La catastrophe glaciaire continue dans les Alpes // The glacier disaster continues in the Alps

Selon une étude du CNRS de Grenoble, la fonte des glaciers a été sous-estimée. Le manque de neige l’hiver dernier et les récentes fortes chaleurs estivales aggravent la situation.

Ainsi, sur le glacier d’Argentière, en Haute-Savoie, la fonte des glaces devrait atteindre des records cette année. D’une superficie de 19 km², il est victime du réchauffement climatique et son état ne fait qu’empirer en ce début d’été. Etudié grâce à une cinquantaine de balises GPS, les voyants sont au rouge. Les alpinistes l’ont bien compris et désertent l’endroit, qui est devenu trop dangereux. Comme en Nouvelle Zélande avec les glaciers Fox et Franz Josef, la fonte des glaces libère des rochers prêts à tomber.
De son côté, la Mer de Glace devrait reculer d’1,2 km d’ici 30 ans selon une estimation modérée. Quant au glacier de Sarenne, il aura disparu d’ici 5 ans.
La triste conclusion de l’étude du CNRS est que les glaciers situés sous 3500 mètres d’altitude devraient tous disparaître d’ici 2100. Les stations de ski alpines ont de quoi s’inquiéter.

Source : France 3 Auvergne-Rhône-Alpes.

————————————

According to a study by the CNRS of Grenoble, the melting of glaciers has been underestimated. The lack of snow during the last winter and the recent summer heat have made the situation still worse.
Thus, on the Argentière glacier, in Haute-Savoie, the melting of ice is expected to reach a record this year. This glacier with a surface of 19km² is a victim of global warming and its condition only worsened at the beginning of summer. The glacier is scrutinized thanks to about fifty GPS beacons, and the lights are red. Mountaineers have understood this and have deserted the place which has become too dangerous. Just like in New Zealand with the Fox and Franz Josef glaciers, the melting of the ice lets loose rocks which are ready to fall.
For its part, the Mer de Glace is expected to decline by 1.2 km within 30 years, according to a moderate estimate. As for the glacier of Sarenne, it will disappear within 5 years.
The sad conclusion of the CNRS study is that glaciers below 3500 metres a.s.l. are all likely to disappear by 2100. Alpine ski resorts have something to worry about.
Source: France 3 Auvergne-Rhône-Alpes.

Front du Glacier d’Argentière

Ce qu’il reste de la Mer de Glace.

(Photos: C. Grandpey)

 

Suite de la désintégration de l’Antarctique ? // Will Antarctica keep disintegrating ?

Comme je l’ai indiqué il y a quelques jours, l’immense fracture qui cisaillait la plate-forme glaciaire Larsen C a finalement atteint son point de rupture entre le 10 et le 12 juillet 2017. L’événement a donné naissance à un iceberg de la taille de la Lozère.
Cependant, ce n’est pas la fin de l’histoire. En fait, ce pourrait être le début d’une série d’événements plus importants et plus inquiétants. L’iceberg qui s’est détaché – baptisé A68 – n’était qu’un élément de la plate-forme Larsen C. Maintenant, les scientifiques veulent savoir jusqu’à quel point le reste de la plate-forme glaciaire va rester stable et relié au continent antarctique.
Des images satellitaires récentes laissent supposer que certaines parties du reste de la plate-forme Larsen C sont sur le point de larguer les amarres et de donner naissance à de nouveaux icebergs plus petits qui iront tenir compagnie au A68.
En outre, une nouvelle fracture s’est formée près de l’endroit où l’ancienne s’est ouverte. Elle se dirige vers Bawden Ice Rise, élévation de glace qui est un point d’ancrage essentiel pour la plate-forme Larsen C. Les scientifiques ne savent pas si la fracture atteindra Bawden Ice Rise, mais ils surveillent attentivement l’évolution de la situation.
Source: Business Insider.

————————————–

As I put it before, the giant crack that had been racing across Antarctica Larsen C ice shelf finally met its breaking point between July 10th and 12th. The result was an iceberg the size of Lozère.

However, this is not the end of the story. In fact, it could be the beginning of a more important, more dangerous series of events. The iceberg that broke off – dubbed A68 – was just one piece of the much larger Larsen C ice shelf. Now, scientists want to know how stable is the ice shelf that has been left intact, connected to the Antarctic continent.

Recent satellite images suggest that pieces of the remaining ice shelf are already preparing to break off, creating more, smaller icebergs that will join Iceberg A68.

Moreover, a new crack has formed close to where the old crack left off. And it has headed for Bawden Ice Rise, which is a critical anchor point for the ice shelf. Scientists are not certain the crack will reach Bawden Ice Rise, but they are keeping a close eye on it, nevertheless.

Source: Business Insider.

Vue de la plate-forme Larsen C et de Bawden Ice Rise (Source: Science Nordic)

Une solution contre le réchauffement climatique: Un stupa de glace // A solution against global warming : An ice stupa

Le Ladakh – le « pays des hautes passes » – est pris en sandwich entre deux des plus hautes chaînes de montagnes du monde, l’Himalaya et le Kunlun. Les précipitations sont rares dans cette région. L’eau, indispensable à l’irrigation des terres agricoles qui constituent la principale ressource de la population locale, provient principalement de la fonte de la neige et de la glace. Cependant, le changement climatique rend cette terre encore plus sèche, laissant les agriculteurs en manque d’eau dans les mois d’avril et mai, si importants pour les plantations, juste avant que les glaciers commencent à fondre sous le soleil de l’été.
En 2014, Sonam Wangchuk, un ingénieur en mécanique de la région a décidé de s’attaquer à la crise de l’eau au Ladakh où les glaciers reculent en raison de la hausse des températures. Pour cette raison, ils laissent échapper beaucoup moins d’eau au début du printemps mais en fournissent une grande quantité avec la chaleur de l’été qui les amenuise encore davantage.
L’ingénieur avait en tête une idée simple: il voulait rééquilibrer ce déficit naturel en recueillant l’eau provenant de la fonte de la neige et de la glace au cours des mois froids (cette eau est perdue pour tout le monde) et en la stockant jusqu’au printemps, moment où les agriculteurs en ont le plus besoin. Pour ce faire, il a construit un « stupa de glace », cône de glace à deux niveaux, ainsi baptisé par référence aux monuments sacrés traditionnels que l’on rencontre dans toute l’Asie.
Le stupa de glace est édifié sans avoir besoin d’électricité ou de pompes, uniquement grâce à la physique. Tout d’abord, un tuyau est installé sous terre ; il relie un cours d’eau et l’endroit où le stupa de glace doit être implanté, généralement à côté d’un village. L’eau doit provenir d’un point plus élevé, d’une soixantaine de mètres ou plus. Comme un fluide dans un circuit maintient toujours son niveau – selon le principe des vases communicants – l’eau qui provient de 60 mètres en amont gicle à 60 mètres en l’air à la sortie du tuyau en aval, créant une fontaine. La température négative de l’air fait le reste et cristallise immédiatement les gouttelettes d’eau sous forme de glace qui tombe juste en dessous en formant un cône. Un cône est très facile à fabriquer avec de la glace, car tout écoulement sous forme de gouttes forme naturellement un cône. Les glaçons sont eux-mêmes des cônes inversés.
Un cône a des propriétés très intéressantes: il a une surface d’exposition minimale par rapport au volume d’eau qu’il contient; Cela signifie qu’il fond très lentement. Le prototype de 6 mètres de hauteur contenant 150 000 litres d’eau a duré de l’hiver jusqu’à la mi-mai, au moment précis où l’eau était nécessaire pour l’irrigation, alors que toutes les glaces environnantes avaient disparu fin mars. L’aspect révolutionnaire du stupa est qu’il fonctionne même à basse altitude et à des températures très chaudes.
Ce n’est pas la première fois que l’on essaye de créer un glacier artificiel dans la région, mais les tentatives précédentes ont eu lieu au-dessus de 4 000 mètres d’altitude en faisant geler l’eau dans de grands canaux qui exigeaient de l’ombre et beaucoup d’entretien, et étaient situés trop loin des champs pour être pratiques.
Au lieu de cela, la forme conique du stupa de glace peut résister à la lumière directe du soleil et le cône peut être édifié là même où l’eau est nécessaire. Cependant, les stupas ne sont pas sans entretien car ils ont besoin d’une intervention manuelle; Par exemple, les fontaines peuvent se bloquer lorsque l’eau gèle dans les tuyaux. En améliorant la technique, ils devraient devenir plus fiables. Des tests commenceront au Pérou cet été en profitant de l’hiver dans l’hémisphère sud.
En raison de l’infrastructure de tuyauterie requise, le coût initial du projet est relativement élevé. L’ingénieur en mécanique a estimé qu’il aurait besoin d’environ 125 000 dollars pour réaliser la première version du stupa de glace à grande échelle. Il pourrait atteindre 25 mètres de hauteur et permettre l’irrigation d’une dizaine d’hectares de cultures. Conscient que ce coût serait trop élevé pour les autorités locales, il a décidé d’avoir recours à un financement participatif par l’intermédiaire de la plateforme Indiegogo. Cette initiative a été couronnée de succès et a suscité l’intérêt des institutions locales. En fin de compte, le gouvernement du Ladhak l’a intégrée dans ses plans de développement. Le stupa de glace a également remporté un Rolex Award for Enterprise en 2016, ce qui a rapporté une somme de 100 000 francs suisses (environ 105 000 dollars).

https://youtu.be/FdVijr10DZ0

Les stupas de glace pourraient également être transformés en attractions touristiques, en y incorporant des bars à glace et des hôtels de glace. Cela reviendrait à mélanger le sacré et le profane et construire un pont entre différentes cultures.
Source: CNN.

—————————————-

Ladakh- the « land of high passes » – is sandwiched between two of the world’s tallest mountain ranges, the Himalayas and the Kunlun. Rainfall is rare in the region. Water, essential for irrigating the farmlands that are the lifeblood of the local population, mostly comes from melting snow and ice. However, climate change is making this land even drier, leaving farmers without water in the crucial planting months of April and May, right before the glaciers start to melt in the summer sun.

In 2014, Sonam Wangchuk, a local mechanical engineer set out to solve the water crisis of the Ladakh. The natural glaciers are shrinking due to rising global temperatures. For that reason, they provide far less water in early spring but then release a lot in the summer heat, shrinking even more.

The engineer had a simple idea: he wanted to balance this natural deficit by collecting water from melting snow and ice in the cold months, which would normally go to waste, and store it until spring, just when farmers need it the most. He then built a two-story prototype of an « ice stupa », a cone of ice that he named after the traditional sacred monuments that are found throughout Asia.

The ice stupa is created using no power or pumps, only physics. First, a pipe is laid underground, connecting a stream of water and the location where the ice stupa is required, usually next to a village. The water must come from a higher altitude, usually around 60 meters or more. Because a fluid in a system always wants to maintain its level – according to the principle of the communicating vessels – water from 60 meters upstream will spray 60 metres into the air out of the downstream pipe, creating a fountain. The freezing air temperature does the rest, immediately crystallizing the water droplets into ice that falls right below, forming a cone. A cone is very easy to make with ice, because any dripping naturally forms a cone underneath; icicles are inverted cones.

A cone has more desirable properties: It has minimal exposed surface area for the volume of water it contains; that means it melts very slowly. The 6-metre-tall prototype containing 150,000 litres of water lasted from winter until mid-May, just when water is needed for irrigation, while all the surrounding ice on the ground had gone by the end of March. The revolutionary aspect of the ice stupa is that it works even at low altitude and in very warm temperatures.

It’s not the first type of artificial glacier in the area, but previous endeavours in this area were only attempted above 4,000 metres a.s.l. by freezing waters in large canals which required shade and a lot of maintenance, and were located too far away from the fields to be practical.

Instead, the conical shape of the ice stupa can withstand even direct sunlight and it can sit right were the water is required. However, the stupas are not maintenance-free as they need a lot of manual intervention; for instance, the fountains can freeze when the pipes ice up. It is hoped that soon, by refining the technology, they will become more reliable. Tests will start in Peru this summer, taking advantage of an extra winter in the southern hemisphere.

Because of the piping infrastructure required, the initial investment can be steep. The mechanical engineer estimated he would need around $125,000 to build his first full-scale version, which could reach 25 metres in height and provide irrigation to about 10 hectares of land. As the price would be too high for local authorities, he decided to crowdfund the project, asking people for contributions through Indiegogo, a popular crowdfunding platform. The campaign was successful and piqued the interest of the local institutions. In the end, the Ladhaki government is incorporating it its development plans. The ice stupa also won a Rolex Award for Enterprise in 2016, which carried a 100,000 Swiss Franc prize (around $105,000).

https://youtu.be/FdVijr10DZ0

The stupas might also be turned into tourist attractions, by building ice bars and ice hotels inside them. This would mean a bit like mixing the sacred and the profane and build a bridge between different cultures.

Source: CNN.

Vue du prototype du stupa de glace

(Crédit photo: Sonam Wangchuk)

Fonte de la glace de mer et pollution dans l’Arctique // Sea ice melting and pollution in the Arctic

Alors que l’Arctique se réchauffe plus vite que le reste de la planète, une nouvelle étude démontre comment la pollution, que se soient les nappes d’hydrocarbures ou les contaminants organiques, est susceptible de  passer d’une région de l’Arctique à une autre. Dans cette étude publiée dans la revue Earth’s Future, des scientifiques de l’Université de Columbia (État de New York) et de l’Université McGill (Montréal) ont étudié le mouvement de la glace de mer d’un pays à l’autre dans l’Océan Arctique. En comparant les données de 1988 à 2014, ils ont constaté que la glace de mer se déplaçait de plus en plus vite.
Les chercheurs ont analysé 239 023 formations de glace dans l’Arctique et sont arrivés à la conclusion que « le déplacement de la glace de mer s’est accéléré de 14% par décennie ». La glace en provenance des plateformes glaciaires russes – qui produisent plus de la moitié de la glace de mer de la région – « a mis 46% moins de temps pour atteindre les zones économiques d’autres pays où elle a finalement fondu ». La glace de mer nord-américaine s’est déplacée vers les eaux européennes et a fondu 37% plus vite au cours des années qui ont suivi l’an 2000, que pendant les années antérieures à cette date.
Alors que la plus grande partie de la glace de mer reste et fond là où elle se forme, une certaine partie se détache et se déplace essentiellement vers l’ouest. De cette façon, la glace en provenance de Russie dérive vers les eaux de Norvège et du Groenland; La glace en provenance de l’Alaska se dirige principalement vers les eaux russes; l’Alaska reçoit la majeure partie de sa glace du Canada.
L’étude a révélé que 24% de la glace de mer a fondu sans se déplacer et 52 % a fondu à moins de 100 kilomètres de son origine, c’est-à-dire dans les eaux territoriales d’un pays (celles-ci s’étendent jusqu’à à 320 km du littoral). Cependant, près du quart de la glace de mer – plus d’un million de kilomètres carrés – qui s’est formée dans des eaux territoriales s’est finalement déplacée.

 Les scientifiques attribuent l’accélération de déplacement de la glace de mer aux étés plus chauds dans l’Arctique. Comme les températures augmentent dans la région, la quantité de glace de mer qui s’est formée diminue et la glace qui se forme est plus mince. Cette glace plus mince peut être transportée plus loin par le vent et les courants océaniques que de la glace épaisse.
En même temps que la glace de mer se déplace plus vite, il en va de même pour les polluants qui peuvent voyager plus loin de leur source. L’étude montre que ce mouvement devient particulièrement inquiétant lorsqu’il s’agit des nappes d’hydrocarbures.
Avec la réduction de la surface de glace de mer, les scientifiques ont observé une «augmentation significative» de l’exploration pétrolière et gazière dans l’Océan Arctique qui, selon l’’USGS, recèle 13% des réserves pétrolières encore exploitables dans le monde. Un plus grand nombre de forages combiné à un déplacement plus rapide de la glace de mer pourrait entraîner des catastrophes si des marées noires se produisaient dans la région. Dans un modèle du «pire scénario», dans lequel un puits de pétrole explose à la fin de la saison de forage estivale, les chercheurs ont constaté qu’une marée noire dans la Mer de Beaufort pourrait dériver sur plus de 1 200 km avant le mois d’avril suivant. De plus, les opérations de nettoyage seraient bloquées par la glace et l’obscurité permanente des mois d’hiver.
Il convient de noter que des sources de pollution autres que le pétrole peuvent dériver elles aussi, comme les pesticides agricoles et les microplastiques. Comme les contaminants se décomposent plus lentement dans les eaux froides de l’Arctique, la pollution qui se dirige vers l’Arctique depuis les latitudes inférieures se prolonge plus longtemps. La recherche met également en évidence l’interconnexion des pays arctiques et comment une situation dans un pays peut avoir un impact sur toute la région.
Source: Alaska Dispatch News.

—————————————

As the Arctic warms faster than the rest of the planet, new research demonstrates how pollution, from oil spills to organic contaminants, could be passed from one Arctic neighbour to another. In the new study released in the journal Earth’s Future, scientists from Columbia University (New York State) and McGill University (Montreal) examined the movement of sea ice from country to country in the Arctic Ocean. Comparing data from 1988 to 2014, they found that sea ice is moving faster between destinations.

The study analyzed 239,023 ice formations in the Arctic and found that the movement of sea ice accelerated 14 percent each decade. Ice from Russian ice shelves, which produce more than half of the region’s sea ice, traveled to the exclusive economic zones of other countries 46 percent faster, where it eventually melted. North American sea ice traveled to European waters and melted 37 percent faster in the years after 2000 when compared to pre-2000 data.

While most sea ice stays and melts where it forms, some ice breaks off and travels in a mostly westerly direction. In this way, ice from Russia floats to Norway and Greenland waters; ice from Alaska waters primarily travels to Russian waters; Alaska receives most of its ice from Canada.

The study found that 24 percent of sea ice melted without straying and 52 percent melted within 100 kilometres of its origin, namely well within a nation’s exclusive economic zone, which extends 320 km off a country’s coastline. However, almost a quarter of the sea ice that formed inside an exclusive economic zone eventually strayed, totalling more than one million square kilometres of ice.

Scientists attribute this speedier sea ice to warmer Arctic summers. As temperatures increase in the region, the amount of sea ice formed decreases, and the ice that does form is thinner. Thin ice can be carried farther by wind and ocean currents than thick ice.

As Arctic ice is travelling faster, the potential increases for pollutants to travel farther from where they are dumped. The study shows that this movement becomes especially important when it comes to oil spills.

With less ice in Arctic regions, scientists have observed a « significant increase » in oil and gas exploration in the Arctic Ocean, where the USGS estimates that 13 percent of the world’s remaining oil is located. More drilling combined with faster sea ice movement can lead to disaster if an oil spill occurs in the region. In a model of the « worst-case scenario, » in which an oil well blows out at the end of the summer drilling season, the researchers found that a Beaufort Sea spill could be carried by sea ice over 1,200 km by the next April. Cleanup efforts would be stymied by heavy ice and 24-hour darkness in winter months.

It should be noted that sources of pollution besides oil can be dragged along with the ice, including agricultural pesticides and microplastics. Because contaminants break down more slowly in Arctic waters compared to warmer climates, pollution that makes its way to the Arctic from lower latitudes sticks around longer. The research highlights how interconnected Arctic countries are, and how an action by one country could impact the whole region.

Source : Alaska Dispatch News.

Photos: C. Grandpey

 

Glaciers alpins en juillet 2017 : (6) Les glaciers de Grindelwald (Suisse)

Au cœur des Alpes Bernoises, Grindelwald est une station de ski dont la réputation n’est plus à faire. Située dans la région de la Jungfrau et au pied de la face nord de l’Eiger, elle est entourée par plusieurs glaciers qui, comme leurs voisins alpins se réduisent comme peau de chagrin. Il suffit d’observer le Glacier Inférieur de Grindelwald (Unterer Grindelwaldgletscher) pour s’en rendre compte. En 1973, il présentait encore une longueur d’environ 8,3 kilomètres et une superficie de 20,8 km2. Le glacier a considérablement diminué depuis, avec une longueur de seulement 6,2 kilomètres en 2015. Le recul est particulièrement flagrant depuis 2007. Au milieu du 19ème siècle, il remplissait la vallée jusqu’à Mettenberg, un quartier à l’est de Grindelwald. En 1900, il occupait encore toute la vallée avec une épaisseur d’environ 300 mètres jusqu’à une altitude de 1.700 mètres. Vers 2000, il atteignait encore la gorge entre l’Eiger et le Mättenberg. Aujourd’hui, il faut des jumelles pour scruter la surface de la glace depuis la vallée.

Photos: C. Grandpey

Glaciers alpins en juillet 2017 : (5) Le Glacier du Rhône (Suisse)

Le Glacier du Rhône est situé à l’extrémité nord-est du canton du Valais et on peut y accéder en suivant la route de la Furka, un de ces cols mythiques qui fait rêver les cyclotouristes, catégorie à laquelle j’appartiens.

Comme les glaciers des Bossons et d’Argentière et comme la Mer de Glace, le Glacier du Rhône subit de plein fouet les effets du réchauffement climatique. Des repères montrent le niveau qu’il atteignait au cours des dernières décennies. Il faut descendre près du village de Gletch pour trouver le panneau qui marque le point où arrivait le glacier en 1856. Depuis cette époque, il a aussi perdu 350 mètres d’épaisseur, et près de 40 mètres pour la seule dernière décennie.

Chaque année, le Glacier du Rhône perd entre 5 et 7 mètres d’épaisseur et on estime que son volume aura diminué de moitié d’ici la fin de la prochaine décennie. Il est probable qu’à la fin du siècle il ne reste plus que 10% du volume de glace actuel.

Contrairement à la fonte des glaces polaires, la fonte des glaciers alpins aura un impact négligeable sur le niveau des océans. En revanche, elle aura des effets dramatiques en Europe, où les Alpes jouent le rôle d’un château d’eau, stockant de l’eau en hiver pour la libérer en été et alimenter fleuves et rivières. Si la fonte des glaces s’accélère, les fleuves verront leurs niveaux augmenter, des inondations auront lieu ; ensuite, au milieu du siècle, les niveaux baisseront de façon dramatique.

Quand on avance sur le chemin qui conduit au Glacier du Rhône, on est surpris de voir une portion d’un blanc immaculé. On pense tout d’abord qu’il s’agit d’une vaste plaque de neige résiduelle. En y regardant mieux, on se rend compte que le glacier a été recouvert d’immenses couvertures afin de freiner sa fonte au niveau de la grotte qui est creusée chaque année depuis  1870, comme à la Mer de Glace. Les couvertures sont censées réduire la fonte de 70%.  Elles vont la ralentir pendant un an ou deux, puis il faudra retirer les couvertures car la glace en dessous aura disparu. Un lac de fonte s’est formé devant le front en pente douce du glacier. C’est son déversoir qui donne naissance au jeune Rhône…

Voici le Glacier du Rhône…

Des repères montrent sa hauteur passée…

Des couvertures blanches protègent la grotte de glace…

La Grotte Bleue…

Le front du glacier…

Ainsi naît le Rhône!

Photos: C. Grandpey

De la suie sur la glace du Groenland et les glaciers de l’Himalaya // Soot on Greenland’s ice and glaciers in the Himalayas

Pour la première fois, des scientifiques ont retrouvé de la suie provenant des feux de forêt au Canada jusque sur la calotte glaciaire du Groenland. Les particules sombres ont atterri sur la glace avec la faculté d’accélérer sa fonte de manière significative. C’est la première étude exhaustive d’un processus susceptible d’accélérer la fonte du Groenland dans les prochaines années et donc contribuer à la hausse du niveau des océans.
L’étude a révélé qu’un événement atmosphérique particulier, en l’occurrence une tempête de neige fin juillet et début août 2013 avait été le principal responsable de la retombée de suie à la surface du Groenland. Sans cette tempête pour les faire descendre de l’atmosphère à la surface de la Terre, les particules de suie auraient probablement survolé la calotte glaciaire à haute altitude sans jamais atterrir.
L’étude a été publiée dans la revue Geophysical Research Letters. 14 scientifiques d’origines diverses y ont contribué : États-Unis, France et Norvège, en particulier..
La suie, émise lors d’une combustion, est essentiellement composée de carbone noir qui affecte l’albédo ou réflectivité d’une surface. Plus la glace est blanche et plus elle réfléchit les rayons du soleil dans l’espace. A l’inverse, les mares d’eau et les particules noires réduisent la réflectivité de la couche de glace en lui permettant d’absorber plus de chaleur. L’eau est moins réfléchissante que la neige et, dans certains cas, le développement de la vie biologique dans les mares à la surface des calottes glaciaires contribue à cet assombrissement et accélère le processus de fonte.
L’étude, qui a examiné un seul événement en 2013, ne s’est pas attardée sur les conséquences qu’aurait une importante retombée de suie sur le Groenland en raison d’un plus grand nombre de feux de forêt. Il ne faudrait toutefois pas écarter une telle éventualité. La quantité de suie déposée lors de cet événement unique aurait été suffisante pour provoquer une augmentation de la fonte de la glace si elle n’avait pas été, par la suite, recouverte d’une nouvelle couche de neige pendant une autre tempête. L’étude a révélé que 57 pour cent de tout le carbone noir qui s’est déposé dans le nord-ouest du Groenland en 2013 provenait de cet événement unique de feux de forêts.

La conclusion de l’étude est que le risque d’intensification des feux de forêts, et donc de la fonte du Groenland, doit être pris au sérieux, même si la relation entre les deux phénomènes est à peine prouvé à ce stade. Le réchauffement de la température atmosphérique et de l’océan reste la principale cause de la fonte du Groenland, plus que les particules de carbone noir en provenance des feux de forêts.

Source: The Washington Post.

°°°°°°°°°°

Les glaciers du Groenland ne sont pas les seuls à recevoir la suie des feux de forêt. Les glaciers de l’Himalaya et du Plateau Tibétain fondent eux aussi plus rapidement à cause des nuages ​​de suie provenant des gaz d’échappement des véhicules diesel et des feux d’écobuage, essentiellement en Inde. On trouve des concentrations de carbone noir dans l’Himalaya, un univers censé être vierge et d’une grande pureté. Les glaciers de ces régions alimentent la plupart des principaux fleuves d’Asie. A court terme, le résultat d’une fonte importante est un fort risque d’inondation en aval.
L’Inde et la Chine produisent environ un tiers du carbone noir dans le monde, et les deux pays tardent à prendre des mesures. La réduction des émissions de carbone noir serait relativement peu coûteuse et aiderait à réduire sensiblement le réchauffement climatique. Le remplacement des anciennes cuisinières par des versions modernes qui émettent beaucoup moins de suie pourrait rapidement mettre fin au problème. Un contrôle de la circulation dans la région de l’Himalaya atténuerait les dommages causés par les émissions des moteurs diesel.
En fait, les gouvernements indien et chinois sont réticents à proposer des plans visant à réduire les émissions de carbone noir parce qu’ils veulent que l’attention reste concentrée sur les pays riches qui, selon eux, doivent tout d’abord réduire leurs émissions de dioxyde de carbone.
Source: The Guardian.

———————————–

For the first time, scientists have tracked soot from Canadian wildfires all the way to the Greenland ice sheet where the dark particles landed on the ice and had the potential to significantly enhance its melting. It’s the first comprehensive documentation of a process that could hasten Greenland’s melting in the future and, together with it, contribute to increasing sea level rise.

The study found that a specific atmospheric event, a snowstorm in late July and early August of 2013, was the critical factor in delivering the soot to the surface of Greenland. Without that storm to bring them down from the atmosphere to the surface, the soot particles could have travelled over the ice sheet at a high altitude and never landed.

The paper was published in Geophysical Research Letters. It had 14 scientific contributors from institutions in the U.S., France, and Norway.

Soot, which emerges from combustion and is largely comprised of a substance called black carbon, influences albedo, or reflectivity. Whiter ice reflects more solar rays back to space. On the contrary, pools of water and dark particles reduce the reflectivity of the ice sheet, allowing it to absorb more heat. Water is less reflective than pure snow, and in some cases the growth of biological life in ponds atop the ice sheets also causes darkening, which speeds the melting process.

The study, which only examined a single event, was not able to document a trend towards an increased deposition of soot atop Greenland due to a larger number of wildfires. But it certainly hints at the possibility that such a trend could occur. The amount of soot deposited in this single event would have been enough to cause an increase in melting, if not for the fact that it was subsequently buried by another snowstorm. The study found that 57 percent of all of the black carbon that fell in northwest Greenland in 2013 occurred in this single event.

That means the risk that worsening fires could enhance the melting of Greenland is definitely worth taking seriously, if hardly proven at this point. Warming atmospheric and ocean temperatures remain the chief driver of the melting of Greenland, rather than the distant transport of melt-enhancing particles from fires.

Source: The Washington Post.

°°°°°°°°°°

Greenland’s glaciers are not the only ones to be covered with soot from wildfires. Glaciers in the Himalayas and the Tibetan plateau are melting faster because of the effects of clouds of soot from diesel fumes and wood fires. Concentrations of black carbon are found n the Himalayas in what are supposed to be pristine, untouched environments. Glaciers in these regions feed most of the major rivers in Asia. The short-term result of substantial melting is severe flooding downstream.

India and China produce about a third of the world’s black carbon, and both countries have been slow to act. Decreasing black carbon emissions should be a relatively cheap way to significantly curb global warming. Replacing primitive cooking stoves with modern versions that emit far less soot could quickly end the problem. Controlling traffic in the Himalayan region should help ease the harm done by emissions from diesel engines.

Experts say that both New Delhi and Beijing have been reluctant to come forward with plans on black carbon because they do not want attention diverted from richer nations’ responsibility to cut carbon dioxide emissions.

Source: The Guardian.

Photo: C. Grandpey