Katia et Maurice, on pense à vous… // Katia and Maurice, we think of you…

drapeau-francaisTriste 3 juin 1991. Katia et Maurice Krafft disparaissaient sous une coulée pyroclastique du volcan Unzen au Japon. La montre de Maurice s’est arrêtée à 15h18. Aujourd’hui encore, ils nous manquent beaucoup…

A noter que de 3 juin 2021 marque la réouverture au public de l’Enclos Fouqué sur le Piton de la Fournaise (Ile de la Réunion). Comme un symbole…

—————————

drapeau-anglaisJune 3rd 1991 was a very sad day. Katia and Maurice Krafft were killed by a pyroclastic flow on Mount Unzen in Japan. Maurice’s watch stopped at 15:18. We miss them a lot…

Vulcania-Krafft

Photo: C. Grandpey

Japon: Exploration des zones de subduction // Japan: Exploring subduction zones

Comme je l’ai écrit à plusieurs reprises, nous sommes capables d’explorer la surface de la planète Mars, mais nous ne savons que très peu de choses sur les profondeurs de nos propres océans, en particulier sur les zones de subduction où se déclenchent les séismes les plus puissants et les plus dévastateurs.

Il y a quelques jours, je regardais sur la chaîne de télévision française France 5 l’émission très intéressante «Science Grand format» qui était consacrée à deux «terres extrêmes»: le Japon et la Californie.

Le Japon doit régulièrement faire face à des événements extrêmes tels que des éruptions volcaniques, des séismes, des lahars, des tsunamis et des typhons. D’un point de vue géologique, le pays se trouve à l’intersection de 4 grandes plaques tectoniques: la plaque d’Okhotsk au nord, la plaque du Pacifique à l’est, la plaque Philippine au sud et la plaque Eurasienne à l’ouest. Les séismes sont le plus souvent provoqués par la subduction des plaques Pacifique et Philippine qui plongent sous les plaques d’Okhotsk et Eurasienne.

Un épisode du documentaire sur le Japon nous explique que le Chikyu, un navire de recherche spécialisé en forage océanique, a foré le plancher océanique dans l’espoir d’atteindre la zone de subduction. Cependant, la mission n’a pas réussi à atteindre son objectif ultime : forer jusqu’à 5 200 mètres sous le fond marin, là où la plaque Philippine plonge sous la plaque Eurasienne, en provoquant de puissants tremblements de terre. En mai 2019, les ingénieurs ont arrêté le processus de forage à cause d’effondrements dans le puits de forage, à une profondeur d’un peu plus de 3250 mètres sous le plancher océanique.

Cet échec marquait la fin de près de dix ans d’efforts pour s’enfoncer à l’intérieur de la Fosse de Nankai, au large de la côte sud-est du Japon. Dans cette région, le processus de subduction déclenche des séismes dévastateurs tous les 100 à 150 ans environ. Par exemple, deux événements d’une magnitude supérieure à M 8 ont été enregistrés en 1944 et 1946.

Atteindre les profondeurs de la zone de subduction n’est pas une tâche facile. La limite entre les plaques tectoniques est si profonde que le Chikyu est le seul navire de forage océanique capable de l’atteindre. Pour stabiliser son équipement de forage et pénétrer le plancher océanique, le navire dispose d’une technologie semblable à celle utilisée sur une plate-forme pétrolière.

En octobre 2018, le Chikyu a effectué sa quatrième mission sur un site de la Fosse de Nankai connu sous le nom de C0002, où il avait déjà effectué le forage le plus profond jamais réalisé. Les ingénieurs savaient que cette mission serait délicate, car le forage devait s’effectuer dans des roches fracturées et litées. L’équipe de forage a pu s’enfoncer jusqu’à 3262 mètres, battant ainsi son propre record de forage océanique à but scientifique. Mais les chercheurs n’ont pas pu descendre davantage à cause des effondrements dans le puits de forage. Grosse déception à bord du navire de recherche !

Après l’échec du forage C0002, le Chikyu a effectué des missions moins profondes. En particulier, les scientifiques ont exploré la géologie de la faille qui a déclenché le séisme dévastateur de Tohoku en 2011 qui s’est accompagné de la destruction de la centrale nucléaire de Fukushima. A côté de ces événements meurtriers, les scientifiques à bord du navire ont également étudié les séismes ‘lents’ que l’on enregistre le long de la Fosse de Nankai.

Source: Nature.

Espérons que le Japon – et d’autres pays – pourront mettre en place dans les prochaines années d’autres initiatives comme la mission dans la Fosse de Nankai. Elles nous permettront de mieux comprendre le comportement de notre planète.

————————————————-

As I put it several times, we are able to explore the surface of Mars, but we know very little about the depths of our own oceans, especially the subduction zones that trigger the most powerful and devastating earthquakes.

A few days ago, I was watching on the French TV channel France 5 the very interesting programme “Science Grand format” that was dedicated to two “extreme lands”: Japan and California.

Japan regularly has to face extreme events such as volcanic eruptions, earthquakes, lahars, tsunamis and typhoons. From a geological point of view, the country is located at the intersection of 4 major tectonic plates: the Okhotsk Plate to the north, the Pacific Plate to the east, the Philippine Plate to the south and the Eurasian Plate to the west. Earthquakes are usually caused by the subduction of the Pacific and Philippine plates, which dive beneath the Okhotsk and Eurasian plates.

An episode of the documentary about Japan informs us that the nation’s ocean-drilling research vessel, Chikyu, has drilled the ocean floor deeper than ever before in the hope to reach the subduction zone. However, the mission failed to achieve its ultimate goal of penetrating 5,200 metres beneath the sea floor, into the area where the Philippine Sea plate  plunges beneath the Eurasian plate, causing powerful earthquakes. In May 2019, engineers stopped the drilling process after the drill hole kept collapsing, just over 3,250 metres beneath the sea floor.

It was the end to an almost decade-long effort to drill deep into the Nankai Trough off Japan’s southeast coast. In this region, the plate subduction triggers devastating earthquakes roughly every 100 to 150 years. For instance, a pair of earthquakes with magnitudes above M 8 struck in 1944 and 1946.

Reaching the depths of the subduction zone is not an easy job. The plate boundary is so deep that Chikyu is the only scientific ocean-drilling vessel capable of reaching it. The ship uses a structure similar to the technology used on an oil rig, to stabilize its drilling equipment and penetrate the sea floor.

In October 2018, Chikyu made its fourth trip to a site on the Nankai Trough known as C0002, where it had already drilled the deepest-ever hole beneath the sea floor. Engineers knew that the next phase of drilling would be difficult, because the hole penetrates rocks that are fractured and folded. The drilling team was able to deepen the hole from just over 2,900 metres beneath the sea floor to 3,262 metres, breaking its own record for the deepest scientific ocean drilling. But the researchers could not go any farther because the hole kept collapsing at the bottom. There was a general disappointment aboard the research vessel.

After the C0002 hole failed, Chikyu moved on to drill in shallower holes nearby. In particular, scientists explored the geology of the shallow fault that triggered the devastating 2011 Tohoku earthquake that destroyed the Fukushima nuclear plant.. The ship also investigated the many small, slow-motion earthquakes that are recorded along the Nankai Trough, in addition to the large, devastating ones.

Source : Nature.

Let’s hope more initiatives like the Japanese mission in the Nankai Trough will be set up in the next years. They will help us understand better the behaviour of our planet.

Le Chikyu est un navire japonais de forage en haute mer. Il mesure 210 mètres de longueur, 38 mètres de large, 16,2 mètres de haut pour un tonnage de 57000 tonnes. La partie la plus originale du navire est son derrick de 121 mètres au dessus du niveau de la mer. Il a un équipage de 150 hommes, divisé en 50 scientifiques et 100 opérateurs. (Source : Wikipedia)

Odeurs et séismes // Odours and earthquakes

Le 21 août 2020, les pompiers de la préfecture japonaise de Kanagawa ont reçu de nombreux appels signalant une odeur inhabituelle qui avait envahi la ville pendant une heure. Les sismologues pensent que ce phénomène étrange pourrait être le signe précurseur d’un puissant séisme. Ils expliquent que les roches produisent une odeur particulière avant de se rompre sous les contraintes auxquelles elles sont soumises.
L’odeur désagréable avait déjà été signalée à deux reprises à Kanagawa au cours des mois précédents. La police a reçu environ 260 appels le 4 juin 2020 faisant état d’une « odeur de gaz. » Une équipe a été dépêchée sur place la suite de ces appels, mais aucune conduite de gaz endommagée n’a été découverte et la cause de la puanteur est restée inconnue.
Un sismologue de l’Université de Ritsumeikan, qui étudie la relation entre les séismes et les odeurs, a adressé une mise en garde juste après le premier incident. Les études montrent que les roches produisent une certaine odeur juste avant de se rompre sous les contraintes auxquelles elles sont soumises. Il a ajouté que les séismes majeurs ne se produisent pas brusquement ; les tensions s’accumulent lentement au fil des mois ; les plaques tectoniques se déplacent progressivement l’une contre l’autre avant que se déclenche le séisme principal. C’est ce processus qui est probablement la cause des mauvaises odeurs dans la région de Yokosuka.
Dans le passé, plusieurs séismes majeurs ont déjà été précédés par des odeurs désagréables. Par exemple, avant le tremblement de terre de Christchurch (Nouvelle-Zélande) en 2010 et celui de Kobe (Japon) en 1995, des témoins avaient fait état d’odeurs mystérieuses. Le séisme de magnitude M7.1 à Christchurch a causé des dégâts considérables et est aujourd’hui considéré comme celui qui a causé le plus de dégâts à une grande zone urbaine depuis l’événement de Hawke’s Bay en 1931.
Le séisme de Kobe a été l’un des pires de l’histoire du Japon. D’une magnitude de M7.3, il a tué environ 6 500 personnes et causé plus de 100 milliards de dollars de dégâts. Selon une étude, une odeur de soufre a été signalée avant la catastrophe.
L’avenir nous dira si les mises en garde des sismologues japonais sont justifiées et si un séisme majeur secouera la région de Kanagawa.
Source: The Watchers,

———————————————–

On August 21st, 2020, the fire department in the Japanese Kanagawa Prefecture received numerous calls from residents reporting an unusual smell in the area over the course of an hour. Seismologists suggest that the strange phenomenon may be a precursor of a large earthquake. They explain rocks generate a distinct smell before breaking under stress.

 The unpleasant smell was reported twice in the prefecture during the previous months. About 260 calls were made to police hotlines on June 4th, all noting that the odour « smelled like gas ». An extensive investigation was conducted following the reports but no damaged gas lines were discovered, and the cause remained unknown.

A seismologist at Ritsumeikan University, who studies the relationship between earthquakes and odours, issued a warning right after the first incident. He explained that based on research, rocks create a certain smell just before they break under stress. He added that large earthquakes do not happen abruptly; they slowly build up over months, with the grinding tectonic plates gradually peeling away at each other before the main quake occurs. This process may be generating the stench in the Yokosuka area.

In the past, several major earthquakes were predeced by similar unpleasant odours. For instance, before the 2010 Christchurch Earthquake in New Zealand and the 1995 Kobe Earthquake in Japan, there had been reports of mysterious odours from witnesses. The M7.1 Christchurch quake left a considerable amount of damage and was considered the largest earthquake to impact a major urban area since the 1931 Hawke’s Bay earthquake.

The Kobe earthquake was one of the worst in Japan’s history. The M7.3 event resulted in around 6 500 fatalities and more than 100 billion dollars’ worth of damage. According to a study, a sulfur-like smell was reported prior to the disasters.

Let’s see if the seismologists warnings are justified and idf a major earthquake will shake the Kanagawa area.

Source: The Watchers.

Dégâts occasionnés par le séisme de Kobe (Crédit photo: Wikipedia)

Les hydrates de méthane pour remplacer le pétrole ? // Methane hydrates to replace oil?

La sécurisation et la diversification des approvisionnements énergétiques sont pour la Chine un objectif stratégique et géopolitique majeur. C’est pourquoi le pays s’efforce de développer simultanément l’énergie nucléaire, l’hydroélectricité, le solaire et l’éolien. Mais la Chine n’oublie pas le fabuleux potentiel énergétique que recèlent les mers et océans.

Le 18 mai 2018, la Chine a réussi à extraire des hydrates de méthane, un gaz naturel au rendement bien supérieur à ceux de toutes les énergies fossiles connues, mais aussi potentiellement bien plus destructeur…

Les clathrates, aussi appelées hydrates de méthane ou encore « glace qui brûle », sont des composés d’origine organique présents dans les fonds marins ou enfouis sous le permafrost. Il s’agit de sortes de blocs de glace qui renferment des gaz sous une forme très concentrée, des molécules de méthane emprisonnées. Si les clathrates sont très stables dans des conditions de basses températures et de fortes pressions, le bouleversement de ces conditions déstabilise complètement la structure, et conduit à l’échappement du méthane, qui peut brûler si on l’enflamme, d’où le nom de « glace qui brûle ». C’est aussi ce qui en fait une source d’énergie très difficile à extraire d’un point de vue technique. En effet, le méthane étant extrêmement inflammable, son extraction représente des risques évidents pour la sécurité. De plus, l’émission de gaz induite par le forage peut modifier la densité de l’eau environnante et donc potentiellement couler les navires chargés de l’extraction.

Pour autant, rien de tout cela n’a freiné la détermination des géants de l’énergie – les Chinois en particulier –  qui, voyant les ressources en hydrocarbures s’épuiser progressivement, cherchent des alternatives.

Le Japon a fait figure de pionnier  dans l’extraction des hydrates de méthane. Le pays s’est lancé dans la ruée vers cette nouvelle source d’énergie à la suite de la fermeture des centrales nucléaires suite à la catastrophe de Fukushima.

Le Japon a réalisé quelques explorations concluantes en 2013, mais la Chine a franchi un réel cap en 2018 en extrayant en moyenne 16 000 mètres cubes de gaz par jour pendant 8 jours consécutifs. L’extraction a eu lieu à 1 266 mètres de profondeur dans un puits sous-marin de 200 mètres en mer de Chine méridionale. C’est une excellente nouvelle pour le gouvernement chinois à l’heure où le pays doit répondre à une demande énergétique énorme pour son développement économique, tout en étant tenue par les accords de Paris.

L’hydrate de méthane est un foyer d’énergie sans commune mesure : un mètre cube de clathrates pourrait libérer jusqu’à 165 mètres cubes de méthane, et on estime que les réserves mondiales sont colossales. Elles pourraient être égales au double des réserves de gaz, de charbon et de pétrole réunies ! Les scientifiques chinois évaluent les réserves d’hydrate de méthane dans les eaux territoriales chinoises à 80 milliards de tonnes équivalent pétrole, ce qui représente une énorme ressource potentielle. Ils ont délimité deux gisements d’hydrates de méthane dont un de 123,1 milliards de m3 et un autre de 150 milliards de m3. Jusqu’ici, l’essai d’extraction d’hydrate de méthane dans la zone Shenhu (nord de la mer de Chine méridionale) s’est bien déroulé avec en moyenne 8350 m3 de méthane de grande pureté extrait chaque jour.

Qui dit énergie fossile dit évidemment danger pour l’environnement. Or, dans le cas des hydrates de méthane, les conséquences d’une course mondiale à l’extraction de cette nouvelle ressource pourraient être dramatiques. Mais que ne ferait-on pas pour récolter une nouvelle source d’énergie ? L’environnement ? C’est quoi ?

D’après l’IFREMER, le risque majeur reste lié aux fuites potentielles de méthane dans l’atmosphère. En effet, une partie du méthane récolté fuit dans l’atmosphère lors des processus d’extraction alors même que le méthane est un gaz à effet de serre 25 fois plus puissant que le CO2. En revanche, comme je l’ai déjà indiqué, sa durée de vie est d’une dizaine d’années contre près de 125 pour le CO2. Une extraction massive des hydrates de méthane conduirait rapidement à une aggravation du réchauffement climatique. Le risque est d’autant plus grand que la technique d’extraction n’est pas vraiment maîtrisée. En particulier, le comportement du réservoir, le sédiment qui est autour de ces hydrates de gaz, reste une inconnue.

D’autres effets négatifs peuvent également être à craindre, notamment la formation de tsunamis géants liés aux glissements de terrain induits par le forage de terrain sous-marins sur le talus continental. De plus, si les techniques de forage des hydrates de méthane venaient à être suffisamment développées pour permettre son exploitation commerciale, cette nouvelle ressource deviendrait un bien triste concurrent pour les énergies renouvelables.

Les experts chinois pensent qu’il faudra attendre 2030 avant de voir cette énergie devenir rentable, et donc commercialisable. On peut craindre à juste raison que la réussite de cette première exploitation conduise le Japon, le Canada, les Etats-Unis et la Corée du Sud à accélérer la course à l’extraction des hydrates de méthane…

Sources : La Relève & La Peste, RTFlash, Recherche & Technologie.

———————————————

Securing and diversifying energy supplies is one of China’s major strategic and geopolitical objectives. This is the reason why the country is striving to develop nuclear energy, hydroelectricity, solar and wind power simultaneously. But China does not forget the fabulous energy potential stored in the seas and oceans.
On May 18th, 2018, China managed to extract methane hydrates, a natural gas with a yield far superior to that of all known fossil fuels, but also potentially much more destructive …
Clathrates, also known as methane hydrates or « fire ice », are organic compounds found on the seabed or buried under permafrost. These are sort of blocks of ice that contain gases in a very concentrated form, trapped methane molecules. If clathrates are very stable under conditions of low temperature and high pressure, the disruption of these conditions completely destabilizes the structure, and leads to the escape of methane, which can burn if ignited, hence the name of « fire ice ». This is also what makes it very difficult to extract from a technical point of view. As methane is extremely flammable, its extraction presents obvious safety risks. In addition, the emission of gas induced by drilling can modify the density of the surrounding water and therefore potentially sink the vessels carrying out the extraction.
None of this has slowed the determination of the energy giants – the Chinese in particular – who, seeing the hydrocarbon resources gradually running out, are looking for alternatives.
Japan has been a pioneer in the extraction of methane hydrates. The country has embarked on the rush for this new source of energy following the closure of nuclear power plants following the Fukushima disaster.
Japan carried out some conclusive explorations in 2013, but China crossed a real milestone in 2018 by extracting an average of 16,000 cubic metres of gas per day for 8 consecutive days. The extraction took place at a depth of 1,266 metres in a 200-metre submarine well in the South China Sea. This is great news for the Chinese government at a time when the country has to meet huge energy demand for its economic development, while being bound by the Paris agreements.
Methane hydrate is an incomparable source of energy: one cubic metre of clathrates could release up to 165 cubic metres of methane, and the world’s reserves are estimated to be colossal. They could be equal to twice the gas, coal and oil reserves combined ! Chinese scientists estimate methane hydrate reserves in Chinese territorial waters at 80 billion tonnes of oil equivalent, which represents a huge potential resource. They dhave detected two methane hydrate deposits, one of 123.1 billion cubic metres and another of 150 billion cubic metres. So far, the methane hydrate extraction test in the Shenhu area (north of the South China Sea) has been successful with an average of 8,350 cubic metres of high purity methane extracted each day.

The extraction of ossil energy ineviatbly means danger to the environment. In the case of methane hydrates, the consequences of a global race to extract this new resource could be disastrous. But what would we not do to harvest a new source of energy? The environment ? What’s this ?
According to IFREMER, the major risk remains linked to potential methane leaks into the atmosphere. Indeed, part of the methane harvested leaks into the atmosphere during extraction processes. It is well known that methane is a greenhouse gas 25 times more powerful than CO2. However, its lifespan is about ten years against nearly 125 for CO2. Massive extraction of methane hydrates would quickly lead to worsening global warming. The risk is all the greater since the extraction technique is not really mastered. In particular, the behaviour of the reservoir, the sediment that is around these gas hydrates, remains unknown.
Other negative effects may also be feared, in particular the triggering of huge tsunamis linked to landslides induced by the drilling of underwater land on the continental slope. In addition, if the methane hydrate drilling techniques were to be sufficiently developed to allow its commercial exploitation, this new resource would become a real competitor for renewable energies.
Chinese experts believe that it will be necessary to wait until 2030 before this energy becomes profitable, and therefore marketable. We can rightly fear that the success of this first exploitation will lead Japan, Canada, the United States and South Korea to accelerate the race for the extraction of methane hydrates …
Sources: La Relève & La Peste, RTFlash, Recherche & Technologie.

Répartition des gisements de méthane sur la plancher océanique à l’échelle de la planète en 2005.