Eruption du Sangay (Equateur / Ecuador)

Selon l’Instituto Geofisico de l’Équateur, un fort épisode éruptif a été observé sur le Sangay le mardi 9 juin 2020, avec une colonne de cendres qui s’est élevée jusqu’à 7 km d’altitude. Des retombées de cendres ont été observées dans plusieurs provinces et le trafic aérien a été perturbé. Plusieurs routes ont été fermées en raison de l’épaisse couche de cendre. Les habitants de la région, en particulier à Guayaquil,  ont été invités à porter des masques pour éviter les problèmes respiratoires et continuer à se protéger contre le coronavirus. En mars et avril, l’épidémie a été particulièrement sévère; les services de santé ont été débordés et il a fallu récupérer les personnes décédées à l’intérieur des habitations. Par bonheur, la situation s’est bien améliorée.
L’Instituto Geofisico indique que des coulées pyroclastiques ont dévalé le flanc sud-est du volcan. Le 9 juin au soir, le nuage de cendres s’étirait sur 400 km
Le Sangay a commencé à entrer en éruption en mai 2019. On observe en général des coulées de lave ainsi que des émissions de gaz et de cendres.
Source: Instituto Geofisico.

————————————————-

According to Ecuador’s Institut Geofisico, a strong eruptive episode occurred at Sangay volcano on Tuesday, June 9th, 2020, with an ash column that that rose up to 7 km above sea level. Ashfall was observed in several provinces and air traffic was disrupted. Several roads were closed due to heavy ashfall. Residents living in affected regions, especially in Guayaquil, were advised to wear masks to avoid respiratory problems but also as a protection against coronavirus. Guayaquil in March and April suffered one of the region’s worst coronavirus outbreaks, which overwhelmed the health system and forced authorities to collect corpses in homes. Fortunately, the spread of the disease has now slowed significantly.

The Instituto Geofisico indicated that pyroclastic flows travelled down the southeastern flank of the volcano.On June 9th in the evening, the volcanic ash cloud was drifting over 400 km

Sangay started erupting in May 2019. The activity is characterized by the generation of lava flows as well as gas and ash emissions.

Source : Instituto Geofisico.

Panache de cendre du Sangay le 9 juin 2020 au matin vu depuis le flanc sud du Chimborazo (Crédit photo : Instituto Geofisico)

18 mai 1980, le jour où le Mont St Helens a explosé (2ème partie) // May 18th, 1980, the day when Mount St Helens exploded (part 2)

Comme je l’ai écrit dans ma note du 28 avril 2020 consacrée à l’éruption du Mont St Helens en 1980, un renflement impressionnant est apparu dès le début du mois d’avril sur le flanc nord du volcan. En une semaine, le cratère avait atteint environ 400 m de diamètre et deux systèmes de fractures impressionnantes cisaillaient toute la zone sommitale. Des épisodes éruptifs se produisaient à raison d’un événement en moyenne en mars et environ un par jour le 22 avril 1980, lorsque prit fin la première période d’activité.

Crédit photo : USGS

De petites séquences éruptives ont repris le 7 mai et se sont poursuivies jusqu’au 17 de ce mois. À ce moment-là, plus de 10 000 séismes avaient été enregistrés sur le volcan et le flanc nord avait gonflé d’environ 140 mètres pour former un renflement proéminent. Dès le début de l’éruption, le renflement a progressé plus ou moins horizontalement, à raison d’environ 2 mètres par jour. Il était clair du magma s’élevait à l’intérieur du volcan. En fait, sous le renflement visible en surface se cachait un cryptodôme, autrement dit une intrusion magmatique qui n’avait pas encore percé la surface.

Sans signes précurseurs, un séisme de magnitude M 5,1 a secoué le volcan à 8 h 32 le 18 mai 1980 et s’est accompagné d’une série rapide d’événements. En même temps que le séisme, le renflement sur le flanc nord et le sommet du volcan ont glissé pour donner naissance à un énorme glissement de terrain d’une taille encore jamais observée sur Terre. Un petit panache éruptif sombre et riche en cendre est apparu directement à la base de l’escarpement formé par l’avalanche de débris, tandis qu’un autre s’échappait du cratère sommital et montait jusqu’à environ 200 m de hauteur. Une partie de l’avalanche de débris s’est dirigée vers les crêtes au nord, mais la plus grande partie s’est dirigée vers l’ouest et s’est engagée sur 23 km dans la vallée de la North Fork Toutle River où elle a déposé des hummocks, reliefs de plusieurs dizaines de mètres de hauteur, que l’on peut encore observer aujourd’hui. Le volume de matériaux transportés par les avalanches est estimé à environ 2,5 km3.

Crédit photo : USGS

Photo : C. Grandpey

 Le glissement de terrain a fait disparaître le flanc nord du Mont St. Helens, y compris une partie du cryptodôme qui s’était formé à l’intérieur du volcan. La disparition du cryptodôme a entraîné une dépressurisation soudaine du système magmatique et déclenché un blast – de puissantes éruptions latérales – qui a arraché la partie supérieure du cône sur 300 mètres de hauteur. Lorsque ce blast a dépassé l’avalanche de débris mentionnée précédemment; il a accéléré pour atteindre une vitesse d’au moins 480 kilomètres à l’heure. En quelques minutes, un nuage éruptif a commencé à s’élever de l’ancien cratère sommital et a atteint en moins de 15 minutes une hauteur de plus de 24 km.

Crédit photo : USGS

Le blast a dévasté une zone sur près de 30 km d’ouest en est et sur plus de 20 km au nord de l’ancien sommet. Dans une zone s’étendant à une dizaine de kilomètres du sommet, il ne restait pratiquement plus d’arbres de ce qui était autrefois une belle forêt dense. Juste au-delà de cette zone, tous les arbres sur pied ont été projetés au sol, brisés comme des allumettes. A la limite extérieure de l’éruption, les arbres ont été complètement brûlés sur pied. La zone dévastée de 600 km2 a été recouverte d’un dépôt de matériaux chauds propulsés par l’explosion.

Troncs d’arbres sur le Spirit Lake

(Photos : C. Grandpey)

En disparaissant, le cryptodôme et le flanc du volcan ont mis à l’air libre le conduit d’alimentation du Mont St. Helens, entraînant une énorme libération de pression. Cette brutale dépressurisation dans le conduit éruptif a permis au magma de se précipiter vers l’extérieur. Moins d’une heure après le début de l’éruption, la dépressurisation dans le conduit éruptif a déclenché une éruption plinienne qui a envoyé un énorme panache de tephra dans l’atmosphère. Des coulées pyroclastiques en provenance du cratère ont dévalé la pente du volcan  à 80 – 130 km / h et se sont propagées jusqu’à 8 km au nord.
Cette phase plinienne s’est poursuivie pendant 9 heures, avec une très haute colonne étuptive, de nombreuses coulées pyroclastiques et des retombées de cendres dans les zones sous le vent. À la fin de la phase plinienne, un nouvel amphithéâtre de 1,9 x 2,9 km, orienté vers le nord, était apparu au sommet du volcan.

Crédit photo : USGS

Au cours de la journée, les vents dominants ont emporté la cendre vers l’est, à travers les Etats-Unis. Une obscurité totale a envahi Spokane,  dans l’Etat de Washington, à 400 km du volcan. Des retombées de cendres importantes ont été observées jusque dans le centre du Montana, avant d’atteindre les grandes plaines du centre des États-Unis, à plus de 1 500 km. Le nuage de cendres a traversé les États-Unis en trois jours et a fait le tour de la Terre en 15 jours.
Source: USGS.

————————————————-

As I put it in my post of 28 April 2020, an impressive bulge had appeared on the north flank of Mount St Helens. Within a week the crater had grown to about 400 m in diameter and two giant crack systems crossed the entire summit area. Eruptions occurred on average from about 1 per hour in March to about 1 per day by April 22nd, 1980 when the first period of activity ceased.

Small eruptions resumed on May 7th and continued to May 17th. By that time, more than 10,000 earthquakes had shaken the volcano and the north flank had grown outward about 140 m to form a prominent bulge. From the start of the eruption, the bulge grew outward, nearly horizontally, at consistent rates of about 2 metres per day. It was clear that magma had risen high into the volcano. In fact, beneath the superficial bulge was a cryptodome that had intruded into the volcano’s edifice, but had yet to erupt on the surface.

With no immediate precursors, a magnitude M 5.1 earthquake occurred at 8:32 a.m. on May 18th, 1980 and was accompanied by a rapid series of events. At the same time as the earthquake, the volcano’s northern bulge and summit slid away as a huge landslide. A small, dark, ash-rich eruption plume rose directly from the base of the debris avalanche scarp, and another from the summit crater rose to about 200 m high. The debris avalanche swept around and up ridges to the north, but most of it turned westward as far as 23 km down the valley of the North Fork Toutle River and formed a hummocky deposit. The total avalanche volume is about 2.5 km3.

The landslide removed Mount St. Helens’ northern flank, including part of the cryptodome that had grown inside the volcano. The removal odf the cryptodome resulted in immediate depressurization of the volcano’s magmatic system and triggered powerful eruptions that blasted laterally and removed the upper 300 m of the cone. As this lateral blast of hot material overtook the debris avalanche; it accelerated to at least 480 kilometres per hour. Within a few minutes, an eruption cloud of blast tephra began to rise from the former summit crater. Within less than 15 minutes it had reached a height of more than 24 km.

The lateral blast devastated an area nearly 30 km from west to east and more than 20 km northward from the former summit. In an inner zone extending nearly 10 km from the summit, virtually no trees remained of what was once dense forest. Just beyond this area, all standing trees were blown to the ground, and at the blast’s outer limit, the remaining trees were thoroughly seared. The 600 km2 devastated area was blanketed by a deposit of hot debris carried by the blast.

Removal of the cryptodome and flank exposed the conduit of Mount St. Helens, resulting in a release of pressure on the top of the volcano’s plumbing system. This caused a depressurization wave to propagate down the conduit to the volcano’s magma storage region, allowing the pent-up magma to expand upward toward the vent opening. Less than an hour after the start of the eruption, this loss of conduit pressure initiated a Plinian eruption that sent a massive tephra plume high into the atmosphere. Pyroclastic flows poured out of the crater at 80 – 130 km/hr and spread as far as 8 km  to the north.

The Plinian phase continued for 9 hours producing a high eruption column, numerous pyroclastic flows, and ashfall downwind of the eruption. When the Plinian phase was over, a new northward opening summit amphitheater 1.9 x 2.9 km across was revealed

Over the course of the day, prevailing winds blew the ash eastward across the United States and caused complete darkness in Spokane, Washington, 400 km from the volcano. Major ashfalls occurred as far away as central Montana, and ash fell as far eastward as the Great Plains of the Central United States, more than 1,500 km away. The ash cloud spread across the U.S. in three days and circled the Earth in 15 days.

Source : USGS.

Le Mont St Helens aujourd’hui (Photos : C. Grandpey)

Semeru & Ibu (Indonésie)

Une puissante séquence éruptive a eu lieu vers 12h25 (UTC) sur le Semeru (Indonésie) le 16 mai 2020. Le panache de cendre est monté jusqu’à 14 km d’altitude.
Un bref épisode éruptif a été observé ce même jour sur le mont Ibu (île de Halmahera / Indonésie) à 9h20 (UTC).
La couleur de l’alerte aérienne est passée au Rouge sur les deux volcans.
Source: The Watchers, VAAC Darwin)

——————————————-

 A significant eruption took place at about 12:25 (UTC) at Semeru (Indonesia) on May 16th, 2020. It ejected ash up to 14 km a.s.l.

A short-lived eruption was observed that same day on Mt Ibu (Halmahera Island / Indonesia) at 09:20 (UTC).

The Aviation Colour Code was raised to Red on both volcanoes.

Source : The Watchers, Darwin VAAC)

Panache de cendre sur le Semeru (Photo: C. Grandpey)

 

Klyuchevskoy (Kamchatka)

Le KVERT indique qu’une éruption explosive modérée est en cours sur le Klyuchevskoy (Kamchatka). Le 18 avril 2020, une coulée de lave a été observée sur le flanc sud-est du volcan. Le panache de cendre s’étendait sur une centaine de kilomètres vers le NE du volcan et s’élevait à 5,5 km au-dessus du niveau de la mer.
Comme d’habitude, le KVERT prévient que l’activité du Klyuchevskoy peut perturber le trafic aérien.
La couleur de l’alerte aérienne reste Orange

————————————–

KVERT indicates that a moderate explosive eruption is under way at Klyuchevskoy (Kamchatka). On April 18th, 2020, a lava flow was observed on the southeastern flank of the volcano. An ash plume was extending about 100 km to the NE of the volcano and rising up to 5.5 km above sea level.

As usual, KVERT warns that Klyuchevskoy’s ongoing activity could disturb air traffic.

The Aviation Color Code remains Orange

Episode éruptif sur le Klyuchevskoy le 18 avril 2020 (Crédit photo : KVERT)

Coulée de lave sur le flanc SE du Klyuchevskoy sue par le satellite Copernicus EU/Sentinel-2 le 19 avril 2020. .

Il y a 10 ans, l’Eyjafjallajökull… // Ten years ago, Eyjafjallajökull…

Aujourd’hui, les avions sont cloués au sol à cause de la pandémie de COVID-19. Il y a dix ans à la même époque, ils ne pouvaient pas voler à cause d’une éruption volcanique. Elle s’est produite sous Eyjafjallajökull, un glacier qui recouvre un volcan – l’Eyjafjöl – dans le sud de l’Islande. Avant cela, le 20 mars; 2010, une activité éruptive avait commencé à proximité, dans le Fimmvörðuháls, entre les glaciers Eyjafjallajökull et Mýrdalsjökull. L’éruption sous l’Eyjafjallajökull s’est poursuivie jusqu’au 22 mai et a connu un succès planétaire.
Pendant des jours, tout le trafic aérien en Europe a été réduit à néant, avec des milliers de passagers en perdition. Après l’événement, des promesses ont été faites concernant le contrôle de la cendre dans le ciel afin d’éviter que se reproduise un tel chaos. Plusieurs expériences ont même été réalisées ; certains systèmes ‘renifleurs de cendre’ ont été testés sur certains avions, mais aujourd’hui la situation ne s’est guère améliorée et elle reste plus ou moins au point mort. Si une nouvelle éruption du même type que celle de 2010 se produit en Islande, le problème sera le même pour les compagnies aériennes. Lorsque le mont Agung est entré récemment en éruption sur l’île de Bali (Indonésie), le trafic aérien a été sévèrement perturbé par les nuages ​​de cendre vomis par le volcan. En particulier, de nombreux vols ont été annulés en provenance et à destination de l’Australie.
En 2014, au moment de l’éruption islandaise dans Holuhraun, je voyageais vers l’ouest des États-Unis à bord d’un Boeing de la British Airways et l’avion est passé à proximité des côtes islandaises. Je pouvais voir au loin la couche noirâtre de fumée causée par l’éruption. J’ai demandé au steward si le pilote savait qu’il y avait une éruption en cours en Islande. Quelques minutes plus tard, le pilote (ou copilote?) est venu me voir et m’a demandé ce qui se passait. Il avait vu le nuage sombre au loin mais ne savait pas qu’une éruption avait lieu en Islande. Il m’a également dit qu’il n’y avait pas de système de détection de cendre à bord de son aéronef.
L’activité éruptive de 2010 en Islande a certainement permis aux compagnies aériennes de comprendre comment la cendre volcanique se propage à haute altitude et comment elle affecte le trafic aérien, mais ça s’arrête là!
L’éruption de 2010 a profondément affecté le tourisme en Islande. L’année précédant l’éruption, le pays avait accueilli 500 000 touristes étrangers et, afin d’empêcher un déclin dans ce secteur, un projet baptisé Inspired by Iceland a été mis sur pied. Son objectif était de profiter de l’engouement que l’éruption avait suscité. Fin 2010, 488 000 touristes étrangers avaient voyagé en Islande. Les années qui ont suivi ont vu une explosion importante du tourisme. Malheureusement, la pandémie de COVID-19 a brutalement mis un frein à cette tendance.
Source: Islande Review.

————————————————-

Today, planes are grounded because of the COVID-19 pandemic. Ten years ago they could not fly because of a volcanic eruption. It began in a crater under the ice cap of Eyjafjallajökull glacier, South Iceland. Prior to that, on March 20th; 2010, an eruption had begun in the nearby Fimmvörðuháls, between Eyjafjallajökull glacier and Mýrdalsjökull glacier. The eruption in Eyjafjallajökull continued until May 22nd, attracting world attention.

For days, all air traffic in Europe was cancelled, affecting passengers worldwide. After the event, promises were made about ash control in the sky in order to avoid a similar air traffic mess in the future. Some experiments were made, some systems were tested on some planes, but today the situation has not much improved. Should a new dirty eruption occur in Iceland, the problem will be the same for air companies. When Mount Agung recently erupted on the island of Bali (Indonesia), air traffic was severely disrupted by the ash clouds spewed by the volcano. In particular, many flights were cancelled to and from Australia.

In 2014, during another Icelandic eruption in Holuhraun, I was travelling to western USA with British Airways and the plane was flying close to Iceland. I could see in the distance a black layer of smoke caused by the eruption. I asked the steward if the pilot knew there was an eruption under way in this country. A few minutes later, the pilot (or co-pilot?) came to see me and asked me what was happening in Iceland. He had seen the dark layer in the distance but had not been warned about the eruption. He also told me that there was no ash detection system on board his plane.

The 2010 eruptive activity in Iceland certainly taught air companies about how volcanic ash spreads at high altitudes and how it impacts air traffic and modern society, but this is all!

The 2010 eruption affected tourism in Iceland in a major way. The year prior to the eruption, the country had received half a million foreign tourists, and in an effort to prevent a decline in that sector, a project called Inspired by Iceland was launched. Its aim was to take advantage of the attention the eruption had created. By the end of 2010, 488,000 foreign tourists had travelled to Iceland. The years that followed saw a major explosion in terms of tourist numbers. Unfortunately, the COVID-19 pandemic has suddenly stopped this tendency.

Source : Iceland Review.

Vue du nuage de cendre islandais en 2010 (Crédit photo: Wikipedia)

Une petite colère de l’Etna (Sicile) // When Mt Etna (Sicily) gets a little angry…

J’ai indiqué ce matin (19 avril 2020) sur Facebook que quelque chose se passait sur l’Etna. Une fontaine de lave était visible sur la webcam thermique de la Montagnola et un panache de cendre sortait du sommet du volcan. Dans le même temps, le tremor montrait une hausse soudaine. La couleur de l’alerte aérienne est passée au Rouge à 07:24 (GMT) et ramenée à l’Orange à 12:26.
L’événement avait pour siège le secteur du cratère sud-est, dans la « selle » entre l’ancien et le nouveau cratère SE. L’INGV indique que le panache de cendre s’est élevé à environ 5 km au-dessus du niveau de la mer avant de dériver vers l’est. De petites retombées ont été signalées à Zafferana Etnea.
Il semble que la situation soit redevenue normale ce soir.

————————————–

 I indicated this morning (April 19th, 2020) on Facebook that something was happening on Mt Etna. A lava fountain could be seen on the Montagnola thermal webcam and an ash plume was coming out of the summit of the volcano. Meantime, the tremor was showing a sudden sharp increase. The Aviation Color Code was raised to Red at 07:24 UTC and lowered back to Orange at 12:26 UTC.

The event had taken place in the area of the Southeast Crater, in the Saddle between the old an new SE Craters. INGV indicates that the ash plume rose to about 5 km above sea level and drifted to the east. Minor asfall was reported in Zafferana Etnea.

It looks as if everything has gone back to normal this evening.

Source: INGV

Si le Mont Fuji (Japon) entrait en éruption… // If Mt Fuji (Japan) erupted…

Des articles récents parus dans la presse japonaise ont attiré l’attention sur la situation du Mont Fuji dont la dernière éruption remonte à 1707. Elle est connue sous le nom d’éruption Hoei, du nom de l’ère japonaise à cette époque. Le volcan a émis une énorme quantité de cendres volcaniques que le vent a transportées jusqu’à la ville de Tokyo aujourd’hui.

Dans un article publié en janvier 2020, les scientifiques nippons ont déclaré que la date précise de la prochaine éruption du Mont Fuji était imprévisible, mais beaucoup pensent que le prochain événement majeur aura lieu dans un proche avenir. En effet, plus de 300 ans se sont écoulés depuis la dernière éruption. C’est un laps de temps beaucoup plus long que l’intervalle précédent d’environ 200 ans.
Les volcanologues japonais rappellent que le Mont Fuji a été ébranlé par le puissant séisme qui a frappé la région de Tohoku en 2011 et qu’il est devenu plus instable qu’auparavant.
Si le volcan entrait à nouveau en éruption, il pourrait y avoir des retombées de cendres sur des villes voisines telles que Gotemba, avec de possibles victimes. Il est prévu une perte économique pouvant atteindre 2,5 milliards de yens. Poussée par les vents d’ouest, la cendre pourrait paralyser Tokyo et ses environs. Il y aurait très probablement des pannes d’électricité, des pénuries d’eau et des dysfonctionnements parmi les appareils électroniques ainsi que des perturbations dans les télécommunications. Les trains pourraient également être mis à l’arrêt. Les aéroports seraient obligés de fermer si les pistes étaient recouvertes de cendre. Des problèmes de santé pourraient également survenir avec l’inhalation de cendre par la population.

Dans un autre article de presse publié en mars 2020, les volcanologues japonais expliquent que les coulées pyroclastiques provoquées par l’éruption du Mont Fuji pourraient couper les routes utilisées pour l’évacuation de la population. Il est donc nécessaire de revoir les plans d’évacuation existants. Les nuées ardentes vomies par le volcan pourraient atteindre des distances supérieures de 4 kilomètres à ce qui est prévu dans la région de Fujiyoshida, et de 2 km de plus dans le secteur de Fujinomiya Cette réévaluation du risque signifie que des portions de la route à péage entre Fujiyoshida et Oyama et la Mount Fuji Skyline Road reliant Fujinomiya et Gotemba pourraient être détruites.
La carte à risques actuelle du Mont Fuji a été établie par le gouvernement central en 2004, et le Conseil de gestion des catastrophes doit la mettre à jour au cours de l’exercice 2020 qui commence en avril. La nouvelle carte devrait modifier la taille des coulées pyroclastiques dont le volume devrait passer de 1,4 million à 10 millions de mètres cubes. Cette nouvelle évaluation est faite en prenant en compte la plus grande coulée pyroclastique émise par le volcan au cours des 5 600 dernières années.
De la même façon, les simulations montrent que des coulées de lave provenant de 92 cratères potentiels pourraient atteindre Fujiyoshida et Fujinomiya dans les 24 heures suivant l’éruption, et même la ligne de train à grande vitesse Tokaido Shinkansen et l’autoroute Shin-Tomei qui relie les préfectures de Kanagawa et d’Aichi. .
Le Conseil de gestion des catastrophes a confirmé que quelque 180 éruptions ont été observées sur le Mont Fuji au cours des 5 600 dernières années. 96% étaient petites à moyennes. Environ 60% ont provoqué des coulées de lave, mais les coulées pyroclastiques ne se sont produites que dans 10% des cas.
Source : The Japan Times. .

Vous trouverez les cartes à risques du Mont Fuji à cette adresse. Ci-dessous la carte de la région nord.

https://www.city.fujiyoshida.yamanashi.jp/div/bosai/html/hazard_map/index.html

——————————————-

Recent articles in the Japanese press have drawn attention to the situation of Mount Fuji whose last eruption was in 1707. It is known as the Hoei Eruption, named after the Japanese era at the time. It spewed a massive amount of volcanic ash that were blown all the way to today’s Tokyo.

In an article released in January 2020, experts said the precise timing of Mt Fuji’s next big eruption was unpredictable, but many thought the volcano was on standby for the next major event. More than 300 years have elapsed since the last eruption. It is a very long silence that surpasses the previous interval of around 200 years.

Japanese volcanologists remind the public that Mt Fuji was but shaken by the Great East Japan Earthquake that struck the Tohoku region in 2011, and it has been made more unstable than before.

Should the volcano erupt again, cinders could rain down on parts of nearby cities such as Gotemba in Shizuoka, with potentially life-threatening results. An economic loss of up to 2.5 trillion yen is expected. Pushed by westerly winds, volcanic ash could paralyze Tokyo and its surrounding metropolitan areas.That would wreak havoc on high-tech Tokyo, possibly causing blackouts, water shortages and malfunctions of electronic appliances as well as disrupting telecommunications. Trains might be suspended, too. Airport terminals would be forced to shut down if runways are covered with ash. Health problems might also arise, with the inhalation of ash.

In another press article released in March 2020, Japanese volcanologists explain that pyroclastic flows from Mount Fuji eruption could sever roads used for evacuation. So, there is rhe need to review existing evacuation plans that use the roads. The hot clouds spewed by the volcano could travel some 4 kilometres further than previously thought in Fujiyoshida, Yamanashi Prefecture, and 2 km more in Fujinomiya, Shizuoka Prefecture. The reassessment means that parts of the toll road connecting Fujiyoshida and Oyama, as well as the Mount Fuji Skyline Road connecting Fujinomiya and Gotemba could be destroyed.

The current Mount Fuji hazard map was compiled by the central government in 2004, and the Mount Fuji disaster management council is due to update it within fiscal 2020, which starts in April. The new map is expected to alter the size of pyroclastic flows to 10 million cubic metres from 2.4 million cubic metres after taking into consideration the largest pyroclastic flow that has occurred in the last 5,600 years.

In the same way, simulations show that lava flows from 92 potential crater locations could hit downtown areas of Fujiyoshida and Fujinomiya within 24 hours of the eruption and even reach the Tokaido Shinkansen bullet train line and Shin-Tomei Expressway, which connects Kanagawa and Aichi prefectures.

The council has confirmed some 180 eruptions have occurred at Mount Fuji over the past 5,600 years, with 96 percent considered small- to medium-size in scale. Some 60 percent of the eruptions caused lava flows, but pyroclastic flows only occurred in up to 10 percent of the total cases.

Source; The Japan Times.

Hazard maps of Mt Fuji can be seen at this address. Here below the map fot the northern region.

https://www.city.fujiyoshida.yamanashi.jp/div/bosai/html/hazard_map/index.html

Crédit photo: Wikipedia