La Terre il y a 56 millions d’années, aujourd’hui et demain // The Earth 56 million years ago, today and tomorrow

Dans une étude récente publiée dans la revue Nature, des scientifiques ont examiné le réchauffement climatique qui s’est produit pendant le PETM (Maximum thermique du passage Paléocène-Éocène) et ont tiré des conclusions sur le réchauffement climatique qui affecte actuellement notre planète.
Le climat de la Terre a connu un réchauffement rapide pendant le PETM, il y a 56 millions d’années. Dans leur dernière études, les chercheurs ont identifié la cause de cette période de réchauffement climatique et ils ont établi un lien avec le changement climatique que nous connaissons actuellement.
Juste avant le PETM, la Terre ne ressemblait pas à ce qu’elle est aujourd’hui. Les régions polaires étaient dépourvues de glace ; il y avait des forêts tempérées ou même subtropicales le long des côtes de l’Antarctique et le Canada arctique ressemblait aux marécages des Everglades de la Floride d’aujourd’hui. La température des océans était de 10°C supérieure à ce qu’elle est aujourd’hui et les zones climatiques chaudes s’étaient toutes déplacées vers les pôles.
Au début du PETM, la planète s’est réchauffée d’au moins 5°C en quelques milliers d’années. La vie dans les profondeurs des océans a souffert de façon disproportionnée. De nombreuses espèces ont disparu et certaines zones des océans ont devenues anoxiques. Il a fallu environ 150 000 ans pour que le climat de la Terre retrouve un certain équilibre.
Une augmentation de 5°C sur quelques milliers d’années est extrêmement rapide à l’échelle géologique, mais n’est rien comparé à la vitesse actuelle du réchauffement climatique. Si nous continuons à brûler des combustibles fossiles au même rythme, les scénarios les plus pessimistes indiquent que nous pourrions atteindre 5°C d’ici la fin du siècle !
Le PETM peut nous éclairer sur l’avenir de notre planète. On pense depuis longtemps que la période chaude du PETM a été provoquée par l’augmentation des concentrations de gaz à effet de serre dans l’atmosphère. En effet, nous savons qu’il y a eu une énorme libération de carbone dans l’atmosphère et dans les océans à cette époque, grâce à l’analyse de sédiments datant de 56 millions d’années. Pourtant, l’origine de ce carbone a toujours été l’objet de désaccords. La dernière étude a identifié l’empreinte chimique de ce carbone. Il semble provenir des émissions produites par une activité volcanique intense et prolongée. L’étude montre également que le niveau atmosphérique de CO2 a plus que doublé en moins de 25 000 ans. Cela s’explique par le fait que le Groenland et l’Amérique du Nord s’éloignaient de l’Europe en créant l’Océan Atlantique Nord, avec une activité volcanique le long de ce qui est aujourd’hui la dorsale médio-atlantique. D’énormes quantités de carbone ont probablement été libérées dans l’atmosphère par l’activité volcanique pendant le PETM, en volumes beaucoup plus importants que toutes les réserves de combustibles fossiles actuellement accessibles. Toutefois la vitesse d’émission était probablement au moins 20 fois plus lente qu’aujourd’hui.

Le volcanisme du PETM a eu lieu en grande partie sous l’eau et à un rythme lent. L’équivalent moderne serait sûrement les «fumeurs noirs» que l’on rencontre dans les profondeurs de l’Atlantique.
Le carbone libéré par ces bouches au fond de l’océan est remonté à la surface et a déclenché un cycle qui a fini par affecter les océans proprement dits. Tout d’abord, la chaleur extrême du PETM a conduit à une altération plus rapide des roches et du sol, ce qui signifie que plus de nutriments comme le phosphore se sont propagés dans la mer, ce qui a stimulé la croissance du plancton. Lorsque le plancton est mort, il descend vers les fonds marins et stocke progressivement ce même carbone dans des sédiments profonds.
Alors que cette chaîne d’événements a provoqué l’élimination du carbone de l’atmosphère ancienne, elle a également entraîné une perte d’oxygène dans certaines parties des océans, comme cela se produit de nos jours dans les «zones mortes» du Golfe du Mexique où un excès de nutriments se répand dans l’eau chaude de l’océan.
La dernière étude a révélé que le PETM a été causé par des émissions massives de carbone provenant de l’intérieur de la Terre. Cette situation présente beaucoup de points commun avec celle que nous connaissons aujourd’hui, avec une élévation du niveau de CO2 dans notre atmosphère et nos océans par la combustion des combustibles fossiles qui ont été enterrés pendant des millions d’années. Le PETM nous donne une image de plus en plus claire de ce que sera la Terre si nous continuons à émettre des gaz à effet de serre. Il se pourrait que notre planète connaisse une situation qu’elle n’a jamais traversée en 56 millions d’années.
Source: The Guardian / Nature.

————————————–

In a recent study published in Nature, scientists examined the global warming that occurred during the PETM 56 million years ago and drew conclusions about the global warming that currently affects our planet.

Earth’s climate experienced rapid warming during the Palaeocene-Eocene Thermal Maximum (PETM), 56 million years ago. In their latest research, scientists have identified the cause of this well-known warm period. Its links to present day climate change are clear.

Just prior to the PETM, Earth looked very different than it does today. The polar regions were devoid of ice sheets, with temperate or even subtropical forests along the coastlines of Antarctica, and Arctic Canada resembling the swamplands of modern Florida. The deep oceans were about 10°C warmer than today, and warm climate zones were all shifted polewards.

Next, the planet warmed by at least a further 5°C over a few thousand years at the onset of the PETM. Life in the deep sea suffered disproportionately; many species went extinct and parts of the deep ocean became anoxic. It took about 150,000 years for Earth’s climate to naturally recover and regain some sort of equilibrium.

An increase of 5°C over a few thousand years is breakneck speed in geological terms, but is still nothing compared to our current rate of warming. In fact, if we keep burning fossil fuels at our current rate, the worst-case scenarios suggest we could hit 5°C by the end of the century.

What can the PETM tells us about the future? It has long been suspected that the warm period was triggered by increasing greenhouse gas concentrations in the atmosphere. We know there was a huge release of “new” carbon into the atmosphere and oceans at the time, thanks to analysis of 56million-year-old sediments. Yet where this carbon came from has always been disputed. The latest study identified the distinctive chemical fingerprint of this carbon; it pointed not to methane, but to emissions from intense and prolonged volcanic activity. The research also show that atmospheric CO2 levels more than doubled in less than 25,000 years. This makes sense: at the same time, Greenland and North America were drifting away from Europe, creating the North Atlantic Ocean and a string of volcanic activity along what is now the Mid-Atlantic Ridge. Huge quantities of carbon must have been released into the atmosphere by volcanic activity during the PETM, which is an order of magnitude higher than all currently-accessible fossil fuel reserves taken together. But the rate of emissions would have been at least 20 times slower than today. Given how much CO2 was released, the resulting global warming was about what we would predict based on calculations of current climate sensitivity.

PETM volcanism largely took place under water and at a slower pace, perhaps the best modern equivalent would be the “black smokers” still found today in the deep North Atlantic.

The carbon released by these vents would bubble up to the surface and kick off a cycle that would eventually affect the oceans themselves. First, extreme PETM warmth led to faster weathering of rocks and soil, which meant more nutrients like phosphorus were being washed into the sea. This in turn stimulated plankton growth. When the plankton died they drifted down to the seafloor and gradually stored that same carbon in deep marine sediments.

While this chain of events aided the removal of carbon from the ancient atmosphere it also led to oxygen starvation in some parts of the deep sea, analogous to the “dead zones” that form today in areas like the Gulf of Mexico where an excess of nutrients is washed into warm water.

The latest study found the PETM was caused by massive carbon emissions from Earth’s interior. It thus has many parallels to today, where we are ratcheting up CO2 levels in our atmosphere and oceans by burning fossil fuels that have been buried for millions of years. The PETM is giving us an increasingly clearer picture of what Earth will be like if we carry on, and take our planet to places it has not been in at least 56 million years.

Source: The Guardian / Nature.

Evolution du climat sur 65 millions d’années

Publicités

Agung (Bali / Indonésie): Niveau d’alerte au maximum // Alert level at its highest

Le 22 septembre, les autorités indonésiennes ont fait passer le niveau d’alerte du Mont Agung au maximum (AWAS), et près de 11 300 villageois ont déjà quitté leurs maisons autour du volcan. Le nombre réel de personnes déplacées est probablement deux ou trois fois plus car beaucoup d’habitants ont volontairement fui leurs maisons.
C’est la troisième fois en un peu plus d’une semaine que le niveau d’alerte est relevé. Selon le Département de Météorologie, Climat et Géophysique, on observe une «augmentation considérable» de l’activité sismique, ce qui indique une forte probabilité d’éruption.
La Protection Civile a rappelé que les habitants ou les touristes ne doivent pas entrer dans la zone de sécurité, donc à moins de 9 kilomètres du cratère et à moins de 12 kilomètres au nord, nord-est, sud-est et sud-sud-ouest.
Les personnes évacuées se trouvent dans des abris temporaires, des centres sportifs, des salles de villages et chez des proches.
Source: Presse indonésienne.

————————————–

On September 22nd, Indonesian authorities raised the alert level for Mount Agung to the highest level (AWAS), and nearly 11,300 villagers have left their homes around the mountain. The real number of displaced might be two or three times that, since many have voluntarily fled their houses.

It was the third time in little more than a week that the alert level was raised. According to the Department of Meteorology, Climate and Geophysics, there has been a « tremendous increase » in the mountain’s seismic activity, indicating a greater probability of an eruption.

The National Disaster Mitigation Agency said no residents or tourists should be within 9 kilometres from the crater and within 12 kilometres to the north, northeast, southeast and south-southwest.

Evacuees are staying in temporary shelters, sports centres, village halls and with relatives.

Source : Indonesian press.

Crédit photo: Wikipedia

Agung (Bali / Indonésie) : Premières évacuations // First evacuations

Selon le journal indonésien The Jakarta Globe, près de 6 000 personnes ont été évacuées ce vendredi des villages près du Mont Agung sur l’île de Bali. La sismicité reste élevée et on peut voir des panaches de gaz au-dessus du cratère. Le VSI indique qu’il y a probablement une ascension du magma vers la surface
Le niveau d’alerte est maintenu à 3 (Siaga) sur une échelle de 4. Les autorités ont demandé aux touristes et aux habitants d’éviter le camping ou la randonnée dans un rayon de 6 kilomètres du cratère.
Les vols à l’aéroport international de Bali fonctionnent normalement et il y a peu de perturbations au niveau des agences touristiques dans le reste de l’île.
On commence à voir le même comportement chez les habitants que lors de l’éruption du Merapi en 2010. Certains villageois au pied de l’Agung ont déclaré qu’ils étaient réticents à partir immédiatement. Ils disent qu’ils doivent rester afin de nourrir leurs animaux

————————————–

According to the Indonesian newspaper The Jakarta Globe, nearly 6,000 people were evacuated this Friday from villages near Mt Agung on the island of Bali. Seismicity is still elevated and smoke can be seen above the crater. There are indications of magma rising to the surface

The alert status is still at 3 (Siaga) on a scale of 4 levels. Authorities have warned tourists and residents to avoid camping or hiking within a 6-kilometre radius from the crater.

Flights at Bali’s international airport are operating as normal and there is little disruption to tourism operators across the rest of the island.

We are starting to see the same behaviour among residents as during the eruption of Mt Merapi in 2010. Some residents in villages at the foot of Mount Agung said they were reluctant to leave immediately. They say they need to stay in order to feed the animals.

Carte à risques de l’Agung (Source: VSI)

Fuego (Guatemala) : L’activité reste soutenue // Activity is still elevated

L’INSIVUMEH indique que la neuvième phase éruptive et effusive du Fuego en 2017 a débuté le 13 septembre. Des explosions ont généré des panaches de cendre qui sont montés jusqu’à 1,2 km au-dessus du cratère avant de s’étirer sur 15 km vers l’ouest et le sud-ouest, avec des retombées dans les localités sous le vent. Des coulées pyroclastiques sont descendues dans la ravine Santa Teresa sur le flanc ouest. La phase éruptive s’est terminée environ 35 heures plus tard.
Le 14 septembre, des explosions ont généré des panaches de cendre de 750 mètres de hauteur qui se sont étirés sur 10 km vers l’ouest et le sud-ouest. Les ondes de choc produites par certaines explosions ont fait vibrer les vitres des structures proches. Une coulée de lave était active dans la ravine Santa Teresa.
Les explosions du 15 septembre ont produit des panaches de cendre qui ont atteint 750 mètres de hauteur et se sont étirés sur 5 km vers le NO et le SO. La coulée de lave avait alors 300 mètres de longueur.
Les 17 et 18 septembre, les panaches de cendre des explosions s’élevaient jusqu’à près de 1 km. Des matériaux incandescents étaient éjectés jusqu’à 250 mètres au-dessus du cratère et provoquaient des avalanches dans la zone du cratère. Des retombées de cendre ont été signalées dans plusieurs zones sous le vent.
Sources: INSIVUMEH & CONRED.

————————————-

INSIVUMEH indicates that Fuego’s ninth effusive eruption phase in 2017 began on September 13th. Explosions generated ash plumes that rose 1.2 km above the crater and drifted 15 km W and SW, causing ashfall in communities downwind. Pyroclastic flows descended the Santa Teresa ravine on the W flank. The eruptive phase ended about 35 hours later.

On September 14th, explosions generated ash plumes that rose 750 metres and drifted 10 km W and SW. Shock waves from some explosions vibrated nearby structures. A lava flow was active in the Santa Teresa ravine.

Explosions on September 15th produced ash plumes that rose as high as 750 metres and drifted 5 km NW and SW. The lava flow was 300 metres long.

On September 17th and 18th, ash plumes from explosions rose almost 1 km and drifted W and SW. Incandescent material was ejected 250 metres above the crater rim and caused avalanches around the crater area. Ashfall was reported in several dowwind areas.

Sources : INSIVUMEH & CONRED.

Le Fuego le 20 septembre 2017: Vers un retour au calme? (Crédit photo: INSIVUMEH)

Ouverture de l’Océan Arctique: La crainte des marées noires // Opening of the Arctic Ocean: The fear of oil spills

Au moment où la fonte de la glace ouvre de nouvelles voies de navigation et de nouveaux gisements dans l’Océan Arctique, on craint que cette nouvelle situation provoque une pollution à grande échelle, notamment par une marée noire ou des fuites de gaz naturel. Des tests sont actuellement en cours pour anticiper une telle situation qui serait sans aucun doute une catastrophe environnementale.

À la fin du mois de juillet, un robot – l’Aqua-Guard Triton RotoX – a été testé dans la Mer de Beaufort au moment de la débâcle. Le but était de voir s’il pourrait nettoyer le pétrole lors d’une marée noire dans l’Arctique. Cet « écumeur de pétrole », commandé à distance depuis le pont d’un brise-glace, est l’une des nombreuses technologies testées dans le cadre d’un programme de recherche et de développement de la Garde côtière des États-Unis. Le RotoX, fabriqué au Canada, a été conçu pour récupérer le pétrole à la surface de l’eau de l’Arctique au moment de la débâcle, c’est à dire au moment où la mer est jonchée de morceaux de glace. Selon les écologistes,  une telle situation est susceptible d’être causée par l’exploitation du pétrole au large des côtes de l’Alaska. Deux scénarios potentiels de marées noires sont envisageables: un événement catastrophique provoqué par un tanker comme l’Exxon Valdez, ou plus probablement, une marée noire provoquée par un petit navire suite à un déversement involontaire ou un accident.

À l’heure actuelle, il existe une technologie qui permet d’éliminer le pétrole dans les eaux libres de glace et sur la banquise. Le problème reste insoluble quand la surface de la mer est recouverte de morceaux de glace. Le RotoX est équipé de multiples «dents» de couleur orange qui dépassent légèrement de l’avant de l’appareil. Après l’avoir dirigé vers des plaques de glace et des nappes de pétrole, il découpe la glace en morceaux plus petits qui peuvent ensuite être récupérés. Le fait qu’il soit télécommandé depuis un navire est un avantage comparé aux récupérateurs de pétrole traditionnellement traînés par de gros navires. Le RotoX est plus maniable et pourrait en théorie se déplacer entre les morceaux de glace pour atteindre les nappes de pétrole. La pratique est toutefois décevante.

Après avoir fait fonctionner « l’écumeur de pétrole » dans un environnement dépourvu de glace, l’équipe scientifique l’a testé dans une eau couverte de plaques de glace d’épaisseur variable. Les résultats n’ont pas été convaincants. Bien que le RotoX ait réussi à se déplacer au sein des plaques de glace, ses dents étaient si puissantes qu’elles sont devenues un handicap pour atteindre les nappes de pétrole.

Pendant que le RotoX était testé dans les eaux de l’Arctique, un responsable de la Garde Côtière a froidement déclaré que les États-Unis n’avaient pas les moyens de nettoyer une marée noire dans l’Arctique. Déjà en 2014, le National Research Council (NRC) avait publié une étude qui mettait en évidence les obstacles naturels que les équipes de nettoyage devraient rencontrer lors d’une marée noire dans l’Arctique et formulait des recommandations pour améliorer la capacité des États-Unis à faire face à un tel événement. Le NRC a également précisé que le personnel, les équipements et les ressources de sécurité capables de répondre à une marée noire de grande ampleur dans l’Arctique n’étaient pas suffisants.

Trois ans plus tard, le président de la commission du NRC qui a rédigé le rapport et un professeur de l’université Le Moyne de Syracuse (Etat de New York), ont déclaré qu’il fallait investir davantage dans les infrastructures et la logistique, mais aussi développer les relations entre les gouvernements fédéral et étatique et les autorités locales. En ce qui concerne la nouvelle technologie, l’intégration de systèmes de capteurs devrait également être améliorée.

En conclusion, on peut dire que le test du nouvel « écumeur de pétrole » est un élément important du puzzle créé par la gestion de l’augmentation du trafic maritime dans les eaux de l’Arctique, mais il y a encore de nombreux problèmes à résoudre pour faire face à une marée noire. De toute évidence, les États-Unis n’ont toujours pas les moyens d’affronter une telle catastrophe environnementale.

Source: Alaska Dispatch News.

———————————————

As shipping lanes open with the melting of the ice in Arctic, together with the discovery of new mineral deposits, there are fears that this new situationmay some day cause a large-scale pollution, especially through an oil spill and natural gas leaks. Tests are currently being made to anticipate such a situation which would undoubtedly be an environmental disaster.

In late July, a robot – the Aqua-Guard Triton RotoX – dipped into the icy Beaufort Sea. The goal was to test whether the prototype could clean up an oil spill in the Arctic. The oil skimmer, which was remotely controlled from the deck of an icebreaker, is one of many technologies being examined by the U.S. Coast Guard’s research and development program. The Canadian-designed RotoX was made to skim oil off Arctic water littered by broken sea ice, the very problem that environmental groups say should preclude oil development in offshore Alaska. Two potential oil spill scenarios are said to be a cause for concern: a catastrophic oil spill from a tanker like the Exxon Valdez, or more likely, a spill from a small ship through an unintentional release or accident.

Currently, technology can clean up oil in open water and in pack ice. But water with broken ice still remains a problem. The RotoX is outfitted with multiple orange « teeth » slightly protruding from the front of the device. After maneuvering the oil skimmer to pockets of ice and oil, it chops up the ice into smaller pieces, which could be pumped through the skimmer or slide underneath. Being able to remotely guide the skimmer from a larger ship also gives it an advantage in ice-filled water. Compared to skimmers that are traditionally dragged along by large ships, RotoX is more nimble and could maneuver around the ice to reach oil spots.

After first deploying the skimmer in non-ice-filled water, the team tested it in waters filled with ice of varying thickness. The results were not really successful. Although the RotoX did well propelling itself through ice floes, the teeth were so powerful that they actually became a detriment in reaching potential oil.

While the oil skimmer was tested in Arctic waters, a Coast Guard official said that the United States was not prepared to clean up an oil spill in the Arctic. In 2014, the National Research Council released a study which acknowledged the natural obstacles that response crews might encounter during an Arctic oil spill, and laid out recommendations to improve the U.S. capability to respond to an oil spill. It also said the number of personnel, equipment and safety resources able to respond to a large Arctic oil spill was not adequate.

Three years later, the chairman of the committee that produced the report and a professor at Le Moyne College in Syracuse, New York, said more investment in infrastructure and logistics is needed, as well as more baseline information and relationships between federal, state and local players. Looking at new technology, and how sensor systems can be integrated into the devices, is also an area for improvement.

In conclusion, we can say that the test of the new oil skimmer was an important piece of the puzzle to gear up for more traffic sailing through Arctic waters, but there are still some limitations in preparing for a large oil spill and the U.S. is not ready to cope with such an environmental catastrophe.

Source: Alaska Dispatch News.

Le nettoyage d’une pollution provoquée par une marée noire au moment de la débâcle reste un problème insoluble (Photo: C. Grandpey)

 

Récente sismicité sur le Mont Rainier : Pas de quoi s’inquiéter // Recent seismicity on Mt Rainier : Nothing to worry about

Vingt-trois séismes ont été enregistré sur le Mont Rainier (État de Washington) au cours de la dernière semaine, mais les sismologues disent qu’il n’y a pas de quoi s’inquiéter.
Le premier événement a été détecté le 11 septembre près du sommet du volcan. La secousse la plus forte avait une magnitude  de M 1.6. Ce n’est pas le premier essaim sismique observé sur le Mt Rainier. Une sismicité semblable a déjà été observée dans le passé avec des événements qui ont duré quelques jours à une semaine environ et ont ensuite disparu. Le volcan a connu des pics de sismicité semblables au cours des deux dernières années et un épisode de sismicité plus soutenu en 2009.
Les essaims sismiques sont fréquents sur les volcans et n’annoncent généralement pas une éruption. Ils ont leur source dans le système hydrothermal du volcan et sont liés à de légers changements de température ou de pression des eaux souterraines, ce qui provoque la fracturation des roches. Les derniers séismes enregistrés sur le Mt Rainier sont peu profonds, ce qui montre également qu’ils ne sont pas provoqués par des mouvements profonds ou une ascension du magma.
Source: The Spokesman.

————————————

Nearly two dozen small earthquakes have rattled Mount Rainier (Washington State) over the past week, but seismologists say there’s no cause for worry.

The first of the 23 quakes struck on September 11th near the volcano’s summit. The largest of the quakes registered M 1.6. This is not the first swarm on Mt Rainier. Similar seismicity has already been observed in the past with events that lasted a couple of days to a week or so and then died out.  The volcano experienced similar increases in the past two years, and a more sustained episode of seismicity in 2009.

Earthquake swarms are common at volcanoes, and usually don’t signify any threat of eruption. They originate in the hydrothermal plumbing system, related to slight changes in temperature or groundwater pressure that cause cracking of the rocks. The recent quakes on Mt Rainier are shallow, which also suggests they are not connected to the deep movement or ascent of magma.

Source: The Spokesman.

Photo: C. Grandpey

Le Mauna Loa (Hawaii) confirme que nous ne savons pas prévoir une éruption volcanique // Mauna Loa (Hawaii) confirms that we cannot predict a volcanic eruption

Aujourd’hui, bien que les volcans soient dotés de toutes sortes d’instruments (sismomètres, tiltmètres, etc.), bien que des équipements de très haute technologie – en particulier à bord des satellites – soient mis à la disposition des observatoires,  nous ne sommes toujours pas en mesure de prévoir les éruptions volcaniques. Un article récent publié par les scientifiques de l’USGS sur le volcan Mauna Loa à Hawaï confirme cette affirmation.

Le 17 septembre 2015, l’Observatoire des Volcans d’Hawaii (HVO) a fait passer le niveau d’alerte du Mauna Loa de « Normal » à « Advisory » et l’alerte aérienne à la couleur Jaune. Deux ans plus tard, le volcan conserve ces niveaux d’alerte. Que se passe-t-il sur le Mauna Loa ? La situation risque-t-elle d’évoluer? Les habitants peuvent-ils vivre tranquillement ou rester vigilants? Bien malin celui qui pourrait répondre à ces questions !
La hausse du niveau d’alerte en 2015 a été justifiée par plus d’un an d’inflation, signe que le magma remplissait lentement le réservoir peu profond sous le sommet du volcan et sous la partie supérieure du Rift Sud-Ouest. Il s’agissait d’un comportement inhabituel du volcan après plusieurs années de calme plat. Dans le même temps, le nombre de séismes superficiels sous le volcan était en hausse, reflétant les contraintes qui apparaissent lorsque le volcan se met en pression.
Depuis cette époque, l’inflation et la sismicité ont alterné hausse et baisse, mais sont restées au-dessus du niveau normal sur le long terme. En outre, des séismes mineurs (moins de M3) sous le Mauna Loa ont été détectés en plus grand nombre qu’avant l’éruption de 1984.
De 2013 à 2015, les séismes superficiels se sont concentrés dans des endroits identiques à ceux qui ont précédé les deux éruptions du Mauna Loa en 1975 et 1984. Toutefois, la libération d’énergie est restée relativement faible par rapport aux éruptions de ces deux années. Cette faible libération d’énergie était une indication qu’une éruption n’allait pas se produire avant plusieurs mois, voire plusieurs années.
Aujourd’hui, l’énergie libérée par les séismes depuis 2013 correspond grosso modo aux quantités d’énergie libérées avant 1975 et avant 1984. Cela signifie-t-il qu’une éruption peut se produire dans les semaines ou les mois à venir? Probablement pas.
Si le Mauna Loa suit la même évolution qu’en 1975 et 1984 avant que le volcan entre en éruption, le HVO enregistrera un grand nombre de petits séismes sous le sommet pendant une période de plusieurs mois. Les scientifiques s’attendront à observer au moins une heure, ou des heures de tremor, signe ultime que le magma est en ascension vers la surface. Mais est-il certain que Mauna Loa suivra le même processus qu’en 1975 et 1984? On ne le sait pas.
On ne peut exclure la possibilité d’une éruption qui démarrerait plus rapidement qu’en 1975 et 1984. Il se pourrait aussi que l’activité observée actuellement cesse progressivement sans que le volcan entre en éruption, comme cela s’est produit en 2002 et 2004. Le HVO doit donc continuer à vivre dans l’incertitude quant à la date et au déroulement de la prochaine éruption du Mauna Loa. En attendant, l’Observatoire surveille attentivement le volcan et travaille avec les agences partenaires et les autorités locales pour se préparer à une prochaine éruption.
Depuis 1984, le HVO a mis à niveau et ajouté des instruments de surveillance, avec de nouveaux systèmes d’alarme pour informer rapidement le personnel de l’observatoire des changements qui pourraient indiquer qu’une éruption du Mauna Loa est imminente ou en cours.
S’agissant de la question, «Les habitants doivent-ils vivre tranquillement ou doivent-ils rester vigilants?» La réponse est «Soyez prêts». Il leur faut prévoir un plan d’urgence pour la famille et des fournitures d’urgence. Il faut que les gens sachent dans quelle zone du Mauna Loa ils habitent et se plient aux instructions concernant ladite zone.
Source: USGS / HVO.

———————————————

Today, even though volcanoes are well equipped with all kinds of instruments (seismometers, tiltmeters, and so on), even though we can now use high technology – especially on board satellites – we still are not able to predict volcanic eruptions. A recent article released by USGS scientists about Mauna Loa volcano in Hawaii confirms my affirmation.

On September 17th, 2015, the Hawaiian Volcano Observatory (HVO) upgraded the volcano alert level for Mauna Loa from Normal to Advisory and the Aviation Colour Code from Green to Yellow. Two years later, the volcano remains at Advisory/Yellow. What’s up with Mauna Loa, and is any change in sight? Should residents relax or stay vigilant?

The 2015 alert level upgrade followed more than a year of inflation as magma slowly filled shallow reservoirs beneath the summit and upper Southwest Rift Zone. This was new behaviour for the volcano following several years of no new magma input into the shallow plumbing system. At the same time, the rate of shallow, small earthquakes beneath the volcano was elevated, reflecting stresses that built as the volcano became pressurized.

Since then, rates of inflation and seismicity have waxed and waned, but have remained above the long-term background levels. In addition, more small magnitude (less than M3) earthquakes beneath Mauna Loa have been detected than at any time since the previous eruption in 1984.

From 2013 to 2015, shallow earthquakes clustered in locations similar to those that preceded Mauna Loa’s two most recent eruptions in 1975 and 1984. But, the cumulative energy release remained relatively low compared to the years before the 1975 and 1984 eruptions. That low energy release was one indication that an eruption was at least many months to years away.

But today, the cumulative energy release of earthquakes since 2013 has essentially matched the pre-1975 and pre-1984 energy releases. Does this mean an eruption could occur within weeks to months? Not likely.

If Mauna Loa follows the “script” of 1975 and 1984, before the volcano ramps up to an eruption, HVO would expect to see lots of small earthquakes occurring frequently beneath the summit over a period of months. Scientists would also expect at least an hour, or hours, of tremor as a final warning that magma is on its way to the surface. How certain is it that Mauna Loa will follow the script of 1975 and 1984? That’s the unknown.

We cannot discount the possibility that Mauna Loa will move from current conditions to eruption more quickly than it did in 1975 and 1984. It also remains possible that the current unrest will gradually cease without the volcano erupting, as it did during periods of unrest in 2002 and 2004. And so, we must continue to live with uncertainty about the timing and details of Mauna Loa’s next eruption. In the meantime, HVO is closely monitoring the volcano and working with partner agencies and communities to prepare for a future eruption response.

Since 1984, HVO has upgraded and added monitoring instrumentation, developing alarm systems to rapidly notify the staff of changes that might indicate that a Mauna Loa eruption is imminent or in progress.

Getting back to the question, “should residents relax or stay vigilant?” The answer is, “be prepared.” Develop a family emergency plan and review emergency supplies. Know where you live and work with respect to Mauna Loa hazard zones.

Source : USGS / HVO.

Le Mauna Loa vu depuis le Ka’u Desert

Coulées de lave sur le versant sud-ouest du Mauna Loa

Système d’alerte sur le Mauna Loa

(Photos: C. Grandpey)