L’éruption du Raikoke vue depuis l’espace // The Raikoke eruption seen from space

Comme je l’ai indiqué précédemment, le Raikoke a connu un bref, mais violent, épisode éruptif le 22 juin 2019. Le volcan, dont le cratère mesure 700 mètres de diamètre, occupe une île de 2 km de diiamètre dans l’archipel des des Iles Kouriles (Russie), entre l’extrémité d’Hokkaido au Japon et de la péninsule russe de Kamtchatka. Les précédentes éruptions du Railoke remontent à 1778 et 1924. La dernière éruption s’est terminée dès le 23 juin.
L’impressionnante colonne de cendre était visible depuis l’espace et a été photographiée par les satellites de la Nasa, de l’ESA, et par les astronautes depuis la Station spatiale internationale (ISS). La colonne éruptive s’est élevée au-dessus des nuages jusqu’à 13 ou 17 km d’altitude selon les sources, jusqu’à la stratosphère où elle a formé une sorte de parapluie, comme l’avait fait le Sarichev il y a une dizaine d’années. C’est la zone où la densité du panache de cendre équivaut à la densité de l’air ambiant. La cendre a ensuite dérivé vers l’est au-dessus de la mer de Béring. En plus de la cendre, le Raikoke a émis un important panache de SO2
Les VAAC de Tokyo et d’Anchorage sont restés très vigilants le temps de l’éruption et ont adressé des mises en garde aux pilotes susceptibles de survoler la région affectée par l’éruption.
Source: NASA.

————————————-

As I put it before, Raikoke had a brief, but violent, eruptive episode on June 22nd, 2019. The volcano, whose crater is 700 metres in diameter, occupies an island 2 km in diameter in the archipelago of the Kuril Islands (Russia), between the tip of Hokkaido in Japan and the Kamchatka Peninsula in Russia. The previous Railoke eruptions date back to 1778 and 1924. The last eruption ended on June 23rd.
The impressive ash column was visible from space and was photographed by NASA, ESA satellites, and astronauts from the International Space Station (ISS). The eruptive column rose above the clouds up to 13 or 17 km altitude depending on the sources, to the stratosphere where it formed a kind of umbrella, as did Sarichev ten years ago. This is the area where the density of ash plume is equivalent to the density of the ambient air. The ash then drifted east over the Bering Sea. In addition to ash, the Raikoke emitted a significant SO2 plume
VAACs in Tokyo and Anchorage remained very vigilant during the eruption and issued warnings to pilots who could fly over the area affected by the eruption.
Source: NASA.

Source: NASA

Eruption du Sarychev le 12 juin 2009 (Crédit photo: NASA)

Le radon de l’Etna (Sicile / Italie) // Radon on Mt Etna (Sicily / Italy)

Les écrits scientifiques expliquent que le radon est un gaz rare, inodore, incolore et sans saveur, produit par la désintégration de l’uranium et du radium présents dans la croûte terrestre et plus particulièrement dans les roches granitiques et volcaniques. D’après les évaluations conduites en France, le radon serait la seconde cause de cancer du poumon, après le tabac et devant l’amiante.

Le Limousin où je réside est une terre majoritairement granitique avec aussi des gisements d’uranium,ce qui explique la présence fréquente de ce gaz.

Si les analyses reflètent une activité volumique moyenne annuelle du radon supérieure à 400 Becquerels par mètre cube (Bq/m3) d’air mais inférieure à 1000 Bq/m3d’air, alors il convient de mettre en œuvre des actions simples pour remédier à cet état de fait. Si les analyses reflètent une activité volumique moyenne annuelle du radon supérieure à 1000 Bq/m3d’air, alors il convient de procéder à un diagnostic du bâtiment. Ce dernier aura pour objectif de définir quels travaux à entreprendre pour abaisser la concentration en radon à moins de 400 Bq/m3 d’air. En dessous de ce seuil, la principale action est d’aérer son logement par l’ouverture des portes et fenêtres pendant une dizaine de minutes au moins matin et soir.

Un article paru dans la presse sicilienne nous apprend que l’Etna produit lui aussi du radon, en particulier au niveau de failles qui tranchent le volcan. Selon le site Catania Today, ces failles représenteraient un triple danger pour les populations: elles génèrent des séismes, fracturent le sol et émettent du radon susceptible de s’accumuler dans les maisons et les rendre insalubres. Une étude, signée par l’INVG, a été publiée dans la revue internationale « Frontiers in Public Health ».
L’INGV analyse le radon depuis de nombreuses années, en particulier sur les flancs de l’Etna où de nombreuses failles fracturent intensément les roches environnantes et augmentent ainsi considérablement leur perméabilité. Cela permet aux fluides et aux gaz présents dans le sous-sol de se déplacer plus facilement dans ces zones fracturées et d’atteindre plus rapidement la surface. Le radon fait partie des gaz qui émergent à la surface.
Pendant trois ans, les données de 12 capteurs ont été enregistrées dans 7 bâtiments situés sur les pentes sud et est du volcan: à Giarre, Zafferana Etnea, Aci Catena, Aci Castello et Paternò. Les capteurs ont détecté des concentrations annuelles moyennes de radon dépassant souvent 100 Bq / m3, une valeur de premier niveau à surveiller pour l’exposition annuelle moyenne recommandée par l’OMS. Dans certains cas, cette concentration moyenne était supérieure à 300 Bq / m3, avec des pics supérieurs à 1 000 Bq / m3. L’étude montre que la concentration est plus élevée dans les habitations proches des failles. En raison du possible problème de santé provoqué par le radon, l’INGV juge « approprié et utile d’approfondir et d’étendre la surveillance » à un plus grand nombre d’habitations.
Source: Catania Today.

———————————————

The scientific literature explains that radon is a rare, odourless, colourless and tasteless gas produced by the decay of uranium and radium present in the earth’s crust and more particularly in granitic and volcanic rocks. According to assessments conducted in France, radon is the second cause of lung cancer, after tobacco and in front of asbestos.
The Limousin where I live is a predominantly granitic ground with also uranium deposits, which explains the frequent presence of this gas.
If the analyses reflect an average annual radon activity greater than 400 Becquerels per cubic metre (Bq / m3) of air but less than 1000 Bq / m3 of air, then simple actions should be taken to remedy this. situation. If the analyses reflect an average annual radon activity of more than 1000 Bq / m3 of air, then a building diagnosis should be carried out. Its purpose will be to define the work to be done to reduce the radon concentration to less than 400 Bq / m3 of air. Below this threshold, the main action is to air the house by opening the doors and windows about 10 minutes at least morning and evening.

An article in the Sicilian press informs us that Mt Etna also produces radon, especially along the faults that slice the volcano. According to the Catania Today website, these faults represent a triple danger for the populations: they generate earthquakes, fracture the ground and emit radon likely to accumulate in the houses and make them unhealthy. A study, signed by INVG, was published in the international journal “Frontiers in Public Health”.

INGV has been analyzing radon for many years, especially on the flanks of Mt Etna, where many faults severely fracture the surrounding rocks and significantly increase their permeability. This allows fluids and gases in the subsoil to move more easily in these fractured areas and reach the surface. Radon is one of the gases that reach the surface.
For three years, data from 12 sensors were recorded in 7 buildings located on the south and eastern slopes of the volcano: in Giarre, Zafferana Etnea, Aci Catena, Aci Castello and Paternò. The sensors detected average annual radon concentrations often exceeding 100 Bq / m3, a first-level value to monitor for the average annual exposure recommended by WHO. In some cases, this average concentration was above 300 Bq / m3, with peaks greater than 1000 Bq / m3. The study shows that the concentration is higher in dwellings close to the faults. Because of the possible health problem caused by radon, INGV deems it « appropriate and useful to deepen and extend surveillance » to a larger number of homes.
Source: Catania Today.

Voici une carte de l’INGV montrant les failles actives de l’Etna. Plus de détails sur cette page (en italien) :

https://emidius.mi.ingv.it/GNDT/P512/UR_UNICT.html

Source: INGV

Ubinas (Pérou) & Bardabunga (Islande)

Ubinas (Pérou):
Un épisode éruptif a été observé sur l’ Ubinas le 24 juin 2019. Il a fait suite à un essaim sismique détecté par les instruments depuis le 21 juin 2019. Les émissions de cendres et de gaz s’élevaient à plusieurs centaines de mètres au-dessus du cratère.
Le niveau d’alerte volcanique est passé de Vert à Jaune.
La dernière activité éruptive de l’Ubinas a eu lieu en mars 2017.
Il convient également de noter que les fortes pluies ont provoqué un important lahar sur l’Ubinas le 6 février 2019. Aucune victime, mais des dégâts importants ont été signalés.
Source: IGP.

Bardarbunga (Islande):
Selon le Met Office islandais, un petit essaim sismique a été détecté à l’ESE du Bardarbunga entre le 21 et le 23 juin 2019. La sismicité s’est ensuite déplacée vers le nord-ouest du volcan le 24 juin, avec des magnitudes de M 3,3 (profondeur de 2,4 km), M3. 4 et M4.1. Aucun tremor volcanique n’a été détecté. Le Met Office prcise qu’il est impossible de savoir si cette activité sismique va se solder par une éruption. « Si une éruption se produit, elle peut intervenir sans prévenir et sans beaucoup d’activité sismique. »
Un essaim sismique semblable a été détecté dans la partie nord de la caldeira du Bardarbunga le 14 juin 2018.
Source: Icelandic Met Office.

————————————–

Ubinas (Peru):
An eruptive episode was observed at Ubinas on June 24th, 2019. It followed a seismic swarm that had been detected by the instruments since June 21st, 2019. Ash and gas emissions rose several hundred metres above the crater.
The volcanic alert level has been raised from Green to Yellow.
The last eruptive activity of Ubinas occurred in March 2017.
It should also be noted that heavy rains triggered a significant lahar over Ubinas on February 6th, 2019. No casualties, but important damage, was reported.
Source: IGP.

Bardarbunga (Iceland):
According to the Icelandic Met Office, a small seismic swarm took place ESE of Bardarbunga between June 21st and 23rd, 2019. The seismicity then shifted NW of the volcano on June 24th, with magnitdes of M 3.3 (depth of 2.4 km), M3.4 and M4.1. No volcanic tremor was detected. The Met Office says is not possible to know if this earthquake activity is going to result in an eruption. « If an eruption happens it might happen without any warning and not a lot of earthquake activity. »
A similar sismic swarm was detected in the northern part of the Bardarbunga volcano caldera on June 14th, 2018.
Source: Icelandic Met Office..

Les leçons de l’éruption du Kilauea en 2018 (Hawaii) // The lessons of the 2018 Kilauea eruption (Hawaii)

Dans une note précédente, j’ai expliqué que les volcanologues du HVO étaient en train d’acquérir de nouvelles informations suite à l’analyse de l’éruption du Kilauea dans la Lower East Rift Zone (LERZ). Un nouvel article de la série Volcano Watch nous apprend que les effondrements de la zone sommitale du volcan en 2018 sont également riches d’enseignements.
Dès le début du mois d’avril 2018, le volcan a montré les signes d’un changement dans son comportement, mais les données fournies par les instruments étaient trop vagues pour prévoir ce qui allait se passer. Elles faisaient seulement état d’une augmentation de la pression dans le système magmatique entre le sommet du Kilauea et le cône du Pu’uO’o.
Le 30 avril 2018, la lave est sortie brièvement d’une fracture sur le flanc ouest du Pu’uO’o. Le magma a ensuite pris le chemin de la LERZ, laissant derrière lui un trou béant dans le cratère du Pu’uO’o qui a émis un impressionnant panache de poussière en se vidant.
Le magma qui se trouvait sous le Pu’uO’o s’est immédiatement dirigé vers la LERZ où le sol s’est légèrement soulevé, avec des séismes qui indiquaient la trajectoire suivie par la roche en fusion vers la surface.
Le 3 mai 2018, la lave a percé la surface dans les Leilani Estates, marquant le début de la plus grande éruption dans la LERZ du Kilauea depuis plus de 200 ans.
Au cours des semaines suivantes, le lac de lave qui se trouvait au sommet, dans l’Overlook Crater de l’Halema’uma’u, s’est vidangé tandis que le magma s’écoulait dans la LERZ, comme si une soupape s’était ouverte au fond de l’Overlook Crater. Aidé par la différence d’altitude de près de 900 mètres entre le sommet et la LERZ, le lac de lave s’est vidé régulièrement et le sommet de Kilauea s’est effondré en s’affaissant. Ce processus s’est accompagné d’une forte sismicité.
La vidange du lac de lave a entraîné des éboulements quasi permanents dans l’Overlook Crater vidé de son contenu. Des explosions ont généré d’impressionnantes colonnes de cendre, avec parfois des retombées de gros blocs sur le plancher de l’Halema’uma’u.
À la fin du mois de mai, les explosions au sommet du Kilauea ont été remplacées par des effondrements épisodiques. Au total, 62 événements d’effondrement ont secoué la zone sommitale en déclenchant des séismes qui ont à plusieurs reprises atteint une magnitude de M 5.3, occasionnant des dégâts au bâtiment du HVO et au Jaggar Museum. Les routes, les réseaux d’alimentation en eau et les fondations de certaines maisons dans le village de Volcano ont également été endommagés.
Un an après, les scientifiques du HVO continuent d’analyser les données de l’éruption sommitale du Kilauea. Avant 2018, les modèles indiquaient que l’activité explosive observée au sommet était provoquée par l’interaction entre les eaux souterraines et la haute température du conduit d’alimentation situé sous la caldeira du Kilauea. En revanche, les analyses de plusieurs explosions observées en 2018 laissent supposer que les gaz magmatiques sont le moteur de ces explosions.
Au lieu de s’effondrer d’un seul coup, on s’est rendu compte en 2018 que la caldeira du Kilauea pouvait s’affaisser progressivement sur de longues périodes, avec une déflation du sommet générant une forte sismicité qui constitue un risque majeur.
Les scientifiques ont également constaté que, dans certaines conditions, le sommet de Kilauea et la LERZ peuvent être reliés étroitement. Ceci est corroboré par l’équivalence approximative entre le volume de lave émis dans la LERZ et le volume du vide laissé par l’effondrement sommital ; tous deux sont de l’ordre de 1 kilomètre cube.

Une étude menée par un groupe international de scientifiques a révélé que la vitesse de propagation des ondes sismiques au sommet du Kilauea a montré des variations mesurables avant l’activité éruptive de 2018. Cette découverte représente un paramètre intéressant dans la prévision d’une future activité éruptive.
Source: USGS / HVO.

————————————————–

In a previous post, I explained that US geologists at HVO are gaining new insights from the Kilauea eruption in the Lower Esat Rift Zone. A new Volcano Watch article indicates that they are also learning a lot from the volcano’s 2018 summit collapses.

As soon as early April 2018, the volcano showed signs that change was coming, but the data provided by the instruments were too elusive to predict what was to happen. They only tracked an increasingly pressurized magmatic system between Kilauea’s summit and the Pu’uO’o cone.

On April 30th, 2018, lava emerged briefly from a crack on the cone’s west flank before the remaining magma drained into the East Rift Zone.  The Pu’uO’o crater collapsed, leaving a bottomless, empty cavity.

The magma which was beneath Pu’uO’o immediately headed toward the Lower East Rift Zone (LERZ) where the ground heaved slightly in response, with earthquakes indicating the path followed by the molten rock as it pushed downrift and toward the surface.

On May 3rd, lava erupted within the Leilani Estates. It marked the beginning of the largest eruption on Kilauea’s LERZ in over 200 years.

Over the next weeks, the summit lava lake withdrew deeper into the volcano as magma emptied into the LERZ, as if a valve had been opened at the bottom of the Overlook Crater. Aided by the nearly 900 metre elevation difference between the summit and the LERZ, the lava lake steadily drained and Kilauea’s summit collapsed inward. This in turn prompted elevated seismicity.

Recession of the lava lake resulted in near-constant rockfalls into the now empty Overlook Crater  Explosions sent impressive columns of ash into the sky, sometimes littering the ground around Halema’uma’u with dense blocks of rock.

By late May, Kilauea summit explosions were replaced by episodic collapse events. All told, 62 collapse events rocked Kilauea’s summit, triggering several M 5.3 earthquakeswhich caused damage at the HVO building, the Jaggar Museum. Roads and water system and residential foundations in Volcano were also damaged.

A year later, HVO scientists continue to process data from the 2018 eruption at the summit of Kilauea. Prior to 2018, models indicated that explosive summit activity was driven by steam explosions produced by the interaction between groundwater and the hot conduit below Kilauea’s caldera. But data from several 2018 explosions suggest that magmatic gas is the primary driver.

Rather than necessarily occurring as one big drop, the Kilauea caldera collapse can proceed incrementally over long periods of time, with ground shaking during sustained, rapid summit deflation and episodic collapse posing a major hazard.

Under certain conditions, Kilauea’s summit and the LERZ can be extremely well-connected through the core of the rift zone. This is supported by the rough equivalence of the LERZ erupted volume and the summit collapse void, both on the order of 1 cubic kilometre.

A study led by an international group of scientists has found evidence that seismic velocity – the speed at which seismic waves travel – within Kīlauea’s summit showed measurable changes leading up the 2018 activity. This finding potentially offers another means to forecast eruptive activity.

Source : USGS / HVO.

Panache de cendre et de poussière émis par le Pu’uO’o lorsque le plancher du cratère s’est effondré après l’évacuation du magma vers la LERZ (Crédit photo : USGS / HVO)

Panache de cendre émis par l’Overlook Crater de l’Halema’uma’u pendant la vidange du lac de lave (Crédit photo : USGS / HVO)

L’Islande continue d’enterrer le gaz carbonique ! // Iceland keeps burying carbon dioxide !

Dans des notes publiées le 16 juin 2016 et le 15 novembre 2017, j’ai expliqué que l’Islande était probablement un bon endroit pour stocker dans le sol l’excès de dioxyde de carbone (CO2) contenu dans l’atmosphère.
https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

À l’époque, l’objectif du projet CarbFix était de capter le gaz et de le réinjecter dans le sous-sol. Le processus était réalisé avec un puits d’injection foré dans le soubassement basaltique. Si elle était opérationnelle, cette technologie aurait l’avantage de débarrasser l’atmosphère d’une partie de son CO2, l’un des principaux gaz à effet de serre qui contribuent au réchauffement de la planète.
La technologie imite, dans un format accéléré, un processus naturel qui peut prendre des milliers d’années, et qui consiste à injecter du dioxyde de carbone dans les pores du basalte où il se minéralise et reste stocké pour l’éternité.
En Islande, le projet CarbFix inclut des chercheurs et des ingénieurs du distributeur d’électricité Reykjavik Energy, de l’Université d’Islande, du CNRS et de la Columbia University aux États-Unis.
En Islande, au moins la moitié de l’énergie qui est produite provient de sources géothermiques. C’est une aubaine pour les chercheurs de CarbFix, qui ont transformé en laboratoire la centrale géothermique de Hellisheidi, l’une des plus grandes au monde.
La centrale, située sur le volcan Hengill dans le sud-ouest de l’Islande, repose sur une couche de roche basaltique et dispose de quantités d’eau pratiquement illimitées. L’usine pompe l’eau qui se trouve sous le volcan pour faire fonctionner six turbines qui fournissent de l’électricité et de la chaleur à la capitale, Reykjavik, située à une trentaine de kilomètres.

Le dioxyde de carbone de l’usine est capté par la vapeur, liquéfié par condensation, puis dissous dans de grandes quantités d’eau. Cette eau gazeuse est canalisée sur plusieurs kilomètres jusqu’à une zone où trônent des dômes gris en forme d’igloo. C’est ici que l’eau gazeuse est injectée sous haute pression dans la roche à 1 000 mètres de profondeur. La solution remplit les cavités de la roche basaltique et c’est alors que commence le processus de solidification. On a affaire à une réaction chimique qui se produit lorsque le gaz entre en contact avec le calcium, le magnésium et le fer dans le basalte.
Presque tout le dioxyde de carbone injecté s’est retrouvé minéralisé en deux ans au cours de l’opération pilote il y a trois ans; c’était beaucoup plus rapide que lors des expériences effectuées en laboratoire. Une fois que le CO2 est transformé en roche, il reste définitivement dans cet état.
Le projet CarbFix réduit d’un tiers les émissions de dioxyde de carbone de la centrale de Hellisheidi, ce qui représente le stockage et l’entreposage de 12 000 tonnes de dioxyde de carbone à un coût d’environ 25 dollars la tonne. En comparaison, les volcans islandais rejettent chaque année entre un et deux millions de tonnes de dioxyde de carbone.
Le principal inconvénient de cette méthode est qu’elle nécessite de gros volumes d’eau dessalée qui est abondante en Islande mais rare dans de nombreuses autres parties de la planète. Il faut 25 tonnes d’eau pour injecter chaque tonne de dioxyde de carbone. Des expériences sont en cours pour adapter la méthode à l’eau salée.
Dans le cadre de l’accord de Paris sur le climat, l’Islande a accepté de réduire ses émissions de gaz à effet de serre de 40% d’ici 2030, mais ses émissions ont augmenté de 2,2% entre 2016 et 2017 ; elles ont augmenté de 85% depuis 1990, selon un rapport de l’Agence islandaise de l’environnement. Un tiers de ces émissions provient du transport aérien qui est essentiel pour le tourisme de l’île. Les usines d’aluminium et de silicium représentent un autre tiers. Le ministère islandais de l’Environnement et des Ressources naturelles a encouragé ces usines à développer elles aussi des mécanismes de captage et de stockage du carbone.
Source: Philippine Daily Inquirer.

—————————————————-

In posts released on 16 June 2016 and 15 November 2017, I explained that Iceland could also be the right place to store in its ground the excess of carbon dioxide (CO2) in the atmosphere.

https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

By that time, the goal of the CarbFix project was to capture that gas and stick it back underground. This was done with an injection well drilled down into basalt bedrock. If it worked, the technology would have the advantage of getting the atmosphere rid of some of its CO2, one of the main greenhouse gases that contribute to global warming.

The technology mimics, in an accelerated format, a natural process that can take thousands of years, injecting carbon dioxide into porous basalt rock where it mineralizes, capturing it forever.

Iceland’s CarbFix project includes researchers and engineers from utility company Reykjavik Energy, the University of Iceland, France’s National Centre for Scientific Research (CNRS) and Columbia University in the United States.

In Iceland, at least half of the energy produced comes from geothermal sources. That is a bonanza for CarbFix researchers, who have turned the Hellisheidi geothermal power plant, one of the world’s biggest, into their own laboratory.

The plant, located on the Hengill volcano in southwestern Iceland, sits on a layer of basalt rock formed from cooled lava, and has access to virtually unlimited amounts of water. The plant pumps up the water underneath the volcano to run six turbines providing electricity and heat to the capital, Reykjavik, about 30 kilometres away.

The carbon dioxide from the plant is captured from the steam, liquified into condensate, then dissolved in large amounts of water. The fizzy water is piped several kilometres to an area where grey, igloo-shaped domes dot the landscape. Here the fizzy water is injected under high pressure into the rock 1,000 metres under the ground. The solution fills the rock’s cavities and begins the solidification process — a chemical reaction that occurs when the gas comes in contact with the calcium, magnesium and iron in the basalt.

Almost all of the injected carbon dioxide was mineralized within two years in the pilot injection three years ago, which was much faster than during the experiments in a laboratory. Once the CO2 is turned to rock, it is captured there for good.

The CarbFix project reduces the plant’s carbon dioxide emissions by a third, which amounts to 12,000 tons of carbon dioxide captured and stored at a cost of about 25 dollars a ton. By comparison, Iceland’s volcanoes spew out between one and two million tons of carbon dioxide each year.

The main drawback of the method is that it requires large volumes of desalinated water, which, while abundant in Iceland, is rare in many other parts of the planet. Around 25 tons of water is needed for each tonne of carbon dioxide injected. Experiments are currently underway to adapt the method to saltwater.

Under the Paris climate agreement, Iceland has agreed to slash its greenhouse gas emissions by 40% by 2030, yet its emissions rose by 2.2% from 2016 to 2017, and have risen by 85% since 1990, according to a report by Iceland’s Environment Agency. A third of its emissions come from air transport, which is vital to the island for its tourism sector. Its aluminum and silicon plants account for another third. The Icelandic Environment and Natural Resources Ministry has encouraged those plants to also develop carbon capture and storage mechanisms.

Source : Philippine Daily Inquirer.

Image de la calcite formée dans le basalte par interaction entre la roche et l’eau chargée en CO2 (Source : CarbFix).

Eruptions du Raikoke (Russie) et du Popocatepetl (Mexique)

Raikoke (Mer d’Okhotsk, îles Kouriles, Russie):
Une éruption soudaine et puissante a débuté sur le Raikoke vers 21h50 (TU) le 21 juin 2019. Selon le VAAC de Tokyo, le nuage de cendres s’est élevé à 13,1 km au dessus du niveau de la mer. Les émissions de cendres se sont poursuivies jusqu’au 22 juin.
La dernière éruption de ce volcan remonte à février 1924, avec un VEI 4. Auparavant, deux éruptions avaient eu lieu en 1778 (VEI 4) et 1765 ± 5 ans (VEI 2).
Source: KVERT, The Watchers.

Popocatepetl (Mexique):
Une nouvelle éruption s’est produite sur le Popocatepetl à 21h57 (heure locale) le 21 juin 2019. Des matériaux incandescents ont été projetés à une courte distance du cratère. Une intense activité s’est poursuivie sur le volcan le 22 juin avec une autre éruption majeure. Selon le VAAC de Washington, des panaches de cendres étaient visibles sur une webcam et les images satellitaires; ils s’élevaient à 7,6 km au dessus du niveau de la mer.
Source: CENAPRED, The Watchers.

———————————–

Raikoke (Sea of Okhotsk, Kuril Islands, Russia):
A sudden and powerful eruption started at Raikoke volcano at about 17:50 (UTC) on June 21st, 2019. According to the Tokyo VAAC, the ash cloud rose up to 13.1 km above sea level. Ash emissions continued into June 22nd.
The last time this volcano erupted was in February 1924, with a VEI 4. Two previous eruptions took place in 1778 (VEI 4) and 1765± 5 years (VEI 2).
Source: KVERT, The Watchers.

Popocatepetl (Mexico):
Another strong eruption occurred at Popocatepetl volcano, at 20:57 (local time) on June 21st, 2019. Incandescent fragments were thrown a short distance from the crater. Intense activity continued at the volcano on June 22nd with another strong eruption. According to the Washington VAAC, volcanic ash was observed on webcam and satellite imagery rising up to 7.6 km above sea level.
Source: CENAPRED, The Watchers.

Le risque sismique sur la Grande Ile d’Hawaii // The seismic hazard on Hawaii Big Island

Hawaii est bien connu pour ses volcans actifs. Les éruptions du Mauna Loa et du Kilauea sont souvent spectaculaires et peuvent être destructrices. Il ne faudrait pas oublier non plus que l’Etat d’Hawaï est aussi sujet à des tremblements de terre. C’est l’un des endroits les plus sismiques des États-Unis, avec des milliers de secousses chaque année. Pas plus tard que le 28 avril 2019, la Grande Ile a été secouée par un séisme de M 4,2 dont l’épicentre se trouvait sous le flanc sud de Kilauea, à environ 20 km au sud-est du sommet et à une profondeur de 7 km. L’événement a été largement ressenti dans toute la partie orientale de Big Island. Il n’a toutefois causé aucune modification d’activité sur le Kileaua.
Les séismes du passé ont causé des dégâts structurels de plusieurs millions de dollars à la petite ville de Hilo. Le tremblement de terre de M 6,2 en 1973 avait une intensité VIII sur l’échelle de Mercali, avec 11 blessés et 5,6 millions de dollars de dégâts.
Le séisme de M 7,7 à Kalapana, en 1975 a été enregistré avec une intensité VIII à Hilo, et il a causé pour 4,1 millions de dollars de dégâts.
Hilo est la quatrième ville de l’État en termes de population, avec environ 43 000 habitants. On compte au moins 40 bâtiments historiques dans cette ville, y compris des écoles, des hôpitaux, des postes de police, des immeubles de bureaux, des magasins et des églises. L’architecture de Hilo lui donne souvent l’aspect d’une ville d’avant la seconde guerre mondiale. Elle est souvent considérée comme la plus ancienne ville de l’État. En fait, son histoire remonte à  l’année 1100. Les bâtiments historiques sont particulièrement vulnérables aux séismes, en particulier ceux construits avant l’adoption des normes parasismiques.
Selon le HVO, c’est l’intensité des ondes sismiques dans une zone donnée qui détermine le risque de dégâts. Une secousse avec une intensité «très forte» de VII peut causer des dégâts considérables aux structures mal construites, mais endommage généralement peu des structures bien conçues. Une secousse avec une intensité «sévère» de VIII causera des dégâts considérables à la plupart des bâtiments ordinaires. Avec une intensité «violente» de IX, même des structures spécialement conçues pour résister aux tremblements de terre peuvent subir des dégâts considérables. L’intensité «extrême» X détruira la plupart des structures. Il a été admis que des séismes de magnitude M 6,0 à Hawaii peuvent causer des dégâts sur de vastes zones.
L’État d’Hawaï a pris des mesures pour remédier aux problèmes de construction. En outre, un rapport de 2017 indique que 29% des routes hawaiiennes sont en mauvais état. Hawaii se situe au cinquième rang des pires villes du pays pour son réseau routier. Pour ce qui est du financement des routes dans le budget fédéral, Hawaii est le 10ème plus bas des Etats Unis. Près de 6% des routes hawaïennes ont été jugées en mauvais état. Les barrages constituent également le plus grand danger à Hawaii, comparés aux autres États.
Compte tenu de ces informations, certains habitants ne se sentent pas en sécurité sur leur lieu de travail et redoutent les séismes. Ils font remarquer que ce qui s’est passé à Christchurch (Nouvelle-Zélande) en 2011 pourrait aussi se produire à Hilo.
Les autorités expliquent que la Grande Ile doit s’attendre à de nouveaux séismes et s’y préparer. Les habitants doivent être conscients que des événements majeurs se produisent de temps en temps, même s’il n’y en a pas eu de secousse d’une magnitude supérieure à M6.9 depuis assez longtemps. Un sismologue du HVO a déclaré: «Le tout n’est pas de savoir si un puissant séisme se produira, mais de savoir quand il se produira. »
Source: Big Island Now.

—————————————————-

Hawai‘i is well known for its active volcanoes. The eruptions of Mauna Loa and Kilauea are often spectacular and can be setructive. One should not forget either that Hawaii is also an earthquake country. It is one of the most seismically active states in the US, experiencing thousands of earthquakes  each year. As recently as April 28th, 2019, Big Island residents experienced an M 4.2 earthquake beneath Kilauea’s south flank, roughly 20 kilometres SE of the summit at a depth of 7 kilometres. The quake was widely felt across East Hawaii. It did not cause any changes on Kileaua Volcano.

Earthquakes in the past have caused millions of dollars in structural damage to the small town of Hilo. The 1973 M 6.2 earthquake produced shaking of intensity VIII on the Mercali scale, injuring 11 people and causing 5.6 million dollars of damage.

The 1975 M 7.7 Kalapana earthquake caused a shaking with an intensity VIII in Hilo, causing 4.1 million dollars in damage.

Hilo is the state’s fourth largest city by population with approximately 43,000 residents. There are at least 40 historic buildings in this town, including schools, hospitals, police stations, office buildings, storefronts and churches. Hilo’s architecture gives it a pre-World War II persona. The city is often considered to be the state’s oldest one. In fact, oral history can be traced back to 1,100 AD. Historic buildings are especially vulnerable to seismic events, particularly those built before seismic codes were adopted.

According to the Hawaiian Volcano Observatory, what determines the potential for damage is how intense the seismic waves generated by the earthquake are in any given area. Shaking with ‘very strong’ intensities of VII can cause considerable damage to poorly-built structures but generally little damage to well-designed structures. It takes shaking at ‘severe’ intensity VIII to cause considerable damage to most ordinary buildings. At ‘violent’ intensity IX, even specially designed earthquake-tolerant structures can have considerable damage. ‘Extreme’ intensity X can destroy most structures. It has been admitted that earthquakes above magnitude M 6.0 in Hawai‘i generally can produce damages over large areas.

The state of Hawaii has taken some action to address building concerns. Besides, a 2017 report indicates that 29% of the state’s roads are in poor condition, ranking Hawaii the fifth worst in the nation. For highway funding as a percentage of the total government spending, Hawaii is the 10th lowest in the nation. Nearly 6% of Hawai‘i roads were deemed deficient. Dams posed the most hazard in Hawaii than any other state.

Given these reports, some residents feel unsafe in their workplace during earthquakes. They say that what happened in Christchurch (New Zealand) in 2011 that could so easily happen in Hilo.

Authorities explain that the Big Island needs to be prepared for earthquakes. Residents need to be aware there are big ones now and then, even though it has been there has not been an event above M6.9 for quite a long time. Said one HVO seismologist “It’s not a matter of if, but when a strong earthquake will occur.”

Source: Big Island Now.

Des séismes sont souvent enregistrés sur le flanc sud du Kilauea (Source: USGS)