La fonte du permafrost ferme un aéroport en Alaska // Melting permafrost closes an airport in Alaska

Tununak (320 habitants) est un petit village isolé sur la côte ouest de l’Alaska. Le seul lien avec le monde extérieur est l’avion. Il y a environ un an, Tununak a ouvert un aéroport ultramoderne qui a coûté 19 millions de dollars. Le problème, c’est qu’aujourd’hui, les compagnies aériennes refusent de l’utiliser. La fonte du permafrost a endommagé la piste et les pilotes ne peuvent pas atterrir en toute sécurité. Le tiers inférieur de la piste est criblé de nids de poule, et maintenant elle commence à s’affaisser. En fait, en raison du changement climatique, c’est tout le site qui s’affaisse sous le poids de l’aéroport.
L’aéroport est fermé depuis le 5 octobre mais on n’a jamais vraiment donné d’explications aux habitants.
Comme la plupart des communautés de l’Alaska qui ne sont pas reliées au réseau routier, Tununak dépend du transport aérien pour son approvisionnement en biens et pour ses services. La fermeture de l’aéroport signifie que l’épicerie ne reçoit plus de marchandise et les gens n’ont pas reçu de courrier depuis plus d’une semaine. Plusieurs personnes âgées s’inquiètent de ne pas recevoir leurs médicaments.
Pour l’instant, les habitants de Tununak traversent la toundra en 4×4 pour aller faire leurs courses et chercher leur courrier à Toksook Bay, à quelques dizaines de kilomètres au sud.
Le Ministère des Transports a décidé d’envoyer un technicien de génie civil à Tununak pour évaluer la situation, mais son vol a été retardé par le mauvais temps. Comme cette visite d’évaluation des dégâts a été retardée, le Ministère des Transports est dans l’incapacité de dire quand la piste de Tununak sera réparée.
Source: Alaska Dispatch News.

————————————–

Tununak (pop. 320) is a small and remote village on the western coast of Alaska. The only link with the outside world is the plane. About a year ago, Tununak opened a $19 million, state-of-the-art airport. But now, local airlines are refusing to fly there. The village’s shifting permafrost is buckling the runway, and it is too dangerous for pilots to land on it safely. The lower third of the runway is riddled with potholes, and now it is starting to sink. Beecause of climate change, the melting permafrost is moving under the airport’s weight.

The airport has been effectively shut down since October 5th but residents were not really told what was happening.

Like most Alaska communities off the road system, Tununak relies on air travel for goods and services. The closure of the airport means that groceries are no longer arriving in the local shop and êople have not received mail in over a week or so. Several elderly residents are concerned about receiving their medications.

For now, Tununak residents are driving across the tundra on four-wheelers to pick up groceries and mail in Toksook Bay, a few tens of kilometres to the south.

The Department of Transportation is sending a grader operator to Tununak to assess the situation, but their flights have been delayed by storms. Because their assessment has been delayed, the Department of Transportation does not have a timetable yet for when Tununak’s runway will be fixed.

Source: Alaska Dispatch News.

 

Publicités

Les glaciers à Vendôme (Loir-et-Cher) le 20 octobre!

J’aurai le plaisir de proposer une conférence intitulée « Glaciers en péril – Les effets du changement climatique »  le vendredi 20 octobre 2017 à 14h30 à la salle polyvalente du Centre de soins André Gibotteau – Boulevard Kennedy à Vendôme (Loir-et-Cher).

Mes propos seront suivis de la projection de « Glaciers d’Alaska, un monde en péril » illustrant la situation glaciaire dans cet Etat.

Livres et CD seront proposés au public à l’issue de la séance.

La liste de mes conférences figure dans la colonne de gauche de ce blog. N’hésitez pas à me contacter par mail si votre  commune, votre association ou votre C.E. sont intéressés: grandpeyc@club-internet.fr

 

Arctique : La glace de mer continue à fondre trop vite // Arctic sea ice is still melting too fast!

La surface occupée par la glace de la mer dans l’Océan Arctique est encore très faible cette année, mais elle n’établit pas de nouveaux records. On aurait pu penser que l’on se dirigeait vers un nouvel accès de faiblesse en septembre, mais une vague de temps orageux et plus froid s’est installée dans la région et a changé la situation. Cela a permis de préserver la glace de mer et de ralentir sa fonte. Au final, en 2017, la glace de mer n’occupe que le huitième rang le plus bas dans les données satellitaires.
L’étendue de la glace de la mer dans l’Arctique, c’est à dire la zone où la glace de mer couvre au moins 15% de la surface de l’eau, a atteint son point le plus bas de l’année le 13 septembre 2017, avec une couverture de 4,40 millions de kilomètres carrés, selon les données du National Snow and Ice Data Centre (NSIDC). C’est 1,60 millions de kilomètres carrés en dessous du minimum annuel moyen de 1981 à 2010, mais bien au-dessus du seuil record de 3,41 millions de kilomètres carrés enregistré en 2012.
Le changement de temps mentionné plus haut temps a réduit à néant ce qui, il y a six mois, ressemblait à la configuration pour un nouveau record de manque de glace cette année. En mars, lorsque la saison de gel s’est terminée, l’étendue maximale annuelle de la glace était la plus faible depuis 1979. Selon le NSIDC, dans les mois qui ont suivi, l’étendue de glace de mer flirtait avec les niveaux les plus bas jamais enregistrés.
Les 11 niveaux annuels les plus faibles de glace de mer ont tous été observés au cours des 11 dernières années. Malgré la lenteur de la fonte cette année, il convient de noter que l’étendue actuelle de la glace reste relativement faible et qu’il n’y a pas d’évolution positive prévue sur le long terme. Au niveau régional, la fonte a été la plus marquée dans les mers des Tchouktches et de Beaufort, au large de l’Alaska. Cela devrait entraîner des températures de l’air beaucoup plus chaudes que la normale dans le secteur de North Slope.

Même si la situation n’est pas pire qu’au cours des dernières années, cela ne signifie nullement que le changement climatique et le réchauffement climatique sont terminés!

Source : Alaska Dispatch News.

Dernière minute : Selon Alaska Sea Grant (University of Alaska / NOAA), à la fin du mois de septembre la surface dépourvue de glace dans les mers de Beaufort et des Tchouktches frisait les records. Il fallait parcourir quelque 1280 km depuis Nome pour atteindre la glace de mer dans l’Arctique. Selon le National Snow and Ice Data Center, cette situation risque de perdurer en octobre et même en novembre. En conséquence, la région pourrait subir des impacts encore plus sévères des tempêtes, avec une accentuation de l’érosion côtière.

Le manque de glace de mer a été particulièrement aigu dans les mers Beaufort et des Tchouktches cet été, avec des étendues d’eau libre jamais observées dans le Beaufort depuis le début des mesures satellitaires en 1979.

—————————————

Arctic sea ice extent is still low this year but it is not breaking new records. There was good reason to think it could be headed for a record low in September, but a stormy and cool pattern set in and changed the situation. It helped preserve sea ice, slowing its melting enough to rank this year’s annual ice minimum as only the eighth lowest in the satellite record, far from the worst it has been.

Arctic sea ice extent, defined as the area where sea ice covers at least 15 percent of the water’s surface, hit the year’s low mark on September 13th 2017, covering 1.79 million square miles, the National Snow and Ice Data Center (NSIDC) reported. That is 610,000 square miles below the 1981-to-2010 average annual minimum, but well above the record low of 1.32 million square miles set in 2012.

The turn in the weather cancelled what, six months ago, looked like the setup for a new record low this year. In March, when the freeze season ended, the annual maximum extent of ice was the lowest on a satellite record going back to 1979. And in the months following, sea ice extents were tracking at or near record-low levels, according to the NSIDC.

The 11 lowest annual minimum sea ice extents have all been in the past 11 years. Despite the slow melt this year, it should be noted that the current year’s ice extent is still relatively low and there is no long-term recovery. Regionally, the melt was accentuated in the Chukchi and Beaufort seas off Alaska. That is expected to lead to much warmer air temperatures than normal off the North Slope.

Even though the situation is not worse than in past years, this by no means signifies that climate change and global warming are over!

Source : Alaska Dispatch News.

Last minute: According to Alaska Sea Grant (University of Alaska / NOAA), by the end of September near-record expanses of ice-free open water existed in the Beaufort and Chukchi seas. The extent of open water from Nome to the sea ice edge in the Arctic was as much as 1,280 kilometres. According to National Snow and Ice Data Center, the open water is likely to last into October or November. The region could feel more severe impacts from fall storms and coastal erosion in the area because of the open water.

Low ice conditions have been extreme in the Beaufort and Chukchi seas this summer, with open water farther north in the Beaufort than any time in a satellite record that goes back to 1979.

Photo: C. Grandpey

Le réchauffement climatique fait s’effondrer les flancs des montagnes // Mountain slopes collapse because of global warming

Dans une note mise en ligne le 11 septembre, j’indiquais que sous l’effet du réchauffement climatique dans les Alpes, la langue terminale du glacier suisse de Trift, dans le Valais s’était effondrée, sans faire de victimes ni de dégâts.

En juin 2016, tout un pan de montagne de 1 200 mètres de hauteur s’est effondré dans le Parc National de Glacier Bay en Alaska, répandant des matériaux sur environ 20 kilomètres carrés sur le Glacier Lamplugh, et en générant un signal sismique aussi puissant qu’un séisme de magnitude M 5,2.
En 2015, la paroi d’une autre montagne du Parc s’est effondrée elle aussi, avec quelque 220 millions de tonnes de roches qui sont allées d’écraser sur un autre glacier et dans le fjord en dessous. Ce fut le plus grand glissement de terrain non volcanique jamais observé en Amérique du Nord. Il a déclenché un tsunami avec une vague de 180 mètres de hauteur qui a dépouillé de leurs feuilles tous les arbres des montagnes autour. Les scientifiques disent que ces glissements de terrain majeurs doivent être pris au sérieux car ils pourraient devenir une menace pour les navires de croisière et les kayaks qui fréquentent parfois ces fjords.
Une étude des avalanches de roches dans la partie occidentale du Parc National de Glacier Bay a révélé que la probabilité de glissements de roches couvrant environ 5 kilomètres carrés a doublé au cours des cinq dernières années. Au fur et à mesure que le climat s’est réchauffé, les caractéristiques des avalanches de roches dans la région ont changé. Elles sont de plus grande  ampleur et parcourent de plus longues distances. L’étude a examiné les 24 avalanches de roches qui se sont produites de 1984 à 2016 dans la partie ouest du Parc National de Glacier Bay en utilisant des images satellitaires pour la cohérence des mesures au cours des 30 années écoulées.
Selon l’étude, la cause de ces avalanches de roches est le dégel de la glace qui remplit les fissures, les crevasses et les fractures des roches des montagnes. C’est ce qu’on appelle le «permafrost de roche». Ce permafrost aide à maintenir les pentes escarpées dans leur état, de sorte que la fonte, ou seulement l’amollissement, de cette glace déstabilise la roche.
La perte d’épaisseur des glaciers est probablement un autre facteur de déstabilisation. En effet, les glaciers moins épais soutiennent moins bien les pentes des montagnes.
L’étude met en parallèle la taille croissante des avalanches de roches à Glacier Bay et la tendance au réchauffement climatique sur le long terme. Les grandes avalanches ont commencé environ deux ans après que la température maximale annuelle de la zone se soit élevée au-dessus du point de congélation.
La tendance ne se limite pas aux limites du Parc National de Glacier Bay. On observe de tels événements dans toute la région montagneuse du sud-est de l’Alaska et les régions voisines du Canada. Ils sont suivis de près par un système sismique créé par des scientifiques  du Lamont-Doherty Earth Observatory.de l’Université de Columbie Britannique.
Au Groenland en juin 2017, quatre personnes ont été tuées par un tsunami qui a été déclenché par une avalanche de roches dans un fjord. L’événement a généré un signal sismique semblable à celui d’un tremblement de terre de magnitude M 4.1, et une vague de plus de 90 mètres de hauteur a frappé un village de pêcheurs.
Source: Alaska Dispatch News.

———————————————

In a note released on September 11th, I indicated that because of global warming in the Alps, the front of the Trift Glacier, in the Swiss province of Valais, had collapsed without killing anybody, nor causing major damage.

In June 2016, a 1,200 metre mountain slope in Glacier Bay National Park collapsed in Alaska, spreading rock over about 20 square kilometres over the Lamplugh Glacier and creating a seismic signal as powerful as a magnitude-5.2 earthquake.

The year before, the face of another park mountain peeled off and sent about 220 million tons of rock and debris crashing onto another glacier and into the fjord below. The biggest non-volcanic North American landslide on record, it triggered a local tsunami that rose to 180 metres and stripped alders off high hillsides. Scientists say these massive rock slides should be taken seriously as they may become a threat to cruise ships and kayakers that sometimes head into wilderness bays.

A study of rock avalanches in the western part of Glacier Bay National Park found that the likelihood of large slides covering about 5 square kilometres has at least doubled in the last five years. As the climate has warmed, characteristics of the region’s rock avalanches have changed. They are bigger, and travelling farther. The study examined the 24 rock avalanches that happened from 1984 to 2016 in western Glacier Bay National Park, and used satellite imagery for consistency in measurements over the three decades.

The likely reason of the rock avalanches, says the study, is thaw of the ice that fills the mountains’ rock cracks, crevices and fractures, referred to as « rock-permafrost. » The rock-permafrost helps hold steep slopes intact, so thaw or even softening of that ice destabilizes the rock.

Glacial thinning is likely a secondary factor. Thinned glaciers are less effective at propping up mountain faces.

The study correlates the increasing size of Glacier Bay rock avalanches to a long-term warming trend. The large avalanches began about two years after the area’s annual maximum temperature shifted above freezing.

The trend extends beyond park boundaries. The whole mountainous region of Southeast Alaska and neighbouring parts of Canada has emerged as a hot spot for such events – now closely tracked by a seismic system created by scientists at Columbia University’s Lamont-Doherty Earth Observatory.

In Greenland in June 2017, four people were killed by a tsunami that was triggered when a rockslide dropped from a mountain slope into a fjord. There, the rockslide creating a seismic signal similar to that of a magnitude-4.1 earthquake, and a wave rising more than 90 metres struck a fishing village.

Source: Alaska Dispatch News.

Vue de l’avalanche de roches dans le Parc national de Glacier Bay le 28 juin 2016, avec la masse de matériaux qui est venue s’échouer à la surface du Lamplugh Glacier.

La photo a été prise par Paul Swanstrom, propriétaire de l’agence Mountain Flying Service, que je salue ici. C’est un pilote hors pair avec lequel j’ai effectué plusieurs survols de la région.

Le rôle des petits glaciers dans les écosystèmes // The part played by small glaciers in the ecosystems

Selon une étude de l’Université de Fairbanks, les petits glaciers qui s’accrochent aux hautes pentes des montagnes en Alaska et ailleurs dans le monde semblent jouer un rôle important au niveau des aquifères et des systèmes fluviaux loin de la mer.
L’étude porte sur les glacier Jarvis et Gulkana, dans l’est de l’Alaska, et les torrents qui s’en échappent. Le glacier Jarvis donne naissance au ruisseau du même nom qui s’écoule ensuite dans la Tanana River, qui alimente à son tour le fleuve Yukon.

Comparé aux grands glaciers côtiers spectaculaires qui attirent les navires de croisière, le glacier Jarvis est minuscule et, comme les autres glaciers, il fond et recule. La couverture glaciaire dans le bassin versant de la Tanana River a diminué de 12% entre 1950 et 2010. Le glacier Jarvis a reculé d’environ 1,7 km entre 1949 et 2015, et ces dernières années il s’est considérablement aminci. Le glacier Gulkana Glacier a lui aussi perdu de son épaisseur.
L’accélération de la fonte des deux glaciers représente 15% à 28% du débit annuel du torrent Jarvis. Cependant, seulement environ la moitié de cette eau atteint le confluent de ce torrent avec un autre cours d’eau. L’autre moitié s’infiltre dans le sol et alimente la nappe phréatique avant de rejoindre les rivières plus en aval comme la Tanana River et, finalement, le fleuve Yukon.
Dans sa conclusion, l’étude fait remarquer que les glaciers de montagne dans les hautes latitudes représentent une source souvent oubliée de contribution aux rivières subarctiques et à la recharge des nappes phréatiques. La découverte que la fonte de glacier contribue à recharger les nappes phréatiques de la région a des implications pour d’autres régions du globe où l’on rencontre des montagnes arides avec des glaciers de haute altitude.
En raison du réchauffement climatique, la quantité d’eau produite par le glacier Jarvis est temporaire. Au bout du compte, le glacier et ses eaux de fonte vont disparaître, tout comme les autres glaciers de montagne dont certains sont si petits qu’ils n’ont même pas de noms. De tels petits glaciers ont été sous-estimés quant à leur rôle dans l’écosystème. Ainsi, en Alaska, leur impact sur le saumon est intéressant. Les eaux de source, lorsqu’elles sortent dans les lits des rivières, s’écoulent librement, même en hiver, alors que la surface des rivières gèle rapidement. Ces eaux souterraines donnent naissance à des zones plus chaudes dans les rivières, et les saumons les fréquentent au moment de la fraie. L’écosystème connaîtra donc de grands changements lorsque les glaciers ne pourront plus alimenter les nappes phréatiques.
Les auteurs de l’étude indiquent que cette nouvelle situation pourrait malgré tout avoir des effets bénéfiques pour les personnes. La réduction de l’eau souterraine d’origine glaciaire pourrait permettre aux cours d’eau de geler plus rapidement et donc de faciliter les déplacements.
Source: Alaska Dispatch News.

—————————————-

According to a University of Alaska Fairbanks-led study, the small and sometimes patchy glaciers that cling to high mountain slopes in Alaska and elsewhere in the world appear to be big players in groundwater and river systems far from the sea.

The study focused on Jarvis Glacier in the eastern Alaska Range, the nearby Gulkana Glacier and the points downstream from them. Jarvis Glacier feeds into Jarvis Creek which then flows into the Tanana River, which feeds the Yukon River.

Compared to the big coastal glaciers that draw cruise ship sightseers, Jarvis Glacier is tiny. And like other glaciers, it is shrinking. Glacial coverage in the Tanana River watershed decreased by 12 percent from 1950 to 2010. Jarvis Glacier receded about 1.7 km from 1949 to 2015, and in recent years has thinned dramatically. Gulkana Glacier is also thinning.

The glaciers’ accelerated melt accounts for 15 percent to 28 percent the annual flow in Jarvis Creek. However, only about half of the streamflow comes out of the mouth end of the creek. About half filters down into an aquifer, flowing through the soil and then into lowland rivers like the Tanana and, ultimately, the Yukon.

The study concludes by saying that high-latitude mountain glaciers represent an overlooked source to subarctic river discharge and aquifer recharge. The discovery that glacial melt is recharging the area’s aquifer has implications for other arid mountain regions with high-altitude glaciers.

Due to global warming and glacier melting, the big flow of water from Jarvis Glacier is temporary. Ultimately, Jarvis Glacier and the meltwater it produces will disappear, as will similar mountain glaciers, some of them so small that they don’t even have names. Such small mountain glaciers have been under-appreciated, and so has their role in the ecosystem. In Alaska, their impact on salmon is interesting. Groundwater, when it springs up into the beds of the rivers, is free-flowing, even in winter, when the rivers’ surfaces are frozen fast. The groundwater seeps are warm spots in the rivers, and salmon use them to spawn. So there will be big changes in the ecosystem when glaciers are no longer able to contribute to the aquifers.

On the other hand, the author of the study indicated there might be some beneficial effects to people. Reductions in glacial-fed groundwater might leave the rivers more solidly frozen and safer for travel.

Source : Alaska Dispatch News.

Exemples de petits glaciers en Alaska (Photo: C. Grandpey)

 

 

Virée dans les Alpes : souvenirs cyclo, géologie et glaciers – (3) Les glaciers!

Les glaciers.

Le département des Hautes-Alpes où se trouve Briançon mérite bien son nom car de hauts sommets se dressent à proximité des fortifications de Vauban. Histoire de remuer de vieux souvenirs, je me suis rendu au pied du Mont Pelvoux (3946 mètres) avec une halte dans le célèbre Pré de Madame Carle qui offre une belle vue sur le Glacier Blanc. Comme ses homologues alpins, il est en train de reculer rapidement, comme on peut le voir sur ce document.

A l’adolescence, j’avais été impressionné par la masse de ce glacier dont la masse blanche semblait suspendue au-dessus du fond de vallée. Aujourd’hui, il faut vraiment atteindre l’extrémité de la route pour observer sa langue terminale.

La fonte affecte également les glaciers du massif de la Meije, même si leur orientation vers le nord les met un peu à l’abri du réchauffement climatique. Voici des photos prises depuis le Col du Lautaret et l’Oratoire du Chazelet. On pourra les comparer avec un cliché réalisé en 1954.

Après avoir quitté Briançon, je me suis dirigé vers la vallée de la Maurienne en empruntant le tunnel du Fréjus. En remontant la vallée, on peut faire une halte au très beau village de Bonneval sur Arc avant de s’attaquer au Col de l’Iseran que je n’ai pas (encore ?) accroché à mon tableau de chasse cyclo. Avant d’arriver à Val d’Isère, au Pont St Charles, un sentier permet d’accéder au Col de la Galise. La dernière partie du parcours offre de superbes vues sur le Glacier des Sources de l’Isère. Une séquence lui a été consacrée dans la dernière émission « Des Racines et des Ailes ». Les glaciologues ont mis en évidence la fonte de ce glacier et les effets à venir sur la vie dans la vallée.

(Photos: C. Grandpey)

Au cours de mes randonnées, j’ai été surpris par le nombre de canons à neige, même à relativement haute altitude, jusqu’à plus de 2600 mètres. Les stations de ski sont inquiètes devant la perte d’épaisseur du manteau neigeux. Comme me disait le propriétaire d’un hôtel à Val d’Isère, « on essaye de préserver l’essentiel ».

Dernière minute: Sous l’effet du réchauffement climatique dans les Alpes, la langue terminale du glacier suisse de Trift, dans le Valais, s’est effondrée hier dimanche, sans faire de victimes ni de dégâts. L’événement était prévu car les géologues avaient observé une avancée brutale du glacier de 1,30 m au cours d’une seule journée. En conséquence, les 220 habitants de la station de ski de Saas-Fe avaient reçu l’ordre de quitter leurs maisons samedi car on craignait une avalanche de blocs de glace atteigne le village. Ils ont été autorisés à regagner leur domicile mais les chemins de randonnée restent interdits d’accès car de nouveaux effondrements ne sont pas impossibles.

L’avenir du permafrost en Alaska // The future of Alaska’s permafrost

Comme je l’ai écrit à plusieurs reprises sur ce blog, le permafrost (ou pergélisol) fond à une vitesse incroyable dans l’Arctique, avec des conséquences importantes pour l’environnement. Un article récemment publié dans le New York Times apporte plus de détails sur le phénomène.
L’Arctique se réchauffe environ deux fois plus vite que d’autres parties de la planète, et la hausse des températures est fortement ressentie en Alaska. La glace de mer et certains biotopes disparaissent; la hausse du niveau de la mer menace les villages côtiers. Pour les scientifiques du Woods Hole Research Center qui sont allés en Alaska étudier les effets du changement climatique, le problème le plus sérieux réside dans la fonte du permafrost.
Logé entre quelques dizaines de centimètres et quelques mètres sous la surface, le permafrost contient de grandes quantités de carbone dans la matière organique ; ce sont des plantes qui ont absorbé du dioxyde de carbone de l’atmosphère il y a des siècles, sont mortes et ont gelé avant de pouvoir se décomposer. Sur la planète, on pense que le permafrost contient aujourd’hui deux fois plus de carbone que l’atmosphère. Une fois que cette matière organique décongèle, les microbes en transforment une partie en dioxyde de carbone et en méthane qui peuvent passer dans l’atmosphère et accélérer son réchauffement.
En juillet 2017, les scientifiques du Woods Hole Research Center ont installé une station temporaire au bord d’un lac à 90 km au nord-ouest de Bethel, une ville située près de la côte ouest de l’Alaska, à environ 640 km d’Anchorage. Ils ont prélevé des carottes de permafrost, ainsi que des échantillons de sédiments et d’eau et enfoncé des sondes thermiques dans le sol gelé. Plus tard, dans le laboratoire de l’institution, ils ont entrepris le processus d’analyse des échantillons pour déterminer la teneur en carbone et en nutriments. L’objectif est de mieux comprendre comment la fonte du permafrost affecte le paysage et, en fin de compte, quelle quantité de gaz à effet de serre est évacuée dans l’atmosphère.
Même dans le nord de l’Alaska où le climat est plus froid et où le permafrost dans la région de North Slope descend à plus de 600 mètres sous la surface, les scientifiques voient des changements importants. La température à deux mètres de profondeur a augmenté de 3 degrés Celsius au cours des dernières décennies. Les changements à la surface ont été encore plus importants. Sur l’un des sites de mesures, la température du permafrost en surface est passée de moins 8 degrés Celsius à moins 3. A ce rythme, cette température deviendra positive vers le milieu du siècle. En plus des émissions de gaz à effet de serre, la fonte du permafrost a une incidence sur les infrastructures et provoque des affaissements de terrain lorsque la glace perd de son volume en fondant. J’ai précédemment donné l’exemple de la rue principale de Bethel, une agglomération où les bâtiments s’enfoncent et se fissurent.
La fonte du permafrost est un processus graduel. Le sol est totalement gelé en hiver et commence à décongeler de haut en bas lorsque la température de l’air augmente au printemps. À mesure que les températures moyennes augmentent, cette couche décongelée ou active en subit les effets en profondeur. Les chercheurs s’intéressent à la manière dont les feux de forêt affectent le permafrost. Comme les incendies font disparaître en surface une partie de la végétation qui agit comme un isolant, on pense que le feu et la combustion qu’il entraîne peuvent accélérer la fonte du pergélisol.
La fonte du permafrost sous un lac ou en bordure de celui-ci peut provoquer l’évacuation de l’eau, un peu comme une baignoire qui fuit. Cette fonte peut aussi entraîner des variations de niveau du sol, ce qui peut entraîner des changements dans l’écoulement de l’eau ; ainsi, certaines parties de la toundra peuvent s’assécher et d’autres être transformées en tourbières. Au-delà des effets sur la vie végétale et animale, les changements apportés au paysage peuvent avoir un impact important sur le changement climatique en modifiant la quantité de dioxyde de carbone et de méthane qui est émise. Bien que le méthane ne persiste pas dans l’atmosphère aussi longtemps que le dioxyde de carbone, il a une capacité de piégeage thermique beaucoup plus grande et peut contribuer à un réchauffement plus rapide. Si le permafrost en décomposition est humide, il y aura moins d’oxygène disponible pour les microbes, de sorte qu’ils produiront plus de méthane. Si le pergélisol est sec, la décomposition entraînera plus de dioxyde de carbone.
Les estimations varient en ce qui concerne la quantité de carbone émise lors de la fonte du permafrost dans le monde, mais on estime que les émissions d’ici la fin du siècle pourraient atteindre environ 1,5 milliard de tonnes par an, soit environ les émissions annuelles actuelles provenant de combustibles fossiles aux États-Unis.
La hausse des émissions de carbone dans la toundra de l’Alaska est tenue pour responsable de la hausse des températures et de la fonte du permafrost. Dans une étude publiée au début de cette année, les chercheurs ont constaté que la décomposition bactérienne du permafrost décongelé, ainsi que le dioxyde de carbone produit par la végétation vivante, se poursuit plus tard dans l’automne parce que le gel en surface est retardé. Selon les chercheurs, la hausse des émissions de CO2 a été si importante que l’Alaska pourrait passer du stade de simple réserve à celui de véritable source de carbone.
Source: The New York Times.

————————————–

As I put it several times in this blog, permafrost is thawing at an incredible speed in the Arctic, with significant consequences for the environment. An article recently published in The New York Times brings more details about the phenomenon.

The Arctic is warming about twice as fast as other parts of the planet, and even in sub-Arctic Alaska the rate of warming is high. Sea ice and wildlife habitat are disappearing; higher sea levels threaten coastal native villages. To the scientists from Woods Hole Research Center who have gone to Alaska to study the effects of climate change, the most urgent is the fate of permafrost.

Starting just a few tens of centimetres below the surface and extending a few metres down, it contains vast amounts of carbon in organic matter, plants that took carbon dioxide from the atmosphere centuries ago, died and froze before they could decompose. Worldwide, permafrost is thought to contain about twice as much carbon as is currently in the atmosphere. Once this ancient organic material thaws, microbes convert some of it to carbon dioxide and methane, which can flow into the atmosphere and cause more warming.

In July, Woods Hole scientists set up a temporary field station on a lake 90 km northwest of Bethel, a city located near the west coast of Alaska, approximately 640 km from Anchorage. They drilled permafrost cores, took other sediment and water samples and embedded temperature probes in the frozen ground. Later, back in the lab at Woods Hole, they began the process of analyzing the samples for carbon content and nutrients. The goal is to better understand how thawing permafrost affects the landscape and, ultimately, how much and what mix of greenhouse gases is released.

Even in colder northern Alaska, where permafrost in some parts of the North Slope extends more than 600 metres below the surface, scientists are seeing stark changes. Temperatures at a depth of 2 metres have risen by 3 degrees Celsius over decades. Near-surface changes have been even greater. At one northern site, permafrost temperatures at shallow depths have climbed from minus 8 degrees Celsius to minus 3. If emissions and warming continue at the same rate, near-surface temperatures will rise above freezing around the middle of the century. In addition to greenhouse-gas emissions, thawing wreaks havoc on infrastructure, causing slumping of land when ice loses volume as it melts. I previously gave the example of the main road in Bethel where building foundations move and crack.

The thawing of permafrost is a gradual process. Ground is fully frozen in winter, and begins to thaw from the top down as air temperatures rise in spring. As average temperatures increase, this thawed, or active, layer can increase in depth. The researchers are especially interested in how wildfires affect the permafrost. Because burning removes some of the vegetation that acts as insulation, the theory is that burning should cause permafrost to thaw more.

Thawing permafrost underneath or at the edge of a lake can cause it to drain like a leaky bathtub. Thawing elsewhere can bring about small elevation changes that can in turn lead to changes in water flow through the landscape, drying out some parts of the tundra and turning others into bogs. Beyond the local effects on plant and animal life, the landscape changes can have an important climate change impact, by altering the mix of carbon dioxide and methane that is emitted. Although methane does not persist in the atmosphere for as long as carbon dioxide, it has a far greater heat-trapping ability and can contribute to more rapid warming. If the decomposing permafrost is wet, there will be less oxygen available to microbes, so they will produce more methane. If the permafrost is dry, the decomposition will lead to more carbon dioxide.

Estimates vary on how much carbon is released from thawing permafrost worldwide, but by one calculation emissions over the rest of the century could average about 1.5 billion tons a year, or about the same as current annual emissions from fossil-fuel burning in the United States.

Already, thawing permafrost and warmer temperatures are being blamed for rising carbon emissions in the Alaskan tundra. In a study earlier this year, researchers found that bacterial decomposition of thawed permafrost, as well as carbon dioxide produced by living vegetation, continues later into the fall because freezing of the surface is delayed. The rise in emissions has been so significant, the researchers found, that Alaska may be shifting from a sink, or storehouse, of carbon, to a net source.

Source: The New York Times.

Carte montrant (en bleu) l’étendue du permafrost en Alaska en 2010

Projection montrant (en orange) la perte probable de permafrost en 2050

 (Source : Woods Hole Research Center)