Pour une meilleure prévision des séismes et des tsunamis // For a better earthquake and tsunami prediction

Des chercheurs ont conçu un nouvel algorithme capable de décrire avec grande précision un signal gravitationnel provoqué par des séismes. Cela pourrait permettre d’améliorer les systèmes d’alerte précoce concernant les séismes ou les tsunamis.

Les séismes envoient des signaux qui se déplacent à la vitesse de la lumière et peuvent être enregistrés avant les ondes sismiques qui sont relativement lentes. Ces signaux représentent des changements soudains de gravité causés par un déplacement de la masse interne de la Terre. Récemment, ces signaux rapides d’élastogravité (PEGS) ont été suivis dans leurs déplacements par des mesures sismiques. Grâce aux PEGS, il est possible de détecter un séisme très tôt, avant même l’arrivée des ondes sismiques ou des vagues de tsunami destructrices. Cependant, l’effet gravitationnel de ce phénomène est si faible qu’il ne représente que moins d’un milliardième de la gravité de la planète, ce qui signifie que les PEGS peuvent être enregistrés uniquement pour les séismes les plus puissants. De plus, le processus de leur formation est complexe car ils sont non seulement produits directement à la source du séisme, mais également en permanence au moment où les ondes sismiques se déplacent à l’intérieur de la Terre.
Il n’existe pas de méthode exacte capable de simuler la formation des signaux PEGS sur les ordinateurs. Pour la première fois, l’algorithme proposé par les chercheurs du Centre de Recherche allemand GFZ pour les Géosciences est en mesure de calculer les signaux PEGS avec grande précision et plus de facilité. Les chercheurs ont démontré que ces signaux permettent de tirer des conclusions sur la puissance, la durée et le mécanisme des séismes les plus destructeurs.

Un séisme agit brusquement sur les plaques à l’intérieur de la Terre, ce qui entraîne en même temps une modification de la répartition des masses. Ce déplacement des plaques peut atteindre plusieurs mètres lors de puissants séismes. Cependant, chaque séisme produit également des ondes qui modifient la densité des roches et la gravité pendant une courte période. Cette variation de la gravité est la cause du déclenchement des ondes sismiques secondaires.
Les scientifiques du GFZ ont expliqué comment ils ont testé leur nouvel algorithme. Ils l’ont appliqué pour la première fois au séisme de Tohoku au Japon en 2011, qui a également provoqué le tsunami de Fukushima. Dans ce cas, des mesures de la force du signal PEGS étaient déjà disponibles. La cohérence était parfaite. Cela a donné aux chercheurs une base certaine pour la prévision d’autres séismes et la confirmation du potentiel des signaux pour de nouvelles applications.
Les chercheurs ont ajouté qu’en évaluant les changements de gravité à plus grande distance de l’épicentre du séisme, au large des côtes, cette méthode pourrait être utilisée pour déterminer s’il s’agit d’un puissant séisme, avec risque de tsunami. Il reste toutefois un long chemin à parcourir. Les instruments de mesure actuels ne sont pas encore suffisamment sensibles et les signaux d’interférence induits par l’environnement sont trop importants pour que les signaux PEGS soient directement intégrés dans un système opérationnel d’alerte précoce aux tsunamis.

Référence: « Prompt elasto-gravity signals (PEGS) and their potential use in modern seismology » – Zhang, S. et al – Earth and Planetary Science Letters.

Source: The Watchers.

——————————————-

Researchers have proposed a new algorithm that can describe a gravitational signal caused by earthquakes with great accuracy. The procedure could help in improving early warning systems for earthquakes or tsunamis in the future.

Earthquakes send out signals that proliferate at the speed of light and can be recorded before the relatively slow seismic waves. These signals are sudden changes in gravity caused by a shift in the Earth’s inner mass. Recently, these signals called Prompt Elasto-Gravity Signals (PEGS) were tracked by seismic measurements. With the help of PEGS, it is possible to spot an earthquake very early, even prior to the arrival of destructive quakes or tsunami waves. However, the gravitational effect of this phenomenon is so small that it only amounts to less than one-billionth of the planet’s gravity, which means PEGS can only be recorded for powerful earthquakes. Furthermore, the process of their generation is complex as they are not only produced directly at the quake’s source but also persistently as the tremor waves propagate through the Earth’s interior.

There has been no exact method to simulate the generation of PEGS signals on computers. For the first time, the algorithm proposed by researchers from the GFZ German Research Center for Geosciences can calculate PEGS signals with great accuracy and less effort. The researchers were able to present that the signals enable conclusions to be drawn about the strength, duration, and mechanism of very strong earthquakes.

A tremor abruptly changes the rock slabs in the Earth’s interior, thus also shifting the mass distribution in the Earth. This displacement can amount to several meters in powerful earthquakes. However, every tremor also produces waves that change the density of rocks and gravitation for a short time. This oscillating gravity triggers secondary seismic waves.

The scientists at GFZ explained how they tested their new algorithm. They first applied it to the Tohoku quake off Japan in 2011, which was also the cause of the Fukushima tsunami. There, measurements on the strength of the PEGS signal were already available. The consistency was perfect. This gave the researchers certainty for the prediction of other earthquakes and the potential of the signals for new applications.

Researchers added that by evaluating the changes in gravity further from the quake’s epicenter off the coast, this method could be used in the future to identify whether a large earthquake is involved, which could trigger a tsunami. However, there is still a long way to go. Today’s measuring instruments are not yet sensitive enough, and the environmentally induced interference signals are too great for the PEGS signals to be directly integrated into a functioning tsunami early warning system.

Reference: « Prompt elasto-gravity signals (PEGS) and their potential use in modern seismology » – Zhang, S. et al – Earth and Planetary Science Letters.

Source: The Watchers.

 

Répartition dans l’espace de l’intensité du signal PEGS lors du séisme de Tohoku en 2011, peu de temps avant l’arrivée des ondes sismiques primaires. (Source : Zhang

Séismes et éruptions volcaniques // Earthquakes and volcanic eruptions

A l’issue de ma conférence « Volcans et risques volcaniques », les gens me demandent souvent s’il existe un lien entre les séismes et les éruptions volcaniques. Je réponds que dans certaines circonstances, on a cru voir un lien et que, dans d’autres, le lien était loin d’être évident. Cependant, j’insiste sur le fait que la sismicité est présente avant une éruption car le magma provoque une fracturation des roches pendant son ascension et cette fracturation est enregistrée par les sismomètres.
Les séismes d’origine tectonique – provoqués par les mouvements des plaques, en particulier dans les zones de subduction – font partie des phénomènes naturels les plus impressionnants sur Terre. Rien d’étonnant à ce qu’ils soient parfois associés au déclenchement des éruptions volcaniques. Les volcans sont souvent situés dans des régions sismiques comme la célèbre Ceinture de Feu du Pacifique. On y enregistre 90% des séismes et on y rencontre 75% de tous les volcans actifs de la planète. Les éruptions et les tremblements de terre ont souvent lieu à peu près au même moment; Cependant, on ne peut affirmer qu’il existe un lien direct entre un séisme et une éruption qui a eu lieu peu de temps après le premier événement. Le volcan était peut-être déjà sur le point d’entrer en éruption, ou bien il était déjà en éruption depuis longtemps.
Des études récentes laissent supposer qu’il pourrait exister un lien entre les séismes et les éruptions volcaniques dans certaines situations. Par exemple, un article paru en 1993 établit un lien entre un séisme de magnitude M 7,3 en Californie et des manifestations volcaniques et géothermales observées immédiatement après. Une étude publiée en 2012 estime qu’un séisme de magnitude M 8,7 au Japon en 1707 a entraîné la pénétration du magma dans une chambre peu profonde du Mont Fuji et déclenché une puissante explosion du volcan 49 jours plus tard. Le séisme de magnitude M 7,2 survenu le 29 novembre 1975 sur le Kilauea à Hawaii a été rapidement suivi d’une éruption de courte durée.

Cependant, il existe d’autres cas où un séisme majeur n’a pas été suivi d’une éruption. L’un des meilleurs exemples se situe au Japon en 2011. Les scientifiques japonais craignaient que le puissant séisme de Tohoku (magnitude M 9.1) le 11 mars 2011 réveille le Mont Fuji, ce qui ne s’est jamais produit!
A l’heure actuelle, les mécanismes de déclenchement des séismes ne sont pas bien compris, et les documents reliant les tremblements de terre à des éruptions ne s’appuient que sur des spéculations. Il est possible que le timing dans tous les exemples mentionnés ci-dessus soit juste une coïncidence. Les géologues doivent avant tout comprendre le déclenchement des séismes et exclure toute intervention du hasard avant d’établir un lien entre séismes et éruptions.

Parfois, il est fait référence à l’histoire pour montrer la corrélation entre les séismes et les éruptions volcaniques. Un document publié en 2009 a utilisé des données historiques pour montrer qu’il existe une relation entre un séisme de M 8,0 au Chili et un nombre d’éruptions en nette hausse sur certains volcans situés à une distance pouvant aller jusqu’à 500 km. Le problème est que de telles données historiques ne sont pas vraiment fiables. En effet, les grands séismes et les grandes éruptions volcaniques sont des événements relativement peu fréquents, et les scientifiques ne disposent pas d’un recul suffisant. Les archives fiables n’existent que depuis un demi-siècle ou un peu plus, selon les régions.
Dans le passé, les données provenaient de récits de voyages et de journaux de bord assez ambigus. Ainsi, en 1840, Darwin a recueilli des informations fournies par des témoins oculaires et relatives à des modifications mineures survenues sur des volcans chiliens à la suite du puissant séisme de 1836. Au final, en lisant les écrits de Darwin, on ignore si des éruptions ont eu lieu.
Des simulations ont été réalisées en laboratoire en 2016 et 2018 pour tenter de comprendre le comportement du magma dans la chambre magmatique et voir si ce comportement pourrait éventuellement déclencher des séismes. Cependant, aucune corrélation réelle entre les séismes et les éruptions volcaniques n’est ressortie de ces expériences.
Adapté d’un article de 2018 dans le National Geographic.

———————————————–

During my conference “Volcanoes and volcanic risks”, people often ask me whether there is a link between earthquakes and volcanic eruptions. I answer that on some occasions there appears to be some link and in other circumstances the link is far from clear. However, I insist that seismicity is always linked to an eruption and present before the event as magma causes the fracturing of rocks during its ascent and this fracturing is recorded by the seismometers.

Tectonic earthquakes – caused by the movement of plates, especially in subduction zones – are among the most powerful natural phenomena on the planet. It’s no surprise that they are sometimes suspected of being able to trigger volcanic eruptions. Earth’s volcanoes are often located in seismic parts of the world like the well-known Ring of Fire around the Pacific Ocean. This area hosts 90 percent of the world’s recorded earthquakes and 75 percent of all active volcanoes. Eruptions and earthquakes are often taking place at roughly the same time; however, you can’t automatically assume that there’s a connection between a given quake and a subsequent eruption. The volcano may have already been preparing to erupt, or it is already been erupting for a long time.

Recent studies suggest that a connection could potentially exist between earthquakes and volcanic eruptions in certain situations. For instance, a 1993 paper links an M 7.3 quake in California to volcanic and geothermal rumblings immediately afterward. And a 2012 study reckons that an M 8.7 earthquake in Japan in 1707 forced deeper magma up into a shallow chamber, triggering a huge blast at Mount Fuji 49 days later. There was also the M 7.2 earthquake on Hawaii’s Kilauea volcano on November 29th, 1975, which was quickly followed by a short-lived eruption.

However, there are other examples showing that a major earthquake has not been followed by an eruption. One of the best example was in Japan in 19 when Japanese scientists feared the powerful M 9.1 Tohoku earthquake on March 11th, 2011 might wake up Mount Fuji, which it never did!

The triggering mechanisms for earthquakes are not well understood, and papers linking quakes to later eruptions can really only speculate. It is quite possible that the timing in all these examples was just a coincidence. Geologists must understand the specific triggering and rule out chance before a connection can be definitively made.

Sometimes, reference is made to history to show the correlation between earthquakes and volcanic eruptions. A 2009 paper used historical data to show that that M 8.0 quakes in Chile are associated with significantly elevated eruption rates in certain volcanoes as far as 500 kilometres away. The problem is that these sorts of historical data are not really reliable. Indeed, major earthquakes and large volcanic eruptions are both relatively infrequent events, and scientists have only been reliably keeping these records for the last half century or more, depending on the region.

Many data points in the past come from fairly ambiguous news reports and journal entries. For instance, in 1840, Darwin gathered eyewitness information on some minor changes at Chilean volcanoes following the powerful quake there in 1836. However, it is unclear if any eruptions took place.

Simulations were performed in laboratory in 2016 and 2018 to try and understand magma behaves within the chamber and how this behaviour might eventually trigger earthquakes. However, no real correlation between earthquakes and volcanic eruptions came out of these experiments.

Adapted from a 2018 article in the National Geographic.

La Ceinture de Feu du pacifique, une zone sismique et volcanique très active (Source: Wikipedia)

Le Mont Fuji, un volcan sous surveillance (Crédit photo: Wikipedia)