Une solution contre le réchauffement climatique: Un stupa de glace // A solution against global warming : An ice stupa

Le Ladakh – le « pays des hautes passes » – est pris en sandwich entre deux des plus hautes chaînes de montagnes du monde, l’Himalaya et le Kunlun. Les précipitations sont rares dans cette région. L’eau, indispensable à l’irrigation des terres agricoles qui constituent la principale ressource de la population locale, provient principalement de la fonte de la neige et de la glace. Cependant, le changement climatique rend cette terre encore plus sèche, laissant les agriculteurs en manque d’eau dans les mois d’avril et mai, si importants pour les plantations, juste avant que les glaciers commencent à fondre sous le soleil de l’été.
En 2014, Sonam Wangchuk, un ingénieur en mécanique de la région a décidé de s’attaquer à la crise de l’eau au Ladakh où les glaciers reculent en raison de la hausse des températures. Pour cette raison, ils laissent échapper beaucoup moins d’eau au début du printemps mais en fournissent une grande quantité avec la chaleur de l’été qui les amenuise encore davantage.
L’ingénieur avait en tête une idée simple: il voulait rééquilibrer ce déficit naturel en recueillant l’eau provenant de la fonte de la neige et de la glace au cours des mois froids (cette eau est perdue pour tout le monde) et en la stockant jusqu’au printemps, moment où les agriculteurs en ont le plus besoin. Pour ce faire, il a construit un « stupa de glace », cône de glace à deux niveaux, ainsi baptisé par référence aux monuments sacrés traditionnels que l’on rencontre dans toute l’Asie.
Le stupa de glace est édifié sans avoir besoin d’électricité ou de pompes, uniquement grâce à la physique. Tout d’abord, un tuyau est installé sous terre ; il relie un cours d’eau et l’endroit où le stupa de glace doit être implanté, généralement à côté d’un village. L’eau doit provenir d’un point plus élevé, d’une soixantaine de mètres ou plus. Comme un fluide dans un circuit maintient toujours son niveau – selon le principe des vases communicants – l’eau qui provient de 60 mètres en amont gicle à 60 mètres en l’air à la sortie du tuyau en aval, créant une fontaine. La température négative de l’air fait le reste et cristallise immédiatement les gouttelettes d’eau sous forme de glace qui tombe juste en dessous en formant un cône. Un cône est très facile à fabriquer avec de la glace, car tout écoulement sous forme de gouttes forme naturellement un cône. Les glaçons sont eux-mêmes des cônes inversés.
Un cône a des propriétés très intéressantes: il a une surface d’exposition minimale par rapport au volume d’eau qu’il contient; Cela signifie qu’il fond très lentement. Le prototype de 6 mètres de hauteur contenant 150 000 litres d’eau a duré de l’hiver jusqu’à la mi-mai, au moment précis où l’eau était nécessaire pour l’irrigation, alors que toutes les glaces environnantes avaient disparu fin mars. L’aspect révolutionnaire du stupa est qu’il fonctionne même à basse altitude et à des températures très chaudes.
Ce n’est pas la première fois que l’on essaye de créer un glacier artificiel dans la région, mais les tentatives précédentes ont eu lieu au-dessus de 4 000 mètres d’altitude en faisant geler l’eau dans de grands canaux qui exigeaient de l’ombre et beaucoup d’entretien, et étaient situés trop loin des champs pour être pratiques.
Au lieu de cela, la forme conique du stupa de glace peut résister à la lumière directe du soleil et le cône peut être édifié là même où l’eau est nécessaire. Cependant, les stupas ne sont pas sans entretien car ils ont besoin d’une intervention manuelle; Par exemple, les fontaines peuvent se bloquer lorsque l’eau gèle dans les tuyaux. En améliorant la technique, ils devraient devenir plus fiables. Des tests commenceront au Pérou cet été en profitant de l’hiver dans l’hémisphère sud.
En raison de l’infrastructure de tuyauterie requise, le coût initial du projet est relativement élevé. L’ingénieur en mécanique a estimé qu’il aurait besoin d’environ 125 000 dollars pour réaliser la première version du stupa de glace à grande échelle. Il pourrait atteindre 25 mètres de hauteur et permettre l’irrigation d’une dizaine d’hectares de cultures. Conscient que ce coût serait trop élevé pour les autorités locales, il a décidé d’avoir recours à un financement participatif par l’intermédiaire de la plateforme Indiegogo. Cette initiative a été couronnée de succès et a suscité l’intérêt des institutions locales. En fin de compte, le gouvernement du Ladhak l’a intégrée dans ses plans de développement. Le stupa de glace a également remporté un Rolex Award for Enterprise en 2016, ce qui a rapporté une somme de 100 000 francs suisses (environ 105 000 dollars).

https://youtu.be/FdVijr10DZ0

Les stupas de glace pourraient également être transformés en attractions touristiques, en y incorporant des bars à glace et des hôtels de glace. Cela reviendrait à mélanger le sacré et le profane et construire un pont entre différentes cultures.
Source: CNN.

—————————————-

Ladakh- the « land of high passes » – is sandwiched between two of the world’s tallest mountain ranges, the Himalayas and the Kunlun. Rainfall is rare in the region. Water, essential for irrigating the farmlands that are the lifeblood of the local population, mostly comes from melting snow and ice. However, climate change is making this land even drier, leaving farmers without water in the crucial planting months of April and May, right before the glaciers start to melt in the summer sun.

In 2014, Sonam Wangchuk, a local mechanical engineer set out to solve the water crisis of the Ladakh. The natural glaciers are shrinking due to rising global temperatures. For that reason, they provide far less water in early spring but then release a lot in the summer heat, shrinking even more.

The engineer had a simple idea: he wanted to balance this natural deficit by collecting water from melting snow and ice in the cold months, which would normally go to waste, and store it until spring, just when farmers need it the most. He then built a two-story prototype of an « ice stupa », a cone of ice that he named after the traditional sacred monuments that are found throughout Asia.

The ice stupa is created using no power or pumps, only physics. First, a pipe is laid underground, connecting a stream of water and the location where the ice stupa is required, usually next to a village. The water must come from a higher altitude, usually around 60 meters or more. Because a fluid in a system always wants to maintain its level – according to the principle of the communicating vessels – water from 60 meters upstream will spray 60 metres into the air out of the downstream pipe, creating a fountain. The freezing air temperature does the rest, immediately crystallizing the water droplets into ice that falls right below, forming a cone. A cone is very easy to make with ice, because any dripping naturally forms a cone underneath; icicles are inverted cones.

A cone has more desirable properties: It has minimal exposed surface area for the volume of water it contains; that means it melts very slowly. The 6-metre-tall prototype containing 150,000 litres of water lasted from winter until mid-May, just when water is needed for irrigation, while all the surrounding ice on the ground had gone by the end of March. The revolutionary aspect of the ice stupa is that it works even at low altitude and in very warm temperatures.

It’s not the first type of artificial glacier in the area, but previous endeavours in this area were only attempted above 4,000 metres a.s.l. by freezing waters in large canals which required shade and a lot of maintenance, and were located too far away from the fields to be practical.

Instead, the conical shape of the ice stupa can withstand even direct sunlight and it can sit right were the water is required. However, the stupas are not maintenance-free as they need a lot of manual intervention; for instance, the fountains can freeze when the pipes ice up. It is hoped that soon, by refining the technology, they will become more reliable. Tests will start in Peru this summer, taking advantage of an extra winter in the southern hemisphere.

Because of the piping infrastructure required, the initial investment can be steep. The mechanical engineer estimated he would need around $125,000 to build his first full-scale version, which could reach 25 metres in height and provide irrigation to about 10 hectares of land. As the price would be too high for local authorities, he decided to crowdfund the project, asking people for contributions through Indiegogo, a popular crowdfunding platform. The campaign was successful and piqued the interest of the local institutions. In the end, the Ladhaki government is incorporating it its development plans. The ice stupa also won a Rolex Award for Enterprise in 2016, which carried a 100,000 Swiss Franc prize (around $105,000).

https://youtu.be/FdVijr10DZ0

The stupas might also be turned into tourist attractions, by building ice bars and ice hotels inside them. This would mean a bit like mixing the sacred and the profane and build a bridge between different cultures.

Source: CNN.

Vue du prototype du stupa de glace

(Crédit photo: Sonam Wangchuk)

Accès au Stromboli // Access to Stromboli Volcano

Une nouvelle ordonnance promulguée par le maire de Lipari vient de redéfinir les modalités d’accès au Stromboli. Selon l’ordonnance, la réglementation d’accès se justifie  car il existe toujours un risque d’explosion majeure non prévisible sur le volcan.

En conséquence, l’accès au Stromboli reste libre jusqu ‘à 400 mètres d’altitude.

Au-dessus de 400 mètres, les excursions doivent obligatoirement être effectuées avec l’accompagnement de guides alpins ou volcanologiques autorisés, avec des groupes ne dépassant pas 20 personnes.

Entre le 1er juin et le 30 septembre, les excursions devront se faire entre 17 heures et 7 heures, avec un séjour maximum de 75 minutes au-dessus de 750 mètres d’altitude.

————————————

A new ordinance promulgated by the Mayor of Lipari has just redefined the conditions of access to Stromboli. According to the ordinance, the access regulations are justified because there is  all the time a risk of major unpredictable explosions on the volcano.
As a result, access to Stromboli remains free up to 400 metres above sea level.
Above 400 metres a.s.l., excursions must be carried out with the accompaniment of authorized Alpine or volcanological guides, with groups not exceeding 20 people.
Between June 1st and September 30th, excursions must be between 5 pm and 7 am, with a maximum stay of 75 minutes above 750 metres a.s.l.

Il est bien loin le temps où l’on pouvait bivouaquer librement dans des petits nids de pierre le long de la Sciara del Fuoco! Désolé, mais je n’ai plus envie de gâcher des souvenirs extraordinaires avec les conditions d’accès actuelles. (Photo: C. Grandpey)

 

I do regret the time when I could spend the night in nice little stone nests along the Sciara del Fuoco. Sorry, but I do not want to spoil wonderful memories with the current access conditions. (C. Grandpey)

Piton de la Fournaise : Situation le 21 juillet 2017 // Situation on July 21st 2017

L’éruption se poursuit. L’intensité du tremor est en augmentation depuis 24 heures. Cette hausse est essentiellement due à la fermeture du cône en aval de la fracture éruptive qui augmente la pression sur ses parois. Les dernières observations montrent que le cône continue son édification et se referme. Trois bouches actives sont visibles à l’intérieur. De nombreux tunnels de lave se sont formés en aval du cône. Des cassures au sein de ces tunnels laissent s’échapper de nombreuses coulées latérales de faible intensité.

Source : OVPF.

—————————————

The eruption continues. The intensity of the tremor has been increasing over the past 24 hours. This increase is mainly due to the closure of the cone downslope of the eruptive fracture, which increases the pressure on its walls. The last observations show that the cone is still being built and is closing. Three active vents can be seen inside the cone. Numerous lava tubes have been formed downslope of the cone. Collapses along these tunnels allow many small lateral flows to come out of them.
Source: OVPF.

Crédit photo: Christian Holveck

Piton de la Fournaise (Ile de la Réunion): Situation stable

L’éruption débutée le 14 juillet se poursuit et semble avoir trouvé sa vitesse de croisière. En effet, l’intensité du tremor est relativement stable depuis plus de 72 heures et pratiquement équivalente à celle observée le deuxième jour d’éruption.

Source : OVPF.

Voici une nouvelle photo prise le 20 juillet. Elle confirme que la coulée qui s’échappe du cône volcanique reste bien alimentée.

—————————————-

The eruption that started on July 14th continues and seems to have found its cruising speed. Indeed, the tremor intensity has been relatively stable for more than 72 hours and practically equivalent to that observed on the second day of the eruption.
Source: OVPF.
Here is a new photo taken on July 20th. It confirms that that lava flow coming out of the volcanic cone is still well fed.

Crédit photo: Christian Holveck

Le plus haut volcan du monde! // The highest volcano in the world!

Dans le cadre de la nouvelle exposition « Pompéi », avec des objets datant de l’éruption du Vésuve en 79 av. J.-C., le Musée des Sciences et de l’Industrie de l’Oregon (OMSI) à Portland prétend créer ce week-end la plus grande éruption volcanique au monde avec du bicarbonate de soude et du vinaigre.
L’expérience est classique et souvent montrée dans les écoles. Elle consiste à mélanger du vinaigre et du bicarbonate de soude (avec éventuellement un peu de liquide vaisselle), en ajoutant un colorant rouge pour faire « plus vrai » (voir lien ci-dessous). La version géante de l’éruption aura 10 mètres de haut et devrait battre le record du monde figurant dans le livre Guinness des Records avec un volcan de 9,30 mètres de hauteur confectionné avec les mêmes ingrédients. La construction du volcan a débuté le 12 juillet sur le parvis du Musée. L’éruption doit avoir lieu à 15 heures le 23 juillet, avec des animations qui commenceront dès 11 heures.
Quant à elle, l’exposition « Pompéi » se déroule du 24 juin au 22 octobre à OMSI, 1945 S.E. Water Avenue à Portland. Le prix des billets va de 10 à 26 dollars.

Source : The Oregonian.

En cliquant sur ce lien, vous trouverez la recette pour réaliser votre propre volcan à la maison!
http://www.espace-sciences.org/juniors/experiences/le-volcan-a-la-grenadine

————————————-

As part of the new “Pompei” exhibition, with historic artifacts from the eruption of Mount Vesuvius in 79 AD, the Oregon Museum of Science and Industry (OMSI) in Portland (Oregon) is aiming to create this week-end the world’s largest volcanic eruption with baking soda and vinegar.

The experiment is a classic one, often shown or made by pupils in the schools. Its super-sized version will be 10 metres tall and is expected to break the existing Guinness World Record (a volcano 9.30 metres tall made with the same ingredients.  Construction for the volcano began on July 12th in the OMSI front plaza. The eruption is scheduled for 3 p.m. on July 23rd, with activities starting at 11 a.m. leading up to the explosion.

The “Pompei”exhibition runs from June 24th to October 22nd at OMSI, 1945 S.E. Water Avenue in Portland.  Tickets are $10-$26.

Source : The Oregonian.

By clicking on this link, you will find the recipe to build your own volcano at home!

http://www.espace-sciences.org/juniors/experiences/le-volcan-a-la-grenadine

Qu’on le veuille ou non, rien ne vaut une VRAIE coulée de lave! (Photo: C. Grandpey)

 

Pas aussi “incroyable” que cela ! // Not that « incredible » !

Le New Zealand Herald a publié ce qu’il appelle une « image incroyable d’un caméraman qui a été presque été soufflé par l’explosion d’un volcan ».
Dans la courte vidéo, on peut voir le cinéaste néo-zélandais Geoff Mackley en train d’installer une caméra sur le bord du cratère du volcan Yasur, au Vanuatu, au moment où le volcan entre soudain en éruption. La séquence a été filmée par l’ami de Mackley il y a trois jours.
J’aimerais faire plusieurs remarques sur la vidéo et la situation qu’elle montre.
Tout d’abord, je suis surpris par les vêtements que porte Geoff Mackley.  Avec son bob et son short, il ressemble à un touriste sur une plage! Personnellement, j’ai toujours porté des pantalons longs et un casque lorsque j’effectuais des observations depuis la lèvre des cratères de l’Etna ou du Stromboli. Cela me semble une précaution élémentaire.
Une autre remarque concerne la situation qui, si elle est spectaculaire, n’est pas vraiment dangereuse pour Geoff Mackley. Au cours de l’explosion strombolienne, tous les matériaux éjectés retombent dans le cratère et on ne voit aucune projection atterrir sur la lèvre. La vidéo donne une fausse impression en comprimant les distances.
Les explosions stromboliennes peuvent être beaucoup plus fortes. Je me souviens d’un jour où j’observais le cratère central de l’Etna en compagnie du regretté Jean-Pierre Kloster. Une explosion soudaine et violente a envoyé des matériaux incandescents jusqu’à l’endroit où nous nous trouvions. Dans un réflexe commun, nous nous sommes jetés sur le sol, comme le font les soldats pour éviter les éclats d’obus. Je sentais les lapilli chauds tomber sur mon dos et je les entendais crépiter sur mon casque. Quand tout s’est terminé, j’ai constaté que mon pull était plein de trous ! Je l’ai abandonné un peu plus tard dans une poubelle à la Casa Cantoniera! Cela s’appelle se trouver au mauvais endroit au mauvais moment. J’ai décrit cet événement dans mon livre Volcanecdotes, aujourd’hui épuisé, dans un chapitre intitulé « Accoutumance au risque ».
Voici le lien vers la vidéo sur le Yasur:
http://www.nzherald.co.nz/volcanoes/news/article.cfm?c_id=357&objectid=11892521&ref=rss

————————————————

The New Zealand Herald has released what it calls an “incredible footage of a cameraman being nearly blown off the edge of an exploding volcano”.

In the short video, one can see New Zealand film maker Geoff Mackley setting up a camera on the crater rim of Yasur in Vanuatu when the volcano suddenly erupts. The moment was captured by Mackley’s friend, three days ago.

I would like to make several remarks about the video and the situation it shows.

First of all, I am surprised at the clothes Geoff Mackley is wearing; he looks like a tourist on a beach with his shorts and his sun hat! Personally, I was always wearing long trousers and a helmet while making observations on the crater rims of Mt Etna or Stromboli.

Another remark is about the situation which was dramatic but not really dangerous to Geoff Mackley. During the strombolian explosion, all the ejections fell within the crater and no material can be seen falling on the rim. The video gives compresses the distances and, as such,  gives a false impression.

Strombolian explosions can be much stronger. I can remember one day when I was observing Mt Etna’s central crater with the late Jean-Pierre Kloster. A sudden and violent explosion sent red-hot material as far as the place where we were standing. In a common reflex, we threw ourselves onto the ground, just like soldiers would do to avoid the shrapnel. Il could feel the hot lapilli falling on my back and hear them making noise on my helmet. When it was all over, I realised my pullover was full of holes and I later left if in a rubbish bin at the Casa Cantoniera!

Here is a link to the viedo on Yasur Volcano:

http://www.nzherald.co.nz/volcanoes/news/article.cfm?c_id=357&objectid=11892521&ref=rss

Cratère central de l’Etna (Photo: C. Grandpey)

 

Fonte de la glace de mer et pollution dans l’Arctique // Sea ice melting and pollution in the Arctic

Alors que l’Arctique se réchauffe plus vite que le reste de la planète, une nouvelle étude démontre comment la pollution, que se soient les nappes d’hydrocarbures ou les contaminants organiques, est susceptible de  passer d’une région de l’Arctique à une autre. Dans cette étude publiée dans la revue Earth’s Future, des scientifiques de l’Université de Columbia (État de New York) et de l’Université McGill (Montréal) ont étudié le mouvement de la glace de mer d’un pays à l’autre dans l’Océan Arctique. En comparant les données de 1988 à 2014, ils ont constaté que la glace de mer se déplaçait de plus en plus vite.
Les chercheurs ont analysé 239 023 formations de glace dans l’Arctique et sont arrivés à la conclusion que « le déplacement de la glace de mer s’est accéléré de 14% par décennie ». La glace en provenance des plateformes glaciaires russes – qui produisent plus de la moitié de la glace de mer de la région – « a mis 46% moins de temps pour atteindre les zones économiques d’autres pays où elle a finalement fondu ». La glace de mer nord-américaine s’est déplacée vers les eaux européennes et a fondu 37% plus vite au cours des années qui ont suivi l’an 2000, que pendant les années antérieures à cette date.
Alors que la plus grande partie de la glace de mer reste et fond là où elle se forme, une certaine partie se détache et se déplace essentiellement vers l’ouest. De cette façon, la glace en provenance de Russie dérive vers les eaux de Norvège et du Groenland; La glace en provenance de l’Alaska se dirige principalement vers les eaux russes; l’Alaska reçoit la majeure partie de sa glace du Canada.
L’étude a révélé que 24% de la glace de mer a fondu sans se déplacer et 52 % a fondu à moins de 100 kilomètres de son origine, c’est-à-dire dans les eaux territoriales d’un pays (celles-ci s’étendent jusqu’à à 320 km du littoral). Cependant, près du quart de la glace de mer – plus d’un million de kilomètres carrés – qui s’est formée dans des eaux territoriales s’est finalement déplacée.

 Les scientifiques attribuent l’accélération de déplacement de la glace de mer aux étés plus chauds dans l’Arctique. Comme les températures augmentent dans la région, la quantité de glace de mer qui s’est formée diminue et la glace qui se forme est plus mince. Cette glace plus mince peut être transportée plus loin par le vent et les courants océaniques que de la glace épaisse.
En même temps que la glace de mer se déplace plus vite, il en va de même pour les polluants qui peuvent voyager plus loin de leur source. L’étude montre que ce mouvement devient particulièrement inquiétant lorsqu’il s’agit des nappes d’hydrocarbures.
Avec la réduction de la surface de glace de mer, les scientifiques ont observé une «augmentation significative» de l’exploration pétrolière et gazière dans l’Océan Arctique qui, selon l’’USGS, recèle 13% des réserves pétrolières encore exploitables dans le monde. Un plus grand nombre de forages combiné à un déplacement plus rapide de la glace de mer pourrait entraîner des catastrophes si des marées noires se produisaient dans la région. Dans un modèle du «pire scénario», dans lequel un puits de pétrole explose à la fin de la saison de forage estivale, les chercheurs ont constaté qu’une marée noire dans la Mer de Beaufort pourrait dériver sur plus de 1 200 km avant le mois d’avril suivant. De plus, les opérations de nettoyage seraient bloquées par la glace et l’obscurité permanente des mois d’hiver.
Il convient de noter que des sources de pollution autres que le pétrole peuvent dériver elles aussi, comme les pesticides agricoles et les microplastiques. Comme les contaminants se décomposent plus lentement dans les eaux froides de l’Arctique, la pollution qui se dirige vers l’Arctique depuis les latitudes inférieures se prolonge plus longtemps. La recherche met également en évidence l’interconnexion des pays arctiques et comment une situation dans un pays peut avoir un impact sur toute la région.
Source: Alaska Dispatch News.

—————————————

As the Arctic warms faster than the rest of the planet, new research demonstrates how pollution, from oil spills to organic contaminants, could be passed from one Arctic neighbour to another. In the new study released in the journal Earth’s Future, scientists from Columbia University (New York State) and McGill University (Montreal) examined the movement of sea ice from country to country in the Arctic Ocean. Comparing data from 1988 to 2014, they found that sea ice is moving faster between destinations.

The study analyzed 239,023 ice formations in the Arctic and found that the movement of sea ice accelerated 14 percent each decade. Ice from Russian ice shelves, which produce more than half of the region’s sea ice, traveled to the exclusive economic zones of other countries 46 percent faster, where it eventually melted. North American sea ice traveled to European waters and melted 37 percent faster in the years after 2000 when compared to pre-2000 data.

While most sea ice stays and melts where it forms, some ice breaks off and travels in a mostly westerly direction. In this way, ice from Russia floats to Norway and Greenland waters; ice from Alaska waters primarily travels to Russian waters; Alaska receives most of its ice from Canada.

The study found that 24 percent of sea ice melted without straying and 52 percent melted within 100 kilometres of its origin, namely well within a nation’s exclusive economic zone, which extends 320 km off a country’s coastline. However, almost a quarter of the sea ice that formed inside an exclusive economic zone eventually strayed, totalling more than one million square kilometres of ice.

Scientists attribute this speedier sea ice to warmer Arctic summers. As temperatures increase in the region, the amount of sea ice formed decreases, and the ice that does form is thinner. Thin ice can be carried farther by wind and ocean currents than thick ice.

As Arctic ice is travelling faster, the potential increases for pollutants to travel farther from where they are dumped. The study shows that this movement becomes especially important when it comes to oil spills.

With less ice in Arctic regions, scientists have observed a « significant increase » in oil and gas exploration in the Arctic Ocean, where the USGS estimates that 13 percent of the world’s remaining oil is located. More drilling combined with faster sea ice movement can lead to disaster if an oil spill occurs in the region. In a model of the « worst-case scenario, » in which an oil well blows out at the end of the summer drilling season, the researchers found that a Beaufort Sea spill could be carried by sea ice over 1,200 km by the next April. Cleanup efforts would be stymied by heavy ice and 24-hour darkness in winter months.

It should be noted that sources of pollution besides oil can be dragged along with the ice, including agricultural pesticides and microplastics. Because contaminants break down more slowly in Arctic waters compared to warmer climates, pollution that makes its way to the Arctic from lower latitudes sticks around longer. The research highlights how interconnected Arctic countries are, and how an action by one country could impact the whole region.

Source : Alaska Dispatch News.

Photos: C. Grandpey