque une température de 425° C a été mesurée sur le site. Des températures élevées persisteront à plusieurs dizaines de centimètres sous la surface et généreront probablement de la vapeur lorsqu’il pleuvra.
Bien que l’éruption de 2018 du Kilauea se soit achevée il y a 14 mois, il faudra des années avant que les coulées de lave se solidifient complètement avec une température inférieure à 850°C, et il faudra attendre plus d’un siècle avant que la zone de 250 mètres d’épaisseur, là où la lave est entrée dans l’océan,  se solidifie complètement.
Source: USGS, HVO.

Cet article m’intéresse particulièrement car j’ai moi-même effectué un travail d’observation sur le processus de refroidissement de la lave sur le Kilauea, pour le compte du HVO et du Parc National des volcans d’Hawaii. Vous trouverez un résumé de mes travaux sous l’entête de ce blog.

————————————————-

HVO has released a very interesting article which explains why and how lava from the Kilauea 2018 eruption is cooling very slowly. The short and simple answer is that lava insulates itself very well.

Since the end of the 2018 eruption, accurate measurements have been made on the flow field of lava thickness, cooling times, and the relative proportions of the internal molten core to the exterior solid crust.

Previous work by HVO scientists published in 1994 measured the cooling rate of pahoehoe lava at Kalapana. They found that the upper crust of a basalt lava flow grows thicker as a function of the square root of time. In other words, the lava flow crust grows more slowly with time. Therefore, thicker lava flows will take longer to become completely solid.

Lava erupts from Kilauea at a temperature of 1150°C. In 1917, Thomas Jaggar published results from the then-active Halema‘uma‘u lava lake that indicated basalt can remain molten at temperatures as low as 750–850°C. These figures are now the reference. For the current calculations, the crust has been considered solid when it is below 850°C and this crust is viscoelastic (semi-solid or malleable) at 850–1070°C.

Additional insight comes from previous HVO studies of active lava lakes in Kilauea Iki craters. By drilling into the cooled upper crusts of lava lakes within these craters, scientists documented that solidification takes decades. More specifically, the 44-metre-thick 1959 Kilauea Iki lava lake took about 35 years to fully solidify. Today, its core is still hotter than 540°C.

Using drones, HVO was able to create a lava flow thickness map of the 2018 eruption. This map indicates that at the intersection known as “Four Corners” there is a thickness of approximately 15 metres of lava. Using this value and the equations from the 1994 study of the Kalapana lava flows, one can calculate how much of the 2018 flows have solidified. Over the 14 months since the end of the eruption last year, the upper 7.8 metres and lower 5.5 metres at “Four Corners” should already be solidified crust, and the middle 1.7 metres should still be malleable.

It will take about 3 more years for the remaining 1.7 metres of malleable lava over the “Four Corners” intersection to reach 850°C and be completely solid. This matches recent observations by road-construction crews, who noticed hot rocks being exposed at a road cut along Highway 132. HVO geologists confirmed this in August, when temperatures of 425°C were measured at the newly-cut road site. Hot temperatures will remain several tens of centimetres below the surface for now and will likely generate steam when it rains.

Although Kilauea’s 2018 eruption ended 14 months ago, it will be years before the lava flows emplaced on land are entirely solidified below 850°C, and over a century before the 250-metre-thick area offshore fully solidifies.

Source: USGS, HVO.

This article is of particular interest to me because I performed an observation work on the cooling process of lava on Kilauea, on behalf of HVO and the Hawaii Volcanoes National Park. You will find an abstract of my work beneath the heading of this blog.

Refroidie et durcie en surface, une coulée de lave conserve pendant longtemps une température élevée à l’intérieur (Photo: C. Grandpey)

Halema’uma’u (Hawaii): Résultats de l’analyse de l’eau // Results of water analysis

Comme prévu, le HVO a récemment échantillonné l’eau du lac qui est apparu au fond du cratère de l’Halema’uma’u, au sommet de Kilauea. Le niveau de cette eau a augmenté d’environ 90 centimètres par semaine depuis sa première apparition le 25 juillet 2019. Jusqu’à présent, le HVO ne pouvait qu’évaluer à distance la taille du lac, observer sa couleur et estimer sa température. En voyant la lac s’agrandir, le HVO a décidé d’élaborer une stratégie pour échantillonner son eau. En effet, la chimie du lac est une bonne indication de la provenance de l’eau, de son influence possible sur le dégazage et donc des risques potentiels au sommet du Kilauea.
Il a été décidé qu’un drone serait la meilleure solution pour l’échantillonnage. Le 26 octobre, un engin a prélevé avec succès 0,73 litre d’eau du lac. L’échantillon a ensuite été envoyé à des laboratoires sur le continent pour des analyses exhaustives.
Les résultats obtenus jusqu’à maintenant indiquent que l’eau est acide, avec un pH de 4,2 (le pH neutre est de 7). Il est intéressant de noter que la plupart des lacs de cratères ont un pH inférieur à 3,5 (plus acide) ou supérieur à 5 (moins acide), ce qui place le lac de l’Halema’uma’u dans la moyenne.
Une modélisation mathématique effectuée avant l’apparition du lac indiquait que l’eau de la nappe phréatique était susceptible de pénétrer dans le cratère de l’Halema’uma’u une fois que l’environnement se serait suffisamment refroidi, après la disparition du lac de lave qui avait séjourné dans le cratère entre 2008 et 2018. Il n’est donc pas surprenant de voir de l’eau appraître dans le cratère.
Cependant, il est important de noter que l’Halema’uma’u est l’endroit où les émissions sommitales de dioxyde de soufre (SO2) sont les plus importantes, et que le SO2 se dissout facilement dans l’eau.
Lorsque l’eau souterraine s’écoule en direction du cratère en cours de refroidissement, elle dissout le SO2 provenant du magma situé en dessous. Cela conduit à des concentrations élevées d’ions sulfate dans le lac (53 000 milligrammes par litre) et à un pH plus acide.
A côté de cela, cette eau acide réagit chimiquement avec le basalte du Kilauea, ce qui diminue son acidité et augmente donc son pH. On observe aussi des concentrations élevées de magnésium dans l’eau. Les rapports magnésium / sodium et sodium / potassium dans l’eau du lac sont semblables à ceux du basalte du Kilauea, confirmation des réactions chimiques entre l’eau et la roche.
Les concentrations de calcium ne sont pas très élevées dans l’échantillon d’eau prélevé. Cela s’explique par le fait que le calcium se combine avec des ions sulfate pour former des minéraux solides qui précipitent dans l’eau. Le fer est également susceptible de former divers minéraux, ce qui explique les teintes jaunâtres du lac.
Les réactions complexes entre les gaz et les roches environnantes expliquent pourquoi l’eau du lac dans l’Halema’uma’u est chimiquement différente de la nappe phréatique au fond d’un puits de recherche situé au sud de Halema’uma’u et aussi de l’eau de pluie. Les tests effectués sur l’oxygène et l’hydrogène qui forment les molécules d’eau révèlent que l’eau du lac était à l’origine une eau de pluie qui a percolé dans le sous-sol où sa chimie a évolué.
Le niveau du lac au fond de l’Halema’uma’u continue à s’élever. Le pH actuel reflète un équilibre entre les eaux souterraines qui y pénètrent et le niveau des émissions de SO2 en provenance du sous-sol. Si le niveau du lac se stabilise ou si la quantité de SO2 change, le pH est susceptible de se modifier. Sur le Pinatubo aux Philippines, après l’éruption de 1991, un lac de cratère s’est formé avec un pH presque neutre, mais l’eau est devenue plus acide quand le dégazage de SO2 s’est intensifié, avec l’apparition d’une activité volcanique ultérieure.
Les analyses chimiques confirment que le lac au fond du cratère de l’Halema’uma’u dissout le SO2 d’origine magmatique. Cela signifie que les niveaux d’émission de SO2 mesurés par le HVO (environ 30 tonnes par jour) sous-estiment le SO2 émis globalement par le Kilauea. Sans le lac, les émissions de SO2 au sommet du volcan seraient probablement plus élevées. Cette découverte est importante car un niveau d’émission de SO2 en hausse peut indiquer la présence de magma à faible profondeur.  .
Source: HVO.

———————————————

As expected, HVO recently sampled the Halema‘uma‘u water lake at the bottom of Kilauea’s summit crater. The water has risen about 90 centimetres per week since first spotted on July 25th, 2019. Initially, HVO was limited to remote observations of lake size, colour, and surface temperature. As the lake grew, HVO began formulating a plan to sample the water. Indeed, the lake’s chemistry could reveal where the water was coming from and what it might mean for degassing and potential hazards at Kilauea’s summit.

It was decided that a UAS was the best option for sampling. On October 26th, a drone successfully collected about 0.73 litres of water from the lake. The sample was then shipped to mainland USGS laboratories for sophisticated analyses.

Results thus far indicate an acidic lake, with a pH of 4.2 (neutral is pH 7). Interestingly, most volcanic crater lakes have a pH of less than 3.5 (more acidic) or higher than 5 (less acidic), which places the Halema’uma’u lake in the midddle range.

Mathematical modelling performed prior to the lake’s appearance predicted that groundwater could flow into Halema‘uma‘u once the area had cooled enough after the 2008-18 lava lake drained away. So, it was not entirely a surprise when water began to pond in the crater.

But, it’s important to note that Halema‘uma‘u is where most summit sulfur dioxide (SO2) degassing takes place, and that SO2 dissolves readily in water.

As water flows underground toward the now-cooling crater, it dissolves SO2 rising from magma below. This leads to high concentrations of sulfate ions in the lake (53,000 milligrams per liter) and a tendency towards a more acidic pH.

However, that acidic water reacts chemically with Kilauea’s basaltic rock, which makes the lake less acidic (raises the pH) and results in high concentrations of magnesium in the water. The ratios of magnesium to sodium and of sodium to potassium in the lake water are similar to those ratios in Kilauea’s basalt, which is further evidence of chemical reactions between the water and rocks.

Calcium concentrations are not very high in the water sample; calcium is instead combining with sulfate ions to form solid minerals that precipitate from the water. Iron is also likely forming various minerals, contributing to the lake’s yellowish colours.

Complex gas/rock reactions result in Kilauea’s lake water being chemically different from groundwater in a research well south of Halema‘uma‘u and from rainwater. Testing of oxygen and hydrogen that form the water molecules indicate that the lake water was originally rain that percolated into the subsurface where it became groundwater and the chemistry changed.

The Halema’uma’u lake is still rising. The current pH reflects the balance between incoming groundwater and the degree of SO2 degassing from below. If the lake level stabilizes, or the amount of SO2 changes, the pH may also change. At Mount Pinatubo (Philippines), after the 1991 eruption, a crater lake formed with a nearly-neutral pH but became more acidic with increased SO2 degassing and later volcanic activity.

Chemical analyses confirm that the Halema’uma’u crater lake dissolves magmatic SO2. This implies that HVO’s measured SO2 emission rates (about 30 tonnes per day) underestimate the total outgassed SO2 at Kilauea. Without the lake, SO2 emissions from the summit would likely be higher. This finding is important given that an increasing SO2 emission rate can indicate shallowing magma.

Source : HVO.

Le lac acide au fond du cratère de l’Halema’uma’u (Crédit photo: HVO)

Eruption du Kilauea en 2018 : Le dyke de la Lower East Rift Zone

Même si l’éruption dans la Lower East Rift Zone (LERZ) du Kilauea est terminée depuis environ un an, de la vapeur s’échappe du sol dans de nouveaux endroits ou réapparaît dans d’autres. De plus, la végétation continue de mourir en raison de la chaleur et de la vapeur qui persistent dans les zones fracturées. Certains habitants redoutent la poursuite ou la réapparition d’une nouvelle activité volcanique, car ils perçoivent en permanence la chaleur, la vapeur et les odeurs dans la zone de l’éruption.

Dans un article récent, le HVO a donné des explications sur la profondeur possible du dyke à l’origine de l’éruption de 2018 dans la LERZ. En géologie, un dyke est une structure tabulaire allongée parallèle à la zone de rift. Elle est alimentée par le magma en provenance des profondeurs dans la partie centrale de la zone de rift.
Entre le 5 et le 7 mai 2018, alors que les fractures 7 à 12 s’ouvraient dans les Leilani Estates, le revêtement de la Highway 130 s’est fissuré et a commencé à s’affaisser. La zone a immédiatement été envahie par des nuages très denses de vapeur et de SO2.
Lorsque le magma pénètre dans un dyke, il fait s’écarter les roches environnantes pour atteindre la surface. Cela fait s’affaisser le sol directement au-dessus du dyke et se soulever le sol situé de part et d’autre.
Tandis que le dyke continue de se déplacer vers la surface, l’affaissement au-dessus progresse et forme une dépression linéaire avec des parois bien définies. C’est ce que les géologues appellent un graben. En 2018, la Highway 130 a connu un affaissement, mais aucun graben ne s’est formé en travers de la route.
Dès que la Highway 130 s’est affaissée et que l’on a observé une augmentation des émissions de chaleur et de gaz, les équipes du HVO sur le terrain ont dénombré 10 fractures majeures en train de s’ouvrir sur la route. L’extension maximale mesurée sur ces 10 fractures a été de 21,5 centimètres sur deux jours. Les géologues n’ont plus été en mesure de continuer à mesurer la largeur des fractures car des plaques d’acier ont été disposées sur les fractures pour maintenir la route ouverte et permettre aux véhicules de circuler.
L’affaissement de la route et l’apparition de fractures, ainsi que l’augmentation des émissions de chaleur et de gaz, signifiaient que le magma remontait vers la surface sous la Highway 130. Parallèlement, de nouvelles fractures se sont ouvertes à proximité de la route.
Même si les fractures étaient dissimulées par les plaques d’acier, les géologues du HVO ont eu recours à d’autres moyens pour déterminer ce qui se passait sous la route. L’affaissement du sol au niveau de la Highway 130 et dans les terrains environnants a fourni aux scientifiques des informations précieuses sur la localisation du magma.
Les volcanologues procèdent depuis des décennies à des calculs théoriques sur la déformation du sol autour d’un dyke. Les modélisations déjà effectuées montrent que la distance horizontale entre deux sections de sol surélevées au-dessus d’un dyke est directement liée à la profondeur du dyke sous la surface du sol.
Sur la Highway 130, le sol s’est légèrement surélevé dans la zone des fractures 3 et 8, distantes d’environ 100 mètres. Entre ces deux fractures, le sol s’est affaissé. La fracture 5 se trouvait au milieu de l’affaissement, à environ 50 mètres de la fracture 8 au nord et de la fracture 3 au sud.
En utilisant le modèle susmentionné, on peut déterminer à quelle distance le magma s’est approché de la surface là où la Highway 130 s’est fracturée et affaissée en 2018. Sur la base d’une distance de 100 mètres entre les parties surélevées de part et d’autre de la zone d’affaissement, le bord supérieur du dyke devait se situer entre 50 et 100 mètres environ sous la route.
Heureusement, la partie du dyke située sous la Highway 130 n’a pas eu assez d’énergie pour atteindre la surface. Maintenant que la partie supérieure du dyke est probablement solidifiée, le magma de 2018 situé juste sous la surface de la route et des terrains environnants restera en place sous forme de roche dans le sol.

Source : USGS / HVO.

———————————————–

Even though Kilauea Volcano’s Lower East Rift Zone (LERZ) eruption has been over for about a year, steam continues to appear in new places or reappear in old places, and vegetation continues to die because of lingering heat and steam in areas of the 2018 fissures. Some residents are concerned about continuing, or potentially new, volcanic activity because they are feeling, seeing and smelling the heat, steam and odours that remain in the area.

In a recent article, USGS HVO examined how deep the intrusive body of magma – or dike – that fed the 2018 LERZ eruption might be. Geologists define a dike as an elongated, tabular body that runs parallel to the rift zone. It is fed by magma from deeper within the rift zone core.

Between May 5th and 7th, 2018, when fissures 7 through 12 were opening in the Leilani Estates, the pavement on Highway 130 cracked and began to sag. As it did, the area was immediately engulfed in steam and SO2 gas, so much so that you could not see across the road.

As magma rises in a dike, it pushes the surrounding rock apart to reach the surface. This causes the ground directly above the dike to sink and ground on either side of the dike to lift.

As a dike continues moving toward the surface, the sagging above it can progress to form a linear depression with well-defined walls, a feature that geologists call a graben. In 2018, Highway 130 experienced sagging, but a graben did not form across the road.

As soon as Highway 130 sagged and increased heat and gas were observed, HVO field crews numbered 10 major cracks opening across the road. The total extension measured across these 10 cracks was 21.5 centimetres over two days. Geologists were later unable to continue measuring crack widths when steel plates were placed on top of them to keep the road open and allow the safe flow of traffic.

Sagging and cracks in the road, as well as increased heat and gas output, meant that magma was rising closer to the surface under Highway 130. At the same time, new fissures were opening closer to the highway.

Although steel plates concealed the growing cracks, HVO geologists had other ways to determine what was happening below the road. Sagging ground on Highway 130 and in neighbouring properties provided valuable information about where the magma was located.

Theoretical calculations of ground deformation around a dike have been known to volcanologists for decades. Previous modelling shows that the horizontal distance between two uplifted sections of ground above a dike is directly related to dike depth below the surface.

On Highway 130, the ground rose slightly in the area of cracks 3 and 8, which were about 100 metres apart. Between those two cracks, the ground sagged. Crack 5 was in the middle of the sag, about 50 metres from crack 8 to the north and crack 3 to the south.

Using the aforementioned model, one can determine how close magma came to reaching the surface where Highway 130 cracked and sagged in 2018. Based on a 100-metre distance between uplifts on either side of the down-dropped area, the upper edge of the dike must be only about 50 to 100 metres below the highway.

Thankfully, the portion of the 2018 dike below Highway 130 did not have enough energy to reach the surface. Now that the uppermost dike is probably solidified, the 2018 magma just below the surface of the highway and neighbouring properties will remain frozen in the ground as solid rock.

Source: USGS / HVO.

Le 10 mai 2018, la Highway 130 s’est fracturée, avec des émissions de vapeur, suite à l’intrusion du dyke dans la LERZ. Les deux tréteaux orange et blanc se trouvent sur des zones légèrement surélevées de la route, distantes d’environ 100 mètres. À mi-chemin entre les zones surélevées, la route est en train de s’affaisser à cause de l’intrusion magmatique en dessous. (Crédit photo: USGS)

Dykes déchaussés par l’érosion sur les berges de Crater Lake (Etats Unis) [Photo: C. Grandpey]

Exploration sous-marine de la côte sud d’Hawaii // Submarine exploration of the southern coast of Hawaii

Alors que les scientifiques français se plaignaient du manque de moyens pour explorer le volcan sous-marin au large des côtes de Mayotte, des chercheurs américains se trouvaient à bord du navire de recherche Rainier de la NOAA pour explorer la côte sud de la Grand Ile d’Hawaii. Ils ont pu observer et analyser les conséquences de l’arrivée de la lave dans l’océan lors de l’éruption du Kilauea en 2018. Le Rainier fait partie d’une flotte dont la mission est d’étudie la bathymétrie des eaux côtières autour des États-Unis. Les relevés permettent de mettre à jour les cartes marines et divers documents numériques destinés au commerce et au transport maritime, ainsi qu’à la sécurité de la navigation. Le navire mesure également diverses propriétés de l’eau de mer. Les missions du Rainier s’effectuent principalement en Alaska, mais les conséquences de l’éruption de 2018 l’ont conduit à Hawaii. Cette mission a été l’occasion d’observer les deltas de lave formés pendant l’éruption dans la Lower East Rift Zone.

La principale mission de la NOAA étant de maintenir à jour les cartes marines, la côte de Puna au SE de la Grande Ile méritait d’être analysée en raison des changements survenus en 2018. Cependant, l’intérêt de la mission dépasse l’hydrographie. L’observation des pentes sous-marines permet aux volcanologues du HVO à mieux comprendre les processus qui affectent la stabilité du delta de lave nouvellement formé dans la baie de Kapoho, ainsi que d’autres dangers le long du nouveau littoral.
Une étude réalisée en août 2018 par le navire de recherche Nautilus exploité par l’Ocean Exploration Trust, avait déjà fourni une base de référence permettant d’identifier les changements bathymétriques survenus au cours de l’année écoulée.
À l’instar du Nautilus, le Rainier a analysé la bathymétrie à l’aide d’un sondeur multi-faisceau (SONAR) monté sur sa coque. Ce système envoie les ondes acoustiques perpendiculairement à la longueur du navire. Le principe est simple : Les ondes sont envoyées vers le fond de l’océan et remontent vers le navire où un récepteur mesure le temps écoulé. La collecte de millions de mesures de distance permet de construire un DEM (Digital Elevation Model) modèle numérique du relief sous-marin. En comparant le nouveau DEM du Rainier à celui obtenu l’année dernière avec le Nautilus, les volcanologues sont en mesure de voir quelles parties du delta de lave sous-marin sont les plus fragiles, et donc susceptibles de s’affaisser ou de s’effondrer. Par ailleurs, la comparaison d’images satellite récentes avec les cartes des coulées de lave de 2018 révèle que certaines des nouvelles côtes ont déjà reculé de plusieurs dizaines de mètres. Des changements similaires pourraient donc se produire sous la surface de l’océan.
Le traitement et la publication du nouvel ensemble de données prendront un certain temps. Cependant, alors que le Rainier était ancré au large des côtes hawaiennes, les volcanologues du HVO ont pu monter à bord et  repérer des détails intéressants au niveau du littoral submergé le long des deltas de 2018, y compris un chenal de lave, aujourd’hui inactif. Des discussions avec l’équipage du navire ont permis d’identifier plusieurs zones intéressantes pour y effectuer des investigations bathymétriques.
Source: USGS.

——————————————-

While French scientists were complaining about the lack of means for the exploration of the submarine volcano off the coasts of Mayotte, Americans researchers were on board the NOAA research ship Rainier to explore the southern coast of Hawaii Big island. They could observe and analyse the consequences of the arrival of lava in the ocean during the 2018 Kilauea eruption. The Rainier is part of a fleet that surveys the bathymetry of coastal waters around the United States. The surveys are used to update nautical charts and various digital products in support of marine commerce and transportation, as well as navigation safety. The ship also measures various properties of the ocean water. The Rainier works primarily in Alaska, but the aftermath of the 2018 eruption brought it to Hawai‘i. The journey provided a special opportunity to re-survey the lava deltas formed during the Lower East Rift Zone eruption.

Because NOAA’s core mission is to maintain up-to-date nautical charts, the Puna coast became an important objective given the changes that occurred there in 2018. However, interest in the data goes beyond hydrography. Views of the submarine slopes help HVO volcanologists to better understand ongoing processes that affect the stability of the newly-formed lava delta in Kapoho Bay, along with other hazards along the new coastline.

An August 2018 survey by the Exploration Vessel Nautilus, operated by the Ocean Exploration Trust, provides a baseline to identify bathymetric changes over the past year.

The Rainier, like the Nautilus, surveys bathymetry using a multibeam echosounder (SONAR) mounted to its hull. This system transmits acoustic waves in a fan along the beam of the ship, perpendicular to the ship’s length. As these waves reflect off the ocean floor and back to the ship, a highly-sensitive receiver measures the time that has passed.

Collecting millions of distance measurements allows for the construction of a submarine Digital Elevation Model (DEM). By comparing the new DEM from the Rainier with last year’s DEM from the Nautilus, it will be possible for volcanologists to see which parts of the submarine lava delta are subsiding. Comparisons of recent satellite images with 2018 lava flow maps have suggested that some of the new coastline has already retreated by tens of metres, so similar changes might be expected below the waves.

Full processing and publication of the new dataset will take some time. However, while the Rainier was anchored offshore, HVO’s volcanologists came on board and could spot various submarine features along the 2018 deltas, including a possible lava channel, now inactive. Discussions with the ship’s crew identified several target areas for further bathymetric investigation.

Source : USGS.

L’arrivé de la lave fragilise le littoral hawaiien (Photo: C. Grandpey)