Les feux de forêts au Canada font fondre la banquise // Wildfires in Canada are melting the ice sheet

Les forêts canadiennes sont en feu, avec 9000 km2 ravagés par les flammes depuis le début de l’année 2017 en Colombie-Britannique. Ces incendies, ainsi que d’autres au Yukon et dans les Territoires du Nord-Ouest ont envoyé de la fumée dans l’atmosphère, parfois jusqu’à 13 kilomètres de hauteur.
Une fois dans l’atmosphère, cette fumée forme une couverture si épaisse qu’elle fait disparaître le soleil dans le nord du Canada. Elle se dirige ensuite vers l’Arctique où elle est susceptible d’accélérer la fonte de la glace en mer et sur terre.
Selon la NASA, la fumée a établi un record d’épaisseur cette année et a été particulièrement dense dans les provinces des Territoires du Nord-Ouest, du Yukon et du Nunavut.
Selon l’Observatoire Terrestre de la NASA, il y a en ce moment une énorme quantité d’aérosols dans l’air. Les aérosols sont de petites particules, telles que la suie ou la cendre volcanique, qui renvoient la lumière du soleil. Le 15 août 2017, l’Ozone Mapping and Profiler Suite (OMPS) à bord du satellite Suomi NPP a enregistré des valeurs d’indice aérosol jusqu’à 49,7. C’est plus de 15 points au-dessus du record précédent établi en 2006 par des incendies en Australie. D’autres records d’indice aérosol ont également été enregistrés les 13 et 14 août. Bien que le satellite Suomi NPP soit relativement récent, l’indice aérosol par satellite remonte au satellite Nimbus-7 en 1978, ce qui permet aux scientifiques de comparer les données sur une longue période.
Selon la NASA, le Visible Infrared Imaging Radiometer Suite (VIIRS), radiomètre infrarouge à bord du satellite Suomi NPP, a détecté une fumée particulièrement dense qui obscurcissait une vaste zone du nord du Canada à partir du 15 août 2017.
Une autre image satellite, en provenance du satellite Aqua, montre un nuage de fumée au nord des zones situées près du lac Athabasca. Les feux de forêts en Colombie-Britannique ont été suffisamment intenses pour produire de nombreux pyrocumulus semblables aux cumulonimbus qui se développent pendant les orages. De tels nuages ​​peuvent propulser la fumée très haut dans l’atmosphère, jusque dans la stratosphère où elle peut rester pendant des jours ou plus.
Les incendies canadiens sont inquiétants pour plusieurs raisons. Tout d’abord, ils signalent la transition vers un avenir où il y aura de plus en plus de feux de forêts dans le Grand Nord, car le changement climatique rend les conditions plus propices à de tels phénomènes. Ensuite, ils sont idéalement situés pour envoyer directement la fumée vers la glace de mer arctique et la calotte glaciaire du Groenland, particulièrement vulnérables en ce moment. En plus de perturber l’équilibre thermique de l’atmosphère, la fumée dépose des particules de suie de couleur sombre sur la glace, ce qui accélère sa fonte en abaissant le pouvoir réfléchissant de la glace et en lui faisant absorber davantage les rayons du soleil.
Des études ont lié le nombre croissant d’incendies de forêts dans certaines régions du Canada et des États-Unis au réchauffement climatique. En fait, selon une étude publiée en 2013, le nombre d’incendies dans les forêts boréales, entre l’Alaska et le Canada d’une part, et entre la Scandinavie et la Russie d’autre part, est le plus important jamais enregistré au cours des 10 derniers millénaires.
Source: Mashable.com.

————————————-

Forests in Canada are ablaze, with 2.2 million acres going up in flames so far this year in British Columbia alone. These fires, and others in the Yukon and Northwest Territories, have been belching smoke into the air, in some cases up to 13 kilometres high.

Once in the atmosphere, weather patterns are causing the wildfire smoke to converge into a blanket so thick it’s blotting out the sun across northern Canada. This smoke is working its way to the high Arctic, where it could speed up the melting of sea and land ice.

According to NASA, the smoke has set a record for its thickness, and has been especially dense across the Northwest Territories, Yukon, and Nunavut provinces.

According to NASA’s Earth Observatory, there is a huge quantity of aerosols in the air. Aerosols are small particles, such as soot or volcanic ash,  that reflect incoming sunlight. On August 15th 2017, the Ozone Mapping and Profiler Suite (OMPS) on the Suomi NPP satellite recorded aerosol index values as high as 49.7. This was more than 15 points higher than the previous record, which was set in 2006 by fires in Australia. Aerosol index records were also set on August 13th and 14th. Although the Suomi NPP satellite is quite new, the satellite aerosol index dates back to the Nimbus-7 satellite in 1978, giving scientists a longer data set.

According to NASA, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured particularly heavy smoke obscuring a wide swath of northern Canada as of August 15th, 2017.

Another satellite image, from the Aqua satellite, shows smoke billowing north from areas near Lake Athabasca. The fires in British Columbia were intense enough to produce numerous pyrocumulus clouds that tower into the sky, resembling thunderstorms. Such clouds can vault smoke high into the atmosphere, all the way to the stratosphere, where it can linger for days or longer.

The Canadian fires are important for several reasons. First, they signal the transition to a more combustible future in the Far North, as climate change makes conditions more conducive to large wildfires. Second, they are ideally located to directly feed smoke toward vulnerable Arctic sea ice and the Greenland Ice Sheet. In addition to altering the heat balance of the atmosphere, the smoke can deposit dark soot particles on the ice, which hastens melting by lowering the reflectivity of the ice and causing it to absorb more incoming sunlight.

Studies have tied the increasing number of large fires in parts of Canada and the U.S. to global warming. In fact, the level of fire activity across the boreal forests, which stretch from Alaska to Canada and around the top of the world to Scandinavia and Russia, is unprecedented in the past 10,000 years, according to a study published in 2013.

Source: Mashable.com.

Concentrations d’aérosols au Canada entre le 10 et le 15 août 2017

(Source : NASA)

 

La fonte inquiétante du Groenland // Greenland’s alarming melting

Dans une note publiée le 18 avril 2017, j’ai attiré l’attention sur la fracturation du glacier Petermann au Groenland.
https://claudegrandpeyvolcansetglaciers.com/2017/04/18/nouvelle-fracturation-du-glacier-petermann-groenland-new-fissure-detected-in-petermann-glacier-greenland/

Ces dernières semaines, les médias ont donné la priorité au vêlage de la plate-forme glaciaire Larsen C en Antarctique. Pourtant, la fracturation qui s’est produite au Groenland est certainement plus inquiétante et peut avoir des conséquences plus importantes.
L’iceberg qui s’est détaché dans l’Arctique la semaine dernière pose problème car, contrairement à son homologue antarctique, il pourrait contribuer faire monter le niveau de la mer. Il s’est détaché de la plate-forme glaciaire sur laquelle s’appuie le glacier Petermann au moment où les températures sont à leur maximum dans l’Arctique.

Le mouvement du glacier Petermann s’est accéléré au cours des dernières années, en faisant se déverser de la glace terrestre dans l’océan à un rythme plus rapide, et en attirant plus de glace depuis le centre du Groenland.
Le dernier iceberg arctique n’est pas particulièrement impressionnant, mais sa séparation du glacier pourrait conduire à une expansion des grandes fractures en amont dans la banquise, ce qui pourrait provoquer une rupture plus rapide. Ce qui inquiète le plus les chercheurs, c’est une fracture au centre de la plate-forme glaciaire. C’est un endroit inhabituel pour la formation des fractures et cette dernière pourrait se connecter à d’autres qui se forment sur les côtés.
Avec le détachement de l’iceberg, la plate-forme glaciaire montre une morphologie jamais observée au cours des 150 années de suivi du glacier Petermann. Elle a déjà perdu de gros morceaux en 2010 et 2012, avec des icebergs qui faisaient plusieurs fois la taille de l’île de Manhattan.
Les glaciers terrestres au Groenland contribuent à l’élévation du niveau de la mer et on s’attend à ce qu’ils perdent de plus en plus de leur masse dans le futur. Le glacier Petermann représente près de 10% de la couche de glace du Groenland; à lui seul, il pourrait faire monter le niveau de la mer de 30 centimètres.
Au fur et à mesure que Petermann reculera, il attirera de la glace en provenance du centre du Groenland, ce qui aura un effet direct sur la hausse du niveau de la mer. Les chercheurs ont prévenu que ce niveau pourrait augmenter de 90 centimètres d’ici la fin du siècle, et une désintégration plus rapide des glaciers de l’Arctique rendrait la situation encore plus inquiétante. Une étude publiée début 2017 dans la revue Nature a montré que la vitesse de fonte au Groenland s’est multipliée par cinq au cours des 25 dernières années.
Source: Scientific American.

—————————————

In a note released on 18 April 2017, I drew attention to the fracturing of the Petermann Glacier in Greenland.

https://claudegrandpeyvolcansetglaciers.com/2017/04/18/nouvelle-fracturation-du-glacier-petermann-groenland-new-fissure-detected-in-petermann-glacier-greenland/

In recent weeks, the media gave priority to the calving of the Larsen C ice shelf in Antarctica. However, the fracturing in Greenland is certainly more worrisome and may have bigger consequences.

The chunk of ice, which broke free in the Arctic last week, is a problem as it might contribute to raising sea level, contrary to the huge iceberg in Antarctica.  It came off the ice shelf that buttresses the Petermann Glacier at the height of seasonal warming in the Arctic region.

Movement of the Petermann Glacier has sped up in recent years, dumping land-based ice into the ocean at a faster rate and drawing more ice down from the centre of Greenland.

The latest iceberg is not particularly dramatic, but it could lead to an expansion of major cracks upstream in the ice shelf, causing it to break up more quickly. Most troubling to researchers is a crack at the center of the shelf. It is an unusual place for cracks to form, and it could connect to separate cracks forming at the sides.

The loss of the iceberg brings the shelf to a state not observed in the 150 years of tracking the Petermann Glacier. The ice shelf bracing the glacier lost major pieces in 2010 and 2012. Both those icebergs were the size of several Manhattans.

Land-based glaciers in Greenland are a primary contributor to global sea-level rise, and they are expected to increasingly lose their mass in the future. Petermann accounts for almost 10 percent of the Greenland ice sheet; it alone could raise sea levels by 30 centimetres.

As Petermann retreats, it will draw down ice from the center of Greenland, all of which will have a direct effect on sea-level increase. Researchers have cautioned that sea levels could rise by 90 centimetres at the end of the century, but a more rapid disintegration of Arctic glaciers would make that number larger. A study published earlier this year in Nature showed that the rate of melting in Greenland has increased fivefold in the last 25 years.

Source: Scientific American.

Image satellite du glacier Petermann (Source: NASA)

Photo: C. Grandpey

Nouveaux records de température en Alaska // New record-high temperatures in Alaska

Les services météorologiques de l’Alaska indiquent qu’un système de hautes pressions établi dans le sud-est de l’Alaska a permis d’enregistrer de nouveaux records de température le samedi 5 août 2017.
Ainsi, à Skagway le mercure a atteint 33,8°C, la plus haute température jamais enregistrée dans cette ville qui se trouve juste à l’ouest de la frontière canadienne. Le minimum ce même jour a été de 12,7 ° C. La température moyenne en août à Skagway est de 23,3°C. Le record précédent était de 33,3°C. Le record précédent pour un 5 août était de 26,6°C.
Des records de 31,1°C, 30,5°C et 30°C ont également été établis le 5 août à Haines, Hyder et Annette Island.
L’aéroport de Juneau et la vallée de Mendenhall ont enregistré une température record de 27,2°C. De telles températures vont sans aucun doute accélérer la fonte du glacier Mendenhall.

+++++++++++++++

La ville de Skagway a joué un rôle stratégique majeur dans les années 1880 au moment de la Ruée vers l’Or, surtout après la découverte d’importants dépôts le long de la rivière Klondike. Les articles de journaux relatant la découverte de l’or engendrèrent une hystérie collective et beaucoup quittèrent leurs emplois pour partir vers le Klondike en tant que prospecteurs.

La plupart rejoignirent les champs aurifères par les ports de Dyea et de Skagway, avant de franchir la chaîne côtière par le White Pass et le Chilkoot Pass et de descendre les cours d’eau jusqu’au Klondike.

Le gouvernement canadien imposa à chaque prospecteur d’emporter de quoi manger pendant un an et la plupart transportaient seuls leur équipement dont le total atteignait fréquemment la tonne. Le terrain montagneux et le climat glacial firent que ceux qui n’abandonnèrent pas ou ne périrent pas durant le voyage n’arrivèrent qu’à l’été 1898. Une fois sur place, les meilleures concessions avaient été prises et beaucoup quittèrent la région.

Les dépôts d’or étaient riches mais inégalement répartis et leur extraction était rendue difficile par le pergélisol qui ne fondait pas à cette époque. Des villes champignons poussèrent le long des pistes menant à Dawson City fondée au confluent de la rivière Klondike avec le fleuve Yukon à proximité du lieu de la première découverte. La population de la ville passa de 500 habitants en 1896 à 30 000 à l’été 1898. Aujourd’hui, elle ne compte que 1300 âmes. On en recense environ 800 à Skagway, mais beaucoup plus lorsque les bateaux de croisière y font escale. Il est très intéressant de visiter la région où l’on trouve de nombreuses traces de la Ruée vers l’Or. Le trajet en train le long du White Pass est extraordinaire et la visite des cimetières met en évidence la rudesse de la vie au cours des années 1890.

——————————————————-

The National Weather Service indicates that a high-pressure system in Southeast Alaska broke or tied many high temperature records on Saturday, August 5th, 2017.

Skagway set an all-time record high temperature of 33.8°C. The town, which lies just west of the Canadian border, saw a low of 12.7°C on the same day; its average temperature in August is 23.3°C. Skagway’s previous record was 33.3°C. The previous daily high record for August 5th was 26.6°C.

Daily records of 31.1°C, 30.5°C and 30°C were set in Haines, Hyder and Annette Island, respectively.

The Juneau International Airport and the Mendenhall Valley recorded a daily record of 27.2°C. Such high temperatures will no doubt accelerate the melting of the Mendenhall Glacier.

++++++++++++++++

 Skagway played a major strategic role in the 1880s at the time of the Gold Rush, especially after the discovery of important deposits along the Klondike River. Newspaper articles about the discovery of gold led to a collective hysteria and many left their jobs to go to the Klondike as prospectors.
Most joined the gold fields through the ports of Dyea and Skagway before crossing the coastal mountain range through the White Pass and Chilkoot Pass and down the streams to the Klondike.
The Government of Canada compelled each prospector to carry food for one year, and most prospectors carried their own equipment which frequently weighed a tonne. Because of thehe mountainous terrain and the very cold climate, those who did not abandon or perish during the journey arrived in the summer of 1898. The best claims were oalradu occupied and many left the region.
The gold deposits were rich but unevenly distributed and their extraction was made difficult by the permafrost which was not melting at that time. Mushroom towns grew along the trails leading to Dawson City founded at the confluence of the Klondike River with the Yukon River near the site of the first discovery. The population of the city rose from 500 inhabitants in 1896 to 30 000 in the summer of 1898. Today it has a population of 1300. There are about 800 inhabitants in Skagway, but many more when cruise ships stop there. It is very interesting to visit the region where there are many traces of the Gold Rush. The train ride along the White Pass is extraordinary and the visit to the cemeteries highlights the harshness of life in the 1890s.

Le site de Dyea a été abandonné par les prospecteurs….

L’ascension du White Pass et du Chilkoot Pass était très difficile et périlleuse….

Tous ne sont pas arrivés à destination, victimes du froid, d’avalanches …ou d’autres prospecteurs…

Aujourd’hui, Skagway attire surtout les touristes…

Le train fait escalader le White Pass plus facilement qu’autrefois….

Dawson City accueille toujours des prospecteurs espérant faire fortune…

L’or est omniprésent dans la région….

Les récits de Jack London occupent tous les esprits…

Photos: C. Grandpey

Nouvelle éruption du Bogoslof (Alaska)

Je viens de recevoir deux messages de l’AVO indiquant qu’une éruption explosive relativement importante a débuté ce matin sur le Bogoslof vers 10 heures (heure locale) ou 18 heures (TU) le 7 août 2017. L’éruption se poursuit en ce moment. Un pilote d’aéronef a signalé un panache de cendre atteignant 9600 mètres d’altitude. En conséquence, la couleur de l’alerte aérienne est passée au Rouge. .

—————————————-

I have just received two messages from AVO indicating that a new significant explosive eruption began at Bogoslof volcano at about 18:00 UTC (10:00 local time) on August 7th and is continuing. A pilot report indicates that the ash cloud had reached 32,000 ft (9,600 metres) asl. Thus, AVO is raising the Aviation Color Code to RED.

Source: AVO

La fonte des glaciers d’Alaska (suite) // The melting of Alaskan glaciers (continued)

A l’intérieur du Kenai Fjords National Park dans le sud de l’Alaska, le glacier Exit est l’un des plus populaires de cet Etat. C’est l’un des plus accessibles, mais aussi l’un de ceux qui reculent le plus vite.
Sur le chemin qui conduit au pied du glacier, on peut voir des panneaux montrant 195 années de recul de la masse de glace. Lorsque j’ai visité le glacier en 2013, ces panneaux ont fait ressurgir dans ma mémoire ceux qui jalonnent l’accès au Glacier Athabasca au Canada ou à la Mer de Glace en France. Là aussi, le recul est impressionnant. A l’extrémité du sentier de l’Exit Glacier, le dernier panneau indique l’année 2010. On se trouve alors devant un vaste espace montrant à quel point le glacier a continué à reculer vers le haut de la vallée.
Le recul au cours de l’été 2016 a été de 76 mètres. C’est le plus important jamais enregistré au cours d’un seul été. Le 1er octobre de cette même année, les mesures effectuées par le National Park Service ont indiqué un recul de 88 mètres.
L’Exit Glacier est une langue de glace en provenance de l’Harding Icefield qui est beaucoup plus grand. Bien qu’il soit petit (36 kilomètres carrés), l’Exit Glacier est très populaire et symbolise le changement climatique. Il a été visité par le président Barack Obama lors de son voyage en Alaska en 2015.
D’autres glaciers d’Alaska reculent eux aussi de façon spectaculaire. C’est le cas du Mendenhall, près de Juneau. Les images d’archives exposées au Visitor Center montrent l’étendue du désastre.  Le Columbia, que j’ai visité à deux reprises dans le Prince William Sound, est l’un des glaciers les mieux étudiés au monde. Son recul l’a fait se diviser en deux branches, avec une glace moins épaisse qu’auparavant. Le glacier d’Eklutna, source de l’eau potable pour la ville d’Anchorage, est l’un des glaciers du Chugach State Park. Lui aussi est étroitement contrôlé, mais il perd une quantité importante de glace chaque année. Le glacier de Portage, à 80 kilomètres d’Anchorage, reste une destination touristique, même si les visiteurs doivent maintenant prendre un bateau et traverser le lac Portage pour atteindre le front du glacier.
L’Exit Glacier, qui a reçu 181 500 visiteurs en 2016, n’est pas le seul glacier de montagne de l’Alaska que l’on peut atteindre à pied, même si la marche d’approche se fait de plus en plus longue au fur et à mesure que le glacier recule. Il reste toutefois facilement accessible au sein d’un parc national. C’est un exemple parfait d’un recul glaciaire et il joue le rôle de laboratoire en temps réel du changement climatique. Les glaciers terrestres comme l’Exit, bien qu’ils ne représentent qu’un petit pourcentage de la glace mondiale, contribuent de manière significative à l’élévation mondiale du niveau de la mer et les visiteurs des fjords du Kenai peuvent observer ce phénomène de leurs propres yeux.
Chaque printemps et chaque automne, les employés du Kenai Fjords National Park se rendent au chevet du glacier Exit pour effectuer des mesures précises de la position de son front. Le glacier recule maintenant aussi bien en hiver qu’en été, phénomène observé depuis 2006. Depuis 2011, les températures quotidiennes moyennes d’octobre à mai au niveau du point le plus bas du glacier restent supérieures à zéro la moitié du temps.
Les photos aériennes et les archives historiques sont également utilisées pour suivre l’évolution du glacier. L’USGS, l’Université de l’Alaska et l’Université de Washington ont collecté les données altimétriques pour calculer les changements intervenus au cours des cinquante dernières années sur le glacier Exit et ailleurs en Alaska. La reconstruction d’un passé lointain nécessite également une analyse des données géologiques et des cernes de croissance des arbres de la région.
Le sentier d’accès de 2 kilomètres au glacier Exit se terminait par une boucle, mais les employés du Parc ont dû ajouter deux extensions, respectivement en 2006 et 2010, pour permettre d’atteindre le glacier. Il n’y aura pas d’autre extension parce que la langue glaciaire est maintenant entourée d’un terrain jugé abrupt et dangereux. Beaucoup de visiteurs du parc craignent que le glacier se retire trop loin et ne soit bientôt plus visible depuis le sentier d’accès.
Certains glaciers du Kenai Fjords National Park perdent davantage de glace que l’Exit. Ainsi, le Pedersen reculait en moyenne de 20 mètres par an entre 1951 et 1986, mais ce recul est passé à 123 mètres par an de 1994 à 2015. La petite mare que l’on observait il y a une vingtaine d’années devant le front du glacier est devenue un vaste lac. Un lac semblable s’est formé suite au recul du Bear Glacier, au sud de l’Exit. Le Bear Glacier est plus de cinq fois plus grand que l’Exit et il perd plus de 10 fois plus de glace chaque année.
Source: Alaska Dispatch News.

——————————————–

One of the most popular glaciers of Alaska, one of the most accessible, is Exit Glacier in the Kenai Fjords National Park. It is also one of those which are retreating very fast.

On the road to the glacier’s toe, one can see signs marking 195 years of accelerating pullback. When I visited the glacier, I could rememberthe Athabasca Glacier in Canada or the Mer de Glace in France, whose access includes these signs of the past history of the glaciers. Beyond the last sign at Exit Glacier, which marks the 2010 edge, is a chasm of open space showing how Exit Glacier has continued its retreat up the valley.

The loss measured during the summer 2016 summer, 76 metres, was the biggest in any single summer on record. Over the year ending October 1st, after fall measurements were taken by the National park Service, the retreat was 88 metres.

Exit Glacier is a finger of ice that drops out of the much larger Harding Icefield. Even though it is small (36 square kilometres), it is highly popular and symbolic of climate change. It was visited by President Barack Obama during his 2015 trip to Alaska.

Other well-known and much-visited Alaska glaciers are shrinking noticeably. Mendenhall near Juneau is shedding ice. The archives at the Visitor Center show the extent of the disaster Columbia, which I visited twice in Prince William Sound, is one of the world’s best-studied glaciers. Its retreat has caused the terminus to split into two thinner branches. Eklutna Glacier, source of Anchorage’s drinking water and one of several glaciers in Chugach State Park, is well-studied and losing mass. Portage Glacier, 80 kilometres from Anchorage, remains a big tourist draw even though visitors now have to take a boat ride across Portage Lake to see its face.  .

Exit Glacier, which the Park Service says got over 181,500 visitors last year, is not Alaska’s only walk-up glacier, albeit with a walk that has been getting longer as the glacier shrivels. But it stands out for its location in an easily accessible national park, the in-your-face documentation of its retreat and its role as a real-time climate change laboratory. Land-terminating Alaska glaciers like Exit, though they make up only a tiny percentage of the world’s ice, are significant contributors to global sea-level rise, and visitors to Kenai Fjords are able to see that process up close.

Each spring and fall, park workers go to the glacier to get detailed measurements of its terminus position. The glacier is now retreating in winter as well as in summer, a pattern that has been consistent since 2006. Since 2011, average October-to-May daily temperatures at the glacier’s low elevations have been above freezing about half the time.

Aerial photography and historic photographic records are also used to track the glacier’s changes. The USGS and researchers from the University of Alaska and University of Washington have crunched altitude data to calculate changes in the past half century at Exit and elsewhere. Reconstructing the more distant past requires analysis of data from the region’s geology and tree rings.

On the 2-kilometre-long Exit Glacier trail, which once ended in a loop, the Park Service has had to make two significant extensions in 2006 and in 2010. There will be no more extensions because the toe of the glacier is now surrounded by steep and treacherous terrain. Many park visitors are worried that the glacier will retreat too far for them to see it easily,

Some Kenai Fjords glaciers are losing even more ice. Pedersen Glacier lost an average of 20 metres a year from 1951 to 1986, but that rate jumped to 123 metres a year from 1994 to 2015. A lake at the toe of the glacier that was tiny two decades ago is now substantial. A similar lake formation has occurred at retreating Bear Glacier, south of Exit. Bear Glacier is more than five times as big as Exit and is losing more than 10 times as much ice annually.

Source: Alaska Dispatch News.

Etapes du recul de l’Exit Glacier depuis 1950 (Source: National Park Service)

Langue de l’Exit Glacier en 2013 (Photo: C. Grandpey)

Columbia Glacier en septembre 2013 (Phoro: C. Grandpey)

Mendenhall Glacier en septembre 2016 (Photo: C. Grandpey)

Portage Glacier en septembre 2016 (Photo: C. grandpey)

Séismes et glaciers en Alaska // Earthquakes and glaciers in Alaska

Le 28 février 1979, un séisme de M 7.7 a secoué les Chugach Mountains et la région du Mont Saint-Elias dans la partie méridionale de l’Alaska. Les géologues pensent que  l’événement a été provoqué par des mouvements tectoniques complexes dans cette région où se rencontrent les plaques Pacifique et nord-américaine. Aujourd’hui, les scientifiques étudient un autre élément susceptible d’avoir un effet sur l’activité sismique de la région: la fonte des glaciers.
Les chercheurs du Goddard Space Flight Center de la NASA et de l’USGS ont cherché à savoir si les fluctuations glaciaires avaient une relation avec les séismes enregistrés dans les environs des glaciers Malaspina et Bering, au sud du Parc national Wrangell-St. Elias et au nord de Yakutat. Une étude datant de 2004 a conclu que si les plaques tectoniques jouent le rôle le plus important dans le déclenchement des séismes majeurs, les mouvements des glaciers proches de ces sites peuvent également avoir un impact.
De 1993 à 1995, le glacier de Béring a avancé rapidement au cours d’une surge glaciaire. Au cours des cinq années qui ont suivi cette surge, la masse de glace nouvellement accumulée a reculé et s’est amincie sous l’effet de la hausse des températures. Lorsque la glace s’est épaissie pendant la surge glaciaire, le nombre de séismes a diminué dans la région. Par contre, quand elle s’est amincie, le nombre de petits séismes a augmenté, avec des événements de M 1 à M 2 sur l’échelle de Richter.
Les chercheurs ont également calculé la pression accumulée sous les glaciers dans la région de Icy Bay, entre les glaciers de Béring et Malaspina, de 1899 à 1979. La masse imposante d’un glacier peut contribuer à la stabilité de la région, mais une fois la fonte démarrée, les plaques tectoniques sont plus libres de leurs mouvements et peuvent créer des frottements sous la surface. Entre 1899 et 1979, les glaciers ont perdu assez de glace pour que la perte de poids en surface ait contribué au séisme de la région du Mont St. Elias.
Le sud de l’Alaska est un lieu unique pour étudier ce type d’interactions entre séismes et glaciers. En effet, il y a très peu d’endroits dans le monde où la fonte rapide d’une masse de glace interagit avec des plaques tectoniques qui se trouvent à des dizaines de kilomètres sous la surface de la Terre.
Dans une étude publiée en 2008, deux chercheurs de  l’Alaska Earthquake Center (Université de l’Alaska à Fairbanks) ont constaté qu’entre 2002 et 2006, le nombre de petits mouvements tectoniques dans la région de Icy Bay avait augmenté par rapport à l’activité sismique entre 1988 et 1992. Ils ont émis l’hypothèse que cela était dû à une augmentation significative de la perte de glace en 2002-2006.
Un certain nombre d’événements glaciaires tels que la formation de crevasses, le vêlage et le déplacement sur la roche sous-jacente peuvent provoquer des séismes, mais ils ne sont pas liés aux mouvements tectoniques.
Source: Alaska Dispatch News.

—————————————

On February 28th, 1979, an M 7.7 earthquake shook the Chugach and St. Elias mountains in Southcentral Alaska. The event is believed by geologists to be the result of complex tectonic movements in the area, where the vast Pacific and North American plates meet and accumulate pressure. Now, scientists are studying another element that may also influence the region’s seismic activity: glacial melting.

Researchers with NASA’s Goddard Space Flight Center and the U.S. Geological Survey sought to find out if glacial fluctuations had any relation to earthquakes in the area around the Malaspina and Bering glaciers, south of the Wrangell-St. Elias National Park and north of Yakutat. While their 2004 study concluded that moving tectonic plates had the largest role in major earthquakes, they also acknowledged that ice movements close to these sites may have also had an impact.

From 1993 to 1995, the Bering glacier advanced rapidly in a movement known as a glacial surge. In the five years that followed the surge, the newly-formed mass of ice retreated and thinned, a response to warming temperatures. When the ice thickened during the surge, the number of earthquakes decreased in the region. During the thinning, the number of small quakes increased, hovering around M 1 to M 2 on the Richter scale.

The researchers also calculated the amount of pressure that would have built up under the glaciers in the Icy Bay region, between the Bering and Malaspina glaciers, from 1899 to 1979. The large mass of a glacier can help keep things stable, but once that melts away, the tectonic plates are freer to move and create friction beneath the surface. Between 1899 and 1979, the glaciers lost enough ice for the weight loss to have contributed to the St. Elias earthquake.

Southern Alaska is a unique location to study these type of interactions: few places have a rapidly melting mass interacting with plates tens of kilometres beneath the Earth’s surface.

In a later study released in 2008, two researchers from the Alaska Earthquake Center at the University of Alaska Fairbanks, found that between 2002 and 2006, the number of small tectonic movements in the Icy Bay region increased when compared to the seismic rate between 1988 and 1992. They hypothesized that this was due to a significant increase in the rate of ice wastage in 2002-2006.

A variety of glacial activities such as crevassing, calving and moving along the underlying rock trigger earthquakes but these are not related to tectonic movements.

Source: Alaska Dispatch News.

 Partie méridionale de l’Alaska, avec glaciers Bering et Malaspina, et Icy Bay entre les deux glaciers (Google Maps)

Glacier de Béring (Crédit photo : Wikipedia)

Vue du massif du Mont St Elias (Photo : C. Grandpey)

 

Nouveaux records de chaleur en Alaska // New record high temperatures in Alaska

Juillet 2017 a été de nouveau chaud en Alaska. Ainsi, plusieurs localités de l’Intérieur comme Bettles, Tanana et McGrath, ont enregistré le mois le plus chaud depuis des décennies. Il n’y a pas eu de vague de chaleur ou de températures exceptionnellement élevées en juillet, mais les journées et les nuits sont restées chaudes en permanence. A Bettles, la température moyenne a été de 17,7°C en juillet, contre 15°C d’habitude. A Tanana, la température moyenne a été de 18,3°C, contre les 15,5°C habituels. A McGrath, on a relevé une moyenne de 17,2°C, soit près de 4 degrés au-dessus de la température habituelle. Les derniers records remontaient à 1944 à Bettles, 1902 à Tanana et à 1940 à McGrath.
Dans le district de North Slope, dans le nord de l’Alaska, le mois de juillet a été particulièrement chaud. Barrow a enregistré le juillet le plus chaud depuis près d’un siècle d’observations climatiques, tandis que l’aéroport de Deadhorse à Prudhoe Bay a connu cinq journées avec des températures atteignant une vingtaine drés.
Source: National Weather Center.

——————————————

July 2017 was again warm in Alaska. As a result, several Interior locations, including Bettles, Tanana and McGrath recorded the warmest calendar month of record. The towns didn’t record any sort of heat wave or unusually scorching temperatures in July but had persistently warm days and warm nights. For Bettles, the average temperature was 17.7°C this July, compared to the typical 15 degrees. In Tanana, the average temperature was 18.3°C, compared to the usual 15.5°C. In McGrath, it was 17.2°C on average, nearly 4 degrees above what’s generally expected. Records date back to 1944 in Bettles, 1902 in Tanana and 1940 in McGrath.

On the North Slope, July was excessively warm. Barrow recorded the warmest July in nearly a century of climate observations, while the Deadhorse Airport at Prudhoe Bay saw five days with highs around 20°C.

Source: National Weather Center.

Source: NOAA / National Weather Center