Une balise pour prévoir séismes, tsunamis et éruptions // A buoy to predict earthquakes, tsunamis and eruptions

Des géophysiciens de l’Université de Floride du Sud (USF) ont mis au point et testé avec succès une balise de haute technologie, utilisable en eau peu profonde, capable de détecter les moindres variations du plancher océanique, souvent annonciateurs de catastrophes naturelles dévastatrices, telles que les séismes, les tsunamis et les éruptions volcaniques.

Le système flottant, mis au point avec l’aide d’une subvention de 822 000 dollars allouée par la National Science Foundation, a été installé à Egmont Key dans le Golfe du Mexique en 2018 et a déjà livré des données sur le mouvement tridimensionnel du plancher océanique. Ainsi, il sera capable de détecter de petites variations de contrainte dans la croûte terrestre.
En attente de brevet, ce système de géodésie présente l’aspect d’une balise ancrée au fond de la mer et surmontée d’un GPS de haute précision. L’orientation de la balise est mesurée à l’aide d’une boussole numérique fournissant des informations sur le cap, le tangage et le roulis, ce qui permet de mesurer latéralement  les mouvements de la Terre et diagnostiquer les principaux séismes déclencheurs de tsunamis.
Bien que plusieurs autres techniques de surveillance des fonds marins soient actuellement disponibles, la technologie mise au point en Floride fonctionne généralement mieux dans les milieux océaniques profonds où les interférences sonores sont moindres. Les eaux côtières peu profondes (moins de quelques centaines de mètres de profondeur) constituent un environnement plus difficile à analyser, mais également important pour de nombreuses applications, notamment certains types de séismes dévastateurs. Les processus d’accumulation et de libération de contraintes au niveau de la croûte terrestre au large sont essentiels à la compréhension des puissants séismes et des tsunamis.
Le système flottant est relié au fond de la mer à l’aide d’un lest en béton et il a pu résister à plusieurs tempêtes, dont l’ouragan Michael dans le Golfe du Mexique. Le système est capable de détecter des mouvements du plancher océanique de seulement deux centimètres.
La technologie a plusieurs applications potentielles dans l’industrie pétrolière et gazière en mer et pourra être utilisée pour la surveillance de certains volcans. Toutefois, la principale application concerne l’amélioration de la prévision des séismes et des tsunamis dans les zones de subduction. Les puissants séismes et tsunamis qui ont frappé Sumatra en 2004 et le Japon en 2011 sont des événements que les scientifiques souhaiteraient mieux comprendre et prévoir.
Le système mis au point par l’Université de Floride est conçu pour les applications de zones de subduction de la Ceinture de Feu du Pacifique, où les processus d’accumulation et de libération de contraintes de l’écorce terrestre en mer sont actuellement mal connus. Les scientifiques espèrent pouvoir installer le nouveau système dans les eaux côtières peu profondes de l’Amérique Centrale, où se produisent souvent des tremblements de terre.
Le site d’Egmont Key où le système a été testé présente une profondeur de 23 mètres. Bien que la Floride ne soit pas sujette aux séismes, les eaux au large d’Egmont Key se sont avérées un excellent site de test. Ce lieu est exposé à de forts courants de marée qui ont permis de tester le système de correction de la stabilité et de l’orientation de la balise. La prochaine étape consistera à installer un système semblable dans les eaux plus profondes du Golfe du Mexique, au large de la côte ouest de la Floride.
Source: Université de Floride du Sud.

—————————————

University of South Florida (USF) geoscientists have successfully developed and tested a new high-tech shallow water buoy that can detect the small movements and changes in the Earth’s seafloor that are often a precursor to deadly natural hazards, like earthquakes, volcanoes and tsunamis.

The buoy, created with the assistance of an $822,000 grant from the National Science Foundation, was installed off Egmont Key in the Gulf of Mexico in 2018 and has been producing data on the three-dimensional motion of the sea floor.  Ultimately the system will be able to detect small changes in the stress and strain the Earth’s crust.

The patent-pending seafloor geodesy system is an anchored spar buoy topped by high precision Global Positioning System (GPS). The buoy’ orientation is measured using a digital compass that provides heading, pitch, and roll information – helping to capture the crucial side-to-side motion of the Earth that can be diagnostic of major tsunami-producing earthquakes.

While there are several techniques for seafloor monitoring currently available, that technology typically works best in the deeper ocean where there is less noise interference. Shallow coastal waters (less than a few hundred metres deep) are a more challenging environment but also an important one for many applications, including certain types of devastating earthquakes. Offshore strain accumulation and release processes are critical for understanding powerful earthquakes and tsunamis.

The experimental buoy rests on the sea bottom using a heavy concrete ballast and has been able to withstand several storms, including Hurricane Michael up the Gulf of Mexico. The system is capable of detecting movements as small as one to two centimetres.

The technology has several potential applications in the offshore oil and gas industry and volcano monitoring in some places, but the big one is for improved forecasting of earthquakes and tsunamis in subduction zones. The giant earthquakes and tsunamis in Sumatra in 2004 and in Japan in 2011 are examples of the kind of events scientists would like to better understand and forecast in the future.

The system is designed for subduction zone applications in the Pacific Ocean’s “Ring of Fire” where offshore strain accumulation and release processes are currently poorly monitored. One example where the group hopes to deploy the new system is the shallow coastal waters of earthquake prone Central America.

The Egmont Key test location sits in just 23 metres depth.  While Florida is not prone to earthquakes, the waters off Egmont Key proved an excellent test location for the system. It experiences strong tidal currents that tested the buoy’s stability and orientation correction system. The next step in the testing is to deploy a similar system in deeper water of the Gulf of Mexico off Florida’s west coast.

Source: University of South Florida.

Vue de la balise haute technologie mise au point par l’Université de Floride (Source : USF)

Vue du site d’Egmont Key, sur la côte ouest de la Floride, où la balise a été testée (Source : Google maps)

Séismes et éruptions volcaniques // Earthquakes and volcanic eruptions

A l’issue de ma conférence « Volcans et risques volcaniques », les gens me demandent souvent s’il existe un lien entre les séismes et les éruptions volcaniques. Je réponds que dans certaines circonstances, on a cru voir un lien et que, dans d’autres, le lien était loin d’être évident. Cependant, j’insiste sur le fait que la sismicité est présente avant une éruption car le magma provoque une fracturation des roches pendant son ascension et cette fracturation est enregistrée par les sismomètres.
Les séismes d’origine tectonique – provoqués par les mouvements des plaques, en particulier dans les zones de subduction – font partie des phénomènes naturels les plus impressionnants sur Terre. Rien d’étonnant à ce qu’ils soient parfois associés au déclenchement des éruptions volcaniques. Les volcans sont souvent situés dans des régions sismiques comme la célèbre Ceinture de Feu du Pacifique. On y enregistre 90% des séismes et on y rencontre 75% de tous les volcans actifs de la planète. Les éruptions et les tremblements de terre ont souvent lieu à peu près au même moment; Cependant, on ne peut affirmer qu’il existe un lien direct entre un séisme et une éruption qui a eu lieu peu de temps après le premier événement. Le volcan était peut-être déjà sur le point d’entrer en éruption, ou bien il était déjà en éruption depuis longtemps.
Des études récentes laissent supposer qu’il pourrait exister un lien entre les séismes et les éruptions volcaniques dans certaines situations. Par exemple, un article paru en 1993 établit un lien entre un séisme de magnitude M 7,3 en Californie et des manifestations volcaniques et géothermales observées immédiatement après. Une étude publiée en 2012 estime qu’un séisme de magnitude M 8,7 au Japon en 1707 a entraîné la pénétration du magma dans une chambre peu profonde du Mont Fuji et déclenché une puissante explosion du volcan 49 jours plus tard. Le séisme de magnitude M 7,2 survenu le 29 novembre 1975 sur le Kilauea à Hawaii a été rapidement suivi d’une éruption de courte durée.

Cependant, il existe d’autres cas où un séisme majeur n’a pas été suivi d’une éruption. L’un des meilleurs exemples se situe au Japon en 2011. Les scientifiques japonais craignaient que le puissant séisme de Tohoku (magnitude M 9.1) le 11 mars 2011 réveille le Mont Fuji, ce qui ne s’est jamais produit!
A l’heure actuelle, les mécanismes de déclenchement des séismes ne sont pas bien compris, et les documents reliant les tremblements de terre à des éruptions ne s’appuient que sur des spéculations. Il est possible que le timing dans tous les exemples mentionnés ci-dessus soit juste une coïncidence. Les géologues doivent avant tout comprendre le déclenchement des séismes et exclure toute intervention du hasard avant d’établir un lien entre séismes et éruptions.

Parfois, il est fait référence à l’histoire pour montrer la corrélation entre les séismes et les éruptions volcaniques. Un document publié en 2009 a utilisé des données historiques pour montrer qu’il existe une relation entre un séisme de M 8,0 au Chili et un nombre d’éruptions en nette hausse sur certains volcans situés à une distance pouvant aller jusqu’à 500 km. Le problème est que de telles données historiques ne sont pas vraiment fiables. En effet, les grands séismes et les grandes éruptions volcaniques sont des événements relativement peu fréquents, et les scientifiques ne disposent pas d’un recul suffisant. Les archives fiables n’existent que depuis un demi-siècle ou un peu plus, selon les régions.
Dans le passé, les données provenaient de récits de voyages et de journaux de bord assez ambigus. Ainsi, en 1840, Darwin a recueilli des informations fournies par des témoins oculaires et relatives à des modifications mineures survenues sur des volcans chiliens à la suite du puissant séisme de 1836. Au final, en lisant les écrits de Darwin, on ignore si des éruptions ont eu lieu.
Des simulations ont été réalisées en laboratoire en 2016 et 2018 pour tenter de comprendre le comportement du magma dans la chambre magmatique et voir si ce comportement pourrait éventuellement déclencher des séismes. Cependant, aucune corrélation réelle entre les séismes et les éruptions volcaniques n’est ressortie de ces expériences.
Adapté d’un article de 2018 dans le National Geographic.

———————————————–

During my conference “Volcanoes and volcanic risks”, people often ask me whether there is a link between earthquakes and volcanic eruptions. I answer that on some occasions there appears to be some link and in other circumstances the link is far from clear. However, I insist that seismicity is always linked to an eruption and present before the event as magma causes the fracturing of rocks during its ascent and this fracturing is recorded by the seismometers.

Tectonic earthquakes – caused by the movement of plates, especially in subduction zones – are among the most powerful natural phenomena on the planet. It’s no surprise that they are sometimes suspected of being able to trigger volcanic eruptions. Earth’s volcanoes are often located in seismic parts of the world like the well-known Ring of Fire around the Pacific Ocean. This area hosts 90 percent of the world’s recorded earthquakes and 75 percent of all active volcanoes. Eruptions and earthquakes are often taking place at roughly the same time; however, you can’t automatically assume that there’s a connection between a given quake and a subsequent eruption. The volcano may have already been preparing to erupt, or it is already been erupting for a long time.

Recent studies suggest that a connection could potentially exist between earthquakes and volcanic eruptions in certain situations. For instance, a 1993 paper links an M 7.3 quake in California to volcanic and geothermal rumblings immediately afterward. And a 2012 study reckons that an M 8.7 earthquake in Japan in 1707 forced deeper magma up into a shallow chamber, triggering a huge blast at Mount Fuji 49 days later. There was also the M 7.2 earthquake on Hawaii’s Kilauea volcano on November 29th, 1975, which was quickly followed by a short-lived eruption.

However, there are other examples showing that a major earthquake has not been followed by an eruption. One of the best example was in Japan in 19 when Japanese scientists feared the powerful M 9.1 Tohoku earthquake on March 11th, 2011 might wake up Mount Fuji, which it never did!

The triggering mechanisms for earthquakes are not well understood, and papers linking quakes to later eruptions can really only speculate. It is quite possible that the timing in all these examples was just a coincidence. Geologists must understand the specific triggering and rule out chance before a connection can be definitively made.

Sometimes, reference is made to history to show the correlation between earthquakes and volcanic eruptions. A 2009 paper used historical data to show that that M 8.0 quakes in Chile are associated with significantly elevated eruption rates in certain volcanoes as far as 500 kilometres away. The problem is that these sorts of historical data are not really reliable. Indeed, major earthquakes and large volcanic eruptions are both relatively infrequent events, and scientists have only been reliably keeping these records for the last half century or more, depending on the region.

Many data points in the past come from fairly ambiguous news reports and journal entries. For instance, in 1840, Darwin gathered eyewitness information on some minor changes at Chilean volcanoes following the powerful quake there in 1836. However, it is unclear if any eruptions took place.

Simulations were performed in laboratory in 2016 and 2018 to try and understand magma behaves within the chamber and how this behaviour might eventually trigger earthquakes. However, no real correlation between earthquakes and volcanic eruptions came out of these experiments.

Adapted from a 2018 article in the National Geographic.

La Ceinture de Feu du pacifique, une zone sismique et volcanique très active (Source: Wikipedia)

Le Mont Fuji, un volcan sous surveillance (Crédit photo: Wikipedia)

Sismicité et plaques tectoniques // Seismicity and tectonic plates

Voici une vidéo confirmant que notre planète est bien vivante. À l’aide de données fournies par l’USGS, le Centre d’alerte aux tsunamis du Pacifique a mis en ligne une animation montrant tous les séismes enregistrés du 1er janvier 1901 au 31 décembre 2000, dans l’ordre où ils se sont produits, à raison de un an par seconde. Les hypocentres apparaissent d’abord sous forme de flashs, puis sont maintenus sous forme de cercles de couleur, avant de rétrécir pour ne pas masquer les séismes ultérieurs.
La taille du cercle représente la magnitude du séisme tandis que la couleur représente la profondeur des événements. À la fin, l’animation affiche d’abord tous les séismes enregistrés pendant cette période de 100 ans. Ensuite, on ne distingue plus que les séismes supérieurs à M 6,5, la plus faible magnitude censée générer un tsunami. On voit ensuite les séismes d’une magnitude supérieure ou égale à M 8,0 qui représentent une réelle menace de tsunami quand ils se produisent dans l’océan ou à proximité d’un littoral à faible profondeur (moins de 100 km de profondeur).
L’animation se termine en montrant les failles en limite de plaques, responsables de la plupart des séismes.

https://youtu.be/jhmF-IwP6uM

Voici quelques événements remarquables du 20ème siècle, notamment ceux qui ont généré des tsunamis dévastateurs:
M8.8 – Équateur – 31 janvier 1906
M8.4 – Kamchatka, Russie – 3 février 1923
M8.4 – Sanriku, Japon – 2 mars 1933
M8.6 – Île Unimak, îles Aléoutiennes – 1er avril 1946
M9.0 – Kamchatka, Russie – 4 novembre 1952
M8.6 – Îles Andreanof, îles Aléoutiennes – 9 mars 1957
M9.5 – Valdivia, Chili – 22 mai 1960
M9.2 – Prince William Sound, Alaska – 28 mars 1964
M8.7 – Îles Rat, îles Aléoutiennes – 4 février 1965
Source: The Watchers.

—————————————————–

Here is a video confirming our planet is quite alive. Using USGS data, the Pacific Tsunami Warning Center has released an animation showing every recorded earthquake in sequence as they occurred from January 1st, 1901, through December 31st, 2000, at a rate of 1 year per second. The earthquake hypocenters first appear as flashes then remain as colored circles before shrinking with time so as not to obscure subsequent earthquakes.

The size of the circle represents the earthquake magnitude while the colour represents its depth within the earth. At the end, the animation will first show all quakes in this 100-year period. Next, it will show only those earthquakes greater than M 6.5, the smallest earthquake size known to make a tsunami. It will then show only those earthquakes with magnitudes of M 8.0 or larger which are most likely to pose a tsunami threat when they occur under the ocean or near a coastline and when they are shallow within the earth (less than 100 km deep).

The animation concludes by showing the plate boundary faults responsible for the majority of all of these earthquakes.

https://youtu.be/jhmF-IwP6uM

Here are some remarkable events of the 20th century, including those that generated devastating tsunamis:

M8.8 — Ecuador — January 31, 1906

M8.4 — Kamchatka, Russia — February 3, 1923

M8.4 — Sanriku, Japan — March 2, 1933

M8.6 — Unimak Island, Aleutian Islands — April 1, 1946

M9.0 — Kamchatka, Russia — November 4, 1952

M8.6 — Andreanof Islands, Aleutian Islands — March 9, 1957

M9.5 — Valdivia, Chile — May 22, 1960

M9.2 — Prince William Sound, Alaska — March 28, 1964

M8.7 — Rat Islands, Aleutian Islands — February 4, 1965

Source : The Watchers.

Capture d’écran de la vidéo montrant parfaitement l’activité sismique, en particulier le long de la Ceinture de Feu du Pacifique

 

Lombok (Indonésie) : Une tectonique complexe// Complex tectonics

Plusieurs puissants séismes ont secoué l’île indonésienne de Lombok au cours des dernières semaines. Un premier séisme d’une magnitude de M,6,4 a été enregistré le 29 juillet 2018 ; il a tué 13 personnes et en a blessé une centaine d’autres. Le séisme suivant – M 6,9 sur l’échelle de Richter le 5 août 2018 – a fait au moins 98 morts et des centaines de blessés. Des milliers de bâtiments ont été endommagés et les opérations de secours ont été compliquées par des pannes de courant, un manque de réception téléphonique dans certaines zones et des options d’évacuation limitées.
Les séismes sont fréquents en Indonésie car le pays est situé sur la Ceinture de Feu du Pacifique, bien connue pour son activité sismique et volcanique. La majorité des grands séismes se produisent sur ou près des limites entre les plaques tectoniques qui composent la surface de la Terre, et les exemples récents ne font pas exception. Cependant, il existe des conditions tectoniques particulières autour de l’île de Lombok.
Les derniers séismes ont été observés le long d’une zone assez spéciale où la plaque tectonique australienne commence à passer par-dessus la plaque où se trouve l’île de Lombok. Elle ne glisse pas en dessous de sa voisine – processus de subduction très fréquent – comme cela se produit plus au sud de Lombok. (voir carte ci-dessous)
Certains des séismes qui secouent l’Indonésie peuvent être très violents, comme le séisme de M 9,1 sur la côte ouest de Sumatra qui a déclenché le tsunami de 2004 dans l’Océan Indien. Ce séisme s’est produit le long de la zone de subduction Java-Sumatra, là où la plaque australienne plonge sous la plaque de la Sonde.
À l’est de Java, la zone de subduction se trouve « bloquée » par la croûte continentale australienne, beaucoup plus épaisse que la croûte océanique qui glisse sous Java et Sumatra. Comme la croûte continentale australienne ne parvient pas à passer sous la plaque de la Sonde, elle lui passe par-dessus. Ce processus est connu sous le nom de poussée d’arrière-arc.
Les données des récents séismes de Lombok suggèrent qu’ils sont liés à cette zone d’arrière-arc qui s’étend au nord des îles s’étendant de l’est de Java à l’île de Wetar, juste au nord du Timor. Historiquement, de puissants séismes se sont également produits le long de cette poussée d’arrière-arc près de Lombok, en particulier au 19ème siècle, mais aussi plus récemment.
Les épicentres des derniers tremblements de terre à Lombok ont été localisés dans le nord de l’île, sous terre, et à faible profondeur. Les séismes terrestres peuvent parfois provoquer des glissements de terrain sous-marins et un tsunami. Lorsque des séismes peu profonds rompent le plancher océanique, ils peuvent déclencher des tsunamis meurtriers.
La région autour de Lombok a une histoire de tsunamis. En 1992, un séisme de magnitude 7,9 s’est produit au nord de l’île de Flores ; il a provoqué un tsunami qui a englouti plus de 2 000 villages côtiers. Les séismes du 19ème siècle dans cette région ont également causé de puissants tsunamis qui ont tué de nombreuses personnes.
Malheureusement, on ne sait pas prévoir les séismes. Une compréhension des dangers et une éducation des populations sont donc essentielles pour se préparer aux événements futurs.
Source: The Conversation, USGS.

Le bilan du dernier séisme est de 131 morts (164 selon les dernières chiffres de la presse indonésienne), 1477 blessés et 156 000 personnes déplacées.

————————————————-

Several large earthquakes have struck the Indonesian island of Lombok in the past weeks. A first quake with a magnitude of M 6.4 was recorded on July 29th, 2018, killing13 people and injuring a hundred more. The largest event – M 6.9 on the Richter scale on August 5th, 2018 – killed at least 98 people and injured hundreds. Thousands of buildings were damaged and rescue efforts were hampered by power outages, a lack of phone reception in some areas and limited evacuation options.

Earthquakes are frequent in Indonesia as the country is located on the Pacific Ring of Fire, well known for its seismic and volcanic activity. The majority of large earthquakes occur on or near Earth’s tectonic plate boundaries, and the recent examples are no exception. However, there are some special tectonic conditions around Lombok.

The recent earthquakes have occurred along a specific zone where the Australian tectonic plate is starting to move over the Indonesian island plate; it does not slide underneath it, as occurs further to the south of Lombok. (see map below)

Some of the earthquakes that shake Indonesia can be very powerful, such as the M 9.1 quake off the west coast of Sumatra that generated the 2004 Indian Ocean tsunami. This earthquake occurred along the Java-Sumatra subduction zone, where the Australian tectonic plate plunges underneath Indonesia’s Sunda plate.

To the east of Java, the subduction zone has become “jammed” by the Australian continental crust, which is much thicker than the oceanic crust that moves beneath Java and Sumatra. The Australian continental crust can’t be pushed under the Sunda plate, so instead it is starting to ride over the top of it. This process is known as back-arc thrusting.

The data from the recent Lombok earthquakes suggest they are associated with this back-arc zone which extends north of islands stretching from eastern Java to the island of Wetar, just north of Timor. Historically, large earthquakes have also occurred along this back-arc thrust near Lombok, particularly in the 19th century but also more recently.

Lombok’s recent earthquakes occurred in northern Lombok under land, and were quite shallow. Earthquakes on land can sometimes cause undersea landslides and generate a tsunami wave. But when shallow earthquakes rupture the sea floor, much larger and more dangerous tsunamis can occur.

The region around Lombok has a history of tsunamis. In 1992, an M 7.9 earthquake occurred just north of the island of Flores and generated a tsunami that swept away coastal villages, killing more than 2,000. 19th century earthquakes in this region also caused large tsunamis that killed many people.

Unfortunately, earthquakes cannot be predicted, so an understanding of the hazards and an education of the populations are vital to be prepared for future events.

Source: The Conversation, USGS.

According to the latest figures, 131 persons were killed (164 according to the latest figures in the Indonesian newspapers), 1477 injured and 156,000 displaced by the last earthquake.

Source: The Conversation

Pas plus d’éruptions et de séismes qu’autrefois // Not more eruptions and earthquakes than in the past

Très souvent, les gens que je rencontre me disent qu’ils ont l’impression qu’il y a plus d’éruptions volcaniques ou de catastrophes naturelles que par le passé. Je leur explique que ce n’est pas vrai. Ils ont cette impression car aujourd’hui les nouvelles se propagent à la vitesse de la lumière grâce aux nouvelles technologies comme Internet. Je leur rappelle aussi que le fonctionnement de la planète s’observe en prenant en compte l’échelle géologique et non notre petite échelle humaine !
Des dizaines de milliers de personnes se sont inquiétées récemment en entendant parler des activités sismique et volcanique le long de la Ceinture de Feu du Pacifique. Un puissant séisme dans le Golfe d’Alaska, une avalanche et une éruption volcanique dans le centre du Japon, ainsi que l’éruption du Mayon aux Philippines se sont tous produits à quelques jours d’intervalle.
Pour rassurer les gens qui commençaient à s’inquiéter de cette accumulation d’événements, le Bureau des Nations Unies pour la Réduction des Risques liés aux Catastrophes a envoyé un tweet pour rappeler que la Ceinture de Feu était « active ». Il convient de rappeler que la Ceinture de Feu du Pacifique désigne une série de volcans, de sites sismiques et de plaques tectoniques autour de l’Océan Pacifique. Elle s’étend sur 40 000 km depuis la pointe sud de l’Amérique du Sud jusqu’à la Nouvelle-Zélande. Environ 90% des séismes de notre planète se produisent le long de cette zone et la Ceinture est jalonnée de 75% des volcans actifs sur Terre, ce qui représente 452 édifices.

Voici quelques exemples des derniers événements :
– Le 23 janvier 2018, un séisme de magnitude M 7,9 a été enregistré dans le Golfe d’Alaska. Il a brièvement déclenché une alerte tsunami dans les zones côtières de l’Alaska et de la Colombie-Britannique au Canada.
– Le même jour, un soldat a été tué et au moins 11 autres ont été blessés dans le centre du Japon par une avalanche qui a probablement été déclenchée par une éruption volcanique du mont Moto-Shirane. L’explosion soudaine a également fait pleuvoir des projections sur un domaine skiable près de Kusatsu en blessant des skieurs dans une télécabine.
– Au début de l’année dernière, l’éruption du Mont Agung à Bali a entraîné la fermeture de l’aéroport de Denpasar et l’évacuation d’au moins 100 000 personnes.
– Le Sinabung, sur l’Ile de Sumatra en Indonésie, était en sommeil depuis 400 ans avant d’entrer à nouveau en éruption en 2010. En 2016, au moins sept personnes sont mortes, victimes de coulées pyroclastiques. Le Sinabung a connu un regain d’activité en 2017 et l’éruption continue toujours.
– Le Kadovar, en Papouasie-Nouvelle-Guinée, crache de la cendre depuis plusieurs semaines, provoquant l’évacuation de milliers de personnes des îles voisines. Tous ces volcans sont situés le long de la Ceinture de Feu et leur comportement actuel n’a rien d’extraordinaire. Bien que ces différents événements se produisent quasiment en même temps dans différentes parties de la région, il n’existe pas nécessairement de relation entre eux.

Sans oublier l’éruption du Mayon qui, si elle n’a pas fait de victimes, a déplacé plus de 50 000 personnes.

—————————————

Very often, the people I meet tell me they get the impression there are more volcanic eruptions or natural disasters than in the past. I usually tell them that this is not true. They get this impression because today news travels at the speed of sound thanks to new technologies like the Internet.

Tens of thousands of people have had their lives disrupted recently by seismic and volcanic activity along the Ring of Fire. An earthquake in the Gulf of Alaska, an avalanche and volcanic eruption in central Japan and the eruption of Mayon in the Philippines all occurred within days of each other.

To comfort the people who were starting to worry about this accumulation of events,  the UN Office for Disaster Risk Reduction sent a tweet on Tuesday warning that the Ring of Fire was « active ». It should be remembered that the Ring of Fire refers to a string of volcanoes, earthquake sites and tectonic plates around the Pacific. It spreads across 40,000km from the southern tip of South America all the way to New Zealand. Roughly 90% of all earthquakes occur along the area and the Ring is dotted with 75% of all active volcanoes on Earth, which means 452 individual active volcanoes.

Here are a few examples of the latest events:

  • On January 23rd 2018, an M 7.9 earthquake struck off the coast of Alaska.The quake briefly triggered a tsunami warning for coastal areas of Alaska and British Columbia in Canada.
  • On the same day, one soldier was killed and at least 11 others injured in central Japan by an avalanche that may have been triggered by a volcanic eruption. The eruption of Mount Moto-Shirane also sent rocks raining down a ski area near Kusatsu in central Japan and caused injuries among skiers in a gondola.
  • Earlier last year, the eruption of Bali’s Mount Agung led to the closure of the city’s international airport and forced up to 100,000 people to evacuate.
  • Mount Sinabung, more than 3,000 km away in Sumatra, Indonesia, had been dormant for 400 years before it began erupting again in 2010. In 2016, at least seven people died after pyroclastic flows travelled across the region. Sinabung began erupting again in 2017 and is still going.
  • Mount Kadovar, a volcano in Papua New Guinea, has been spewing ash for weeks, causing the evacuation of thousands of people from nearby islands.

Without forgetting the eruption of Mayon. It did not cause casualties but displaced more than 50,000 persons.

All these volcanoes are located along the Ring of Fire and there is nothing unusual about what we are seeing at the moment. These events are occurring at the same time in different parts of the region. There is not necessarily a relationship between them.

Moto-Shirane (Crédit photo: F. Gueffier)

Mont Agung (cvapture image webcam)

Sinabung (Crédit photo: J.P. Vauzelle)

La Ceinture de Feu à bicyclette! / Cycling the Ring of Fire!

Le randonneur cycliste qui sommeille en moi ne peut être qu’admiratif du périple effectué par deux Québécois – Pierre Bouchard et Janick Lemieux – qui ont parcouru la Ceinture de Feu sur leurs deux-roues, soit environ 60 000 kilomètres en 70 mois. La bande-annonce de leur spectacle – qui mélange photos et vidéos – montre plusieurs contrées traversées, comme le Japon, l’Indonésie ou le Kamchatka.

http://www.squamishchief.com/article/20121129/SQUAMISH0604/311299938/-1/squamish/cycling-the-ring-of-fire

Les deux cyclos présenteront eux-mêmes à Vancouver mardi prochain la troisième partie de leur parcours : 25000 km entre Djakarta et Vancouver. Je leur tire mon chapeau car il n’est pas évident de parcourir une aussi longue distance avec des vélos tout-terrain affublés de lourdes sacoches sur des routes qui deviennent parfois des pistes à la limite du praticable.  Sans parler des problèmes matériels (crevaisons, bris de chaîne, mauvaise météo, problèmes de santé, etc.)

Il est dommage que le spectacle, sponsorisé par la revue Pedal Magazine, soit loin de la France. Je m’y serais rendu sans hésiter !