L’éruption d’Eldgjá et la conversion de l’Islande au christianisme // The Eldgjá eruption and the conversion of Iceland to Christianity

Comme ils ne sont pas capables de faire des prévisions volcaniques fiables, les chercheurs se tournent souvent vers le passé pour essayer de comprendre l’histoire d’un volcan et de la population qui vivait autour. C’est ainsi qu’une équipe de scientifiques et d’historiens médiévaux de l’Université de Cambridge a pu dater avec exactitude l’éruption d’Eldgjá survenue peu de temps après la colonisation de l’Islande. Il est possible que cette éruption ait participé à la conversion du pays au christianisme. Un poème médiéval semble avoir raconté l’événement avec pour but d’encourager le changement culturel et religieux.

L’éruption d’Eldgjá, a produit d’énormes nappes de lave qui ont englouti cette région de l’Islande sur une longue période. Une vingtaine de kilomètres cubes de lave ont été émis lors de l’éruption, en même temps qu’une brume de poussière et de soufre qui s’est répandue à travers l’Europe. En utilisant des carottes de glace prélevées au Groenland, les chercheurs ont pu établir que l’éruption avait commencé vers le printemps de 939 et avait duré au moins jusqu’à l’automne de 940. Cela signifie qu’une partie de la première vague de migrants arrivés en Islande a été témoin de l’éruption.

Avec la date connue de l’éruption, on découvre dans les chroniques médiévales des descriptions de ses conséquences probables: présence d’une brume atmosphérique de grande ampleur sur l’Europe; des hivers rigoureux et des étés froids ; de mauvaises récoltes et des pénuries alimentaires. Les chercheurs ont été surpris de voir les souffrances subies par les populations à la suite de l’éruption d’Eldgjá. Du nord de l’Europe au nord de la Chine, les gens ont vécu des hivers longs et rigoureux et une sécheresse qui a duré tout le printemps et tout l’été.

Aucun texte de l’époque ne fournit une description de l’éruption. Le célèbre poème médiéval islandais Voluspá (Prophétie de la Voyante) annonce toutefois la fin des dieux païens d’Islande et l’arrivée d’un nouveau dieu singulier, tout en parlant d’une éruption incroyable:

« Le soleil commence à noircir, la terre s’enfonce dans la mer; les étoiles brillantes se dispersent dans le ciel.

La vapeur jaillit de ce qui nourrit la vie, les flammes volent haut contre le ciel. « 

Les chercheurs pensent que ces lignes ont été utilisées pour raviver les souvenirs pénibles de l’éruption et encourager la conversion au christianisme. Selon un chercheur, « L’interprétation du poème comme une prophétie de la fin des dieux païens et leur remplacement par le dieu singulier suggère que les souvenirs de cette terrible éruption volcanique ont été délibérément évoqués pour stimuler la christianisation de l’Islande. »

Source: Iceland Review.

———————————————

When they are not able to make reliable volcanic predictions, researchers often turn to the past to try and understand the history of a volcano and the people who lived around. In this way, a team of scientists and medieval historians led by the University of Cambridge accurately dated the Eldgjá eruption which occurred shortly after Iceland’s settlement, and suggest it was used to spur the country’s conversion to Christianity. A medieval poem may have recounted the event to purposefully stimulate the cultural and religious shift.

The Eldgjá eruption, which devastated Iceland’s early settlers, is known as a lava flood, a type of eruption in which flowing lava engulfs the landscape over a prolonged period. Around 20 cubic kilometres of lava were released in the eruption, accompanied by a haze of sulphurous dust which spread across Europe. Using ice cores from Greenland, the researchers determined the eruption began around the spring of 939 and lasted at least until the fall of 940. This means that some of the first wave of migrants to Iceland, brought over as children, may well have witnessed the eruption.

With a firm date for the eruption, many entries in medieval chronicles snap into place as likely consequences: presence of an extraordinary atmospheric haze over Europe; severe winters; and cold summers, poor harvests and food shortages. The researchers were surprised to see how widespraed human suffering was in the wake of Eldgjá. From northern Europe to northern China, people experienced long, hard winters and severe spring-summer drought.

There are no surviving texts from the period which provide a direct account of the eruption. The celebrated Medieval Icelandic poem Voluspá (Prophecy of the Seeress), however, foretells the end of Iceland’s pagan gods and the coming of a new, singular god, describing an incredible eruption:

“The sun starts to turn black, land sinks into sea; the bright stars scatter from the sky.

Steam spurts up with what nourishes life, flame flies high against heaven itself.”

The researchers suggest these lines were used to revive distressing memories of the eruption and therefore stimulate the conversion to Christianity. According to one researcher, « The poem’s interpretation as a prophecy of the end of the pagan gods and their replacement by the one, singular god, suggests that memories of this terrible volcanic eruption were purposefully provoked to stimulate the Christianisation of Iceland.”

Source: Iceland Review.

Faille d’Eldgjá

Gorge d’Eldgjá et chute d’eau d’Ófærufoss

La belle arche de la chute d’eau d’Ófærufoss n’existe plus aujourd’hui

(Photos: C. Grandpey)

Publicités

Nuages de cendre volcanique // Volcanic ash clouds

De toute évidence, aucune mesure concrète et efficace dans le domaine du trafic aérien n’a fait suite à l’éruption de l’Eyjafjallajökull en Islande en 2010. Aucun système fiable de détection de la cendre volcanique n’a été installé dans les aéronefs. Cela m’a été confirmé par des pilotes de la British Airways et d’Air France. Les efforts ont essentiellement porté sur la recherche de solutions permettant de détecter la cendre depuis le sol jusqu’à une altitude minimale de 12 km et d’en évaluer la densité. Ainsi, les avionneurs sont en mesure de mieux comprendre les densités de cendre que leurs avions peuvent endurer. De plus, les Volcanic Ash Advisory Centres (VAACs), centres conseil en cendres volcaniques, disposent maintenant d’outils et de procédures beaucoup plus performants qu’en 2010 pour cartographier et localiser les nuages ​​de cendre.
Malgré tous ces efforts, la dernière éruption du Mont Agung a provoqué la fermeture de plusieurs aéroports indonésiens, ainsi que de nombreuses annulations de vols. La couleur de l’alerte aérienne est également passée au Rouge lors de la dernière éruption du Mayon aux Philippines. Le Mont Sinabung sur l’île de Sumatra est entré en éruption en février et a envoyé un nuage de cendre jusqu’à 7 kilomètres de hauteur. La couleur de l’alerte aérienne est, là aussi, passée au Rouge et les pilotes devaient donc éviter de s’approcher du volcan.
L’expérience a montré à plusieurs reprises aux compagnies aériennes que la cendre volcanique peut constituer un réel danger pour les avions. Le mélange de roches pulvérisées, de gaz et de minuscules éclats de verre peut causer des dégâts à la carlingue des avions, pénétrer à l’intérieur des réacteurs et même les bloquer. La cendre peut aussi réduire à néant les principaux systèmes de navigation et de communication. C’est pourquoi les neuf VAAC à travers le monde surveillent les éruptions volcaniques comme celle du Sinabung. Leur rôle est de suivre l’évolution et le déplacement des nuages ​​de cendre en temps réel et d’éloigner les avions.
À l’aide des images satellites, des rapports de pilotes et des données provenant d’observatoires volcanologiques, ces VAAC émettent des bulletins d’alerte avec des codes de couleurs différentes : Vert signifie qu’un volcan est calme; Jaune signifie que le volcan a commencé à entrer en activité; Orange signifie qu’une éruption est probable alors que Rouge signifie qu’une importante éruption est en cours ou a commencé. Les responsables des VAAC ne disent pas aux pilotes ce qu’ils doivent faire ; leur rôle se limite à fournir des informations essentielles sur la taille et l’emplacement des nuages de cendre, ainsi que leur direction.
Les VAAC ont été créés par l’Organisation de l’Aviation Civile Internationale (OACI) après que plusieurs avions aient failli s’écraser après avoir traversé des nuages ​​de cendre. En 1982, les moteurs de deux avions qui avaient volé à travers la cendre émise par le Galunggung (Indonésie) ont cessé de fonctionner et les pilotes ont dû effectuer des atterrissages d’urgence. L’un d’entre eux, un Boeing 747 de la British Airways, a décroché de plus de 6 000 mètres avant que le pilote réussisse à redémarrer trois des quatre moteurs. En 1989, un autre Boeing 747 a failli s’écraser après avoir traversé le nuage de cendre émis par le Mont Redoubt en Alaska; les quatre moteurs avaient cessé de fonctionner!
La cendre volcanique peut endommager un avion de plusieurs façons. L’une des conséquences les plus graves est, bien sûr, l’arrêt des moteurs. La cendre contient de minuscules particules de verre qui peuvent fondre sous l’effet de la chaleur d’un réacteur. Ce verre fondu peut pénétrer dans des pièces maîtresses, réduire la puissance du moteur, ou le bloquer carrément. Avec la vitesse de vol des avions, la cendre qui entre en contact avec l’extérieur de l’avion peut également briser les antennes, créer un écran sur les pare-brise ​​et générer de l’électricité statique susceptible de perturber les signaux de navigation et de communication. La cendre peut aussi détruire les systèmes indiquant la vitesse de l’avion. On a vu récemment les problèmes dramatiques provoqués par le mauvais fonctionnement des sondes Pitot.
Les compagnies aériennes ne savent pas évaluer la densité de cendre tolérable pour faire voler les appareils. Pendant longtemps, elles ont évité de les faire voler lorsque de la cendre était dans l’air. Toutefois, après que des millions de personnes aient été bloquées et que des milliards de dollars aient été perdus lors de l’éruption de l’Eyjafjallajökull en 2010, les scientifiques ont commencé à faire des recherches. Des tests ont été effectués mais, de toute évidence, les résultats ne sont pas fiables.
Au vu des statistiques de l’USGS, des avions ont traversé des nuages ​​de cendre volcanique à 253 reprises entre 1953 et 2016. Neuf d’entre eux ont connu une panne de moteur, mais aucun ne s’est écrasé. On ne sait pas pourquoi certains nuages ​​de cendre peuvent avoir un effet  dévastateur sur certains moteurs, alors que d’autres avions peuvent se sortir des nuages de cendre relativement indemnes. C’est probablement parce que la composition de la cendre peut varier d’un volcan à l’autre.
Un autre problème doit être pris en compte: Tous les volcans ne sont pas surveillés, en particulier dans certaines régions volcaniques du Pacifique, de sorte que des pilote peuvent devoir traverser des nuages de cendre sans avoir été prévenus de leur présence.

Au bout du compte, il semble bien que la situation n’ait guère évolué depuis l’éruption de l’Eyfjallajökull….

Adapté à partir d’un article paru dans The Verge., VAAC Toulouse, Météo France, Rolls Royce.

——————————————–

Apparently, the 2010 eruption of Eyjafjallajökull in Iceland did not bring any profitable lesson as far as air traffic is concerned. No reliable ash detection system has been installed in aircraft. This was confirmed to me by British Airways and Air France pilots. Efforts have essentially been made to investigate solutions to detect ash from the ground up to a minimum altitude of 12 km and to assess its density. In this way, plane manufacturers can better understand what densities of ash their aircraft are able to endure. Moreover, Volcanic Ash Advisory Centres (VAACs) now have significantly more sophisticated tools and procedures for mapping and forecasting the location of ash clouds than were available in 2010.

Despite all these efforts, the last eruption of Mt Agung caused the closure of several Indonesian airports, as well as many flight cancellations. The aviation colour code was also raised to Red during the last eruption of Mt Mayon in the Philippines. More recently, Mount Sinabung on Sumatra Island erupted in February and spewed an ash cloud up to 7 kilometres in the air. The aviation colour code was raised to Red, which meant that pilots should fly away from the volcano.

Experience has told aviation companies that volcanic ash can be a real danger to aircraft. The mixture of crushed rocks, gases, and tiny shards of glass can sandblast the plane’s exterior, get into the engine and block them, and ruin key navigational and communications systems. That’s why the nine Volcanic Ash Advisory Centers around the world keep watch for volcanic eruptions like Mt Sinabung’s. Their role is to track the ash clouds in real time and to divert the planes around.

Using a combination of satellite imagery, pilot reports, and data from volcano observatories, these VAACs issue colour-coded warnings: Green means a volcano is quiet; Yellow means the volcano is starting to get restless; Orange that an eruption is likely while Red means a big eruption is on its way, or has already started. The advisories don’t tell pilots what to do, but they provide key information about the size and location of the ash cloud and its direction.

The Volcanic Ash Advisory Centers were formed by the International Civil Aviation Organization after several planes almost crashed after flying through ash clouds. In 1982, two airplanes flying through ash emitted by Indonesia’s Mount Galunggung lost power to their engines and had to make emergency landings. One of them, a British Airways Boeing 747, plummeted more than 6,000 metres before the pilot could restart three of the four engines. Then, in 1989, another Boeing 747 nearly crashed after it flew through volcanic ash from Mount Redoubt in Alaska; all four of its engines had stopped functioning!.

Volcanic ash can damage an airplane in multiple ways. One of the most dangerous is by blocking the engine. Indeed, volcanic ash contains tiny glass particles that can melt in a jet engine’s heat. This molten glass can stick to key components, cutting the engine’s power, or killing it completely. At high speeds, ash coming into contact with the exterior of the plane can also break antennas, cloud windscreens, and generate static electricity that distorts navigation and communication signals. If ash flies into tubes that measure airspeed, it can also break the plane’s speedometer.

Air companies don’t know exactly how much ash is safe to fly through. For a long time, the aviation industry avoided flying when any ash was in the air. But after millions of people were stranded and billions of dollars were lost during the eruption of Iceland’s Eyjafjallajökull volcano in 2010, scientists began trying to figure out if there’s a middle ground. Tests were performed but the results obviously did not prove reliable.

All told, planes have flown through volcanic ash clouds about 253 times between 1953 and 2016, according to a report from the US Geological Survey. Only nine of those experienced engine failure, and none crashed. It’s not completely clear why certain ash clouds can have such a devastating effect on certain engines, and why other planes can fly through relatively unharmed. One possibility is that the composition of ash can vary from volcano to volcano.

There is another problem: not every volcano is monitored, especially in some volcanic regions of the Pacific, so it is still possible for planes to fly through ash clouds without warning.

To put it shortly, it seems the situation has not much changed since the 2010 eruption of Eyjafjallajökull…

Adapted from an article published in The Verge., VAAC Toulouse, Météo France, Rolls Royce.

Eruption du Galunggung en 1982 (Crédit photo: Wikipedia)

Eruption du Redoubt en 1990 (Crédit photo: Wikipedia)

Eruption de l’Eyjafjallajökull en 2010 (Crédit photo: Wikipedia)

 

Islande : Le danger des grottes de glace // Iceland : The hazards of ice caves

Le Met Office Islandais (IMO) a récemment diffusé une mise en garde concernant les grottes de glace en Islande et les précautions à prendre pour les visiter. Voici une traduction du texte de l’IMO:

Il est fréquent de rencontrer des grottes de glace sur les bords des glaciers en Islande. Elles sont creusées par l’écoulement de l’eau de fonte ou par l’activité hydrothermale. Les exemples les plus connus sont les grottes de glace de Kverkfjöll.
Il a récemment été question d’une grotte de glace découverte sur le Blágnípujökull, un appendice glaciaire dans la partie sud-ouest du Hofsjökull, petite calotte de glace au centre de Islande. On a pu lire qu’un enfant s’était trouvé mal après avoir inhalé des gaz toxiques. Il y a quinze ans déjà, des visiteurs avait fait état d’une forte odeur de soufre dans la cavité creusée par l’activité hydrothermale.
La grotte a été visitée par des scientifiques de l’IMO le 3 février 2018. Les concentrations d’oxygène (O2), de monoxyde de carbone (CO), de sulfure d’hydrogène (H2S) et de dioxyde de soufre (SO2) ont été mesurées à l’intérieur de la grotte. Il y avait une odeur de soufre à l’extérieur, au niveau de l’entrée, et à l’intérieur de la grotte. Des concentrations de H2S allant jusqu’à 60 ppm ont été mesurées à l’intérieur de la grotte. L’exposition à des concentrations de H2S aussi élevées est potentiellement dangereuse et une telle exposition pendant une heure peut causer de graves problèmes respiratoires et oculaires. Les mesures ne concernent que la visite effectuée le 3 février. Il est possible que des concentrations plus élevées de gaz s’accumulent dans la cavité. On ne sait pas à quelle concentration de gaz l’enfant mentionné ci-dessus a été exposé.

Il est fortement déconseillé de pénétrer dans la grotte sans appareils pouvant donner des indications sur les concentrations de H2S. Il est demandé aux visiteurs d’éviter de fortes concentrations. Seules des lunettes et un masque à gaz peuvent fournir une protection efficace. À une concentration de 20 ppm de H2S, certaines personnes ne sentiront pas le gaz,  mais à 100 ppm  il représente une menace pour la santé.
En plus des gaz toxiques, les morceaux de glace qui peuvent se détacher du plafond de la grotte, ainsi que le sol très glissant peuvent présenter de sérieux dangers. Il semble qu’une petite crue glaciaire (jökulhlaup) se soit produite à cet endroit, en emportant de gros morceaux de glace de glace à plusieurs centaines de mètres en aval. D’autres inondations peuvent se produire sans prévenir et représenter un réel danger.
Il faut noter que le Hofsjökull se trouve dans une zone inaccessible des Hautes Terres et aucune route ou piste ne conduit à la langue glaciaire du Blágnípujökull.
Source: OMI.

Depuis la publication de cette mise en garde, un homme d’une soixantaine d’année a été retrouvé mort le 28 février 2018 dans une grotte glaciaire du Höfsjökull. Il  était entré dans la grotte à l’intérieur du Blágnípujökull, accompagné d’un groupe de randonneurs. Ils ont tous été transportés dans refuge à Kerlingafjöll, puis à Reykjavik. Il est probable que les hommes ont été victimes des gaz toxiques comme l’hydrogène sulfuré (H2S) qui se forment à l’intérieur de la grotte.

Source : Iceland Review.

S’agissant de la sécurité dans ces cavités glaciaires en milieu volcanique, il ne faudrait pas négliger non plus la possibilité de présence de CO2. A ce sujet, il existe des ampoules sous vide qui permettent de contrôler instantanément la concentration de CO2 au sol (le CO2 est un gaz lourd). Le regretté François Le Guern m’avait conseillé de m’en procurer dans une boutique spécialisée à proximité du Panthéon à Paris, à l’époque où je passais des nuits d’hiver dans la cave de la Torre del Filosofo sur l’Etna.

—————————————-

The Icelandic Met Office (IMO) has recently issued a warning about ice caves in Iceland and the precautions that should be taken to visit them. Here is the text of IMO’s warning:

Ice caves are often found at glacier edges in Iceland, formed either by meltwater flow beneath the ice or by geothermal activity (such as the well-known ice caves in Kverkfjöll).

News has recently been shared about a newly discovered ice cave in Blágnípujökull, a SW outlet from the Hofsjökull ice cap in central Iceland, where a child has collapsed due to breathing in toxic gases. Fifteen years ago, geothermal activity which melted a hole in the ice cover, accompanied by a strong sulfur smell, was observed at this same location.

The cave was visited on February 3rd, 2018. The atmospheric concentrations of oxygen (O2), carbon monoxide (CO), hydrogen sulfide (H2S) and sulfur dioxide (SO2) were measured with a handheld sensor inside the 150 m long cave. The visitors smelled sulfur outside the entrance and inside the cave. H2S concentrations of up to 60 ppm were measured inside the cave. Exposure to concentrations of H2S this high are potentially harmful, and exposure to 60 ppm for 1 hour can cause severe breathing problems and damage to the eyes. The measurements were for only one visit. It is possible that higher concentrations of gases may accumulate in the cave. It is unknown what concentration of gas the above mentioned child was exposed to.

The cave should not be entered without gas monitoring instruments that can give warnings of dangerously high concentrations of H2S. We urge people to avoid such high concentrations of H2S as only goggles and a gas-mask can provide adequate, short-term protection. At 20 ppm of H2S some people will stop smelling the gas and at 100 ppm of H2S there are significant threats to life and health.

In addition to poisonous gases, loose chunks of ice hanging from the roof of the ice cave and a very slippery floor can present serious dangers. A small jökulhlaup (glacier outburst flood) seems to have emerged from beneath the glacier at this location, breaking up the ice and transporting large chunks of glacier ice several hundred meters downstream. Future outburst floods could present an additional, unmonitored hazard.

Note that Hofsjökull is located in an inaccessible part of the highlands and no roads or tracks lead to the Blágnípujökull outlet glacier.

Source: IMO.

Since the release of this warning, a man in his sixties was found dead on February 28th, 2018 inside a glacier cave in Höfsjökull. The man had entered the cave in Blágnípujökull accompanied by a team of travellers. They were all transported to a lodge in Kerlingafjöll and then to Reykjavik. It is believed that the men were intoxicated by dangerous gases like hydrogen sulphide (H2S) forming inside the cave.

Source : Iceland Review.

When it comes to safety in these cavities in a volcanic environment, the possibility of CO2 should not be excluded either. In this regard, there are vacuum bulbs that can instantly control the CO2 concentration on the ground (CO2 is a heavy gas). The late François Le Guern had advised me to buy them in a specialist shop near the Pantheon in Paris, at the time when I spent winter nights in the basement of the Torre del Filosofo on Mount Etna.

Photos: C. Grandpey

Grimsey (Islande) : Ça se calme // Seismicity is decreasing

Comme cela était prévisible (voir ma dernière note), on observe depuis hier 20 février 2018  un déclin de la sismicité sur la zone de fracture de Tjörnes et sur l’île de Grimsey (voir ci-dessous). L’essaim sismique avait une origine purement tectonique avec des événements majoritairement superficiels. L’Icelandic Met Office a indiqué à plusieurs reprises qu’aucun paramètre ne suggérait une ascension du magma. Il faut noter qu’au cours des dernières semaines c’est toute la zone de rift islandaise qui a été soumise à une hausse de la sismicité, depuis la Péninsule de Reykjanes où des séismes de magnitude supérieure à M 3,0 ont été enregistrés.

————————————-

Predictably (see my last post), since yesterday, February 20th, 2018, there has been a decline in seismicity along the Tjörnes Fracture Zone and on Grimsey Island (see below). The seismic swarm had a purely tectonic origin with mostly shallow events. The Icelandic Met Office has repeatedly stated that there were no parameters to suggest any magma ascent. It should be noted that over the last few weeks the entire Icelandic rift zone has been subjected to increased seismicity, starting from the Reykjanes Peninsula where earthquakes above M 3.0 have been recorded.

Source: IMO

Essaim sismique à Grimsey (suite) // Seismic swarm at Grimsey (continued)

L’essaim sismique se poursuit à Grimsey, avec plusieurs événements significatifs. Ainsi, un séisme de M 5,2 a été détecté sur l’île vers 07h00 ce matin. Il a été ressenti dans de nombreuses parties du nord de l’Islande. Selon l’Icelandic Met Office (IMO), un certain nombre d’habitants de Grimsey, habitués à de petits tremblements de terre, ont appelé ce matin ; ils étaient un peu plus inquiets de voir leur café être éjecté de leurs tasses. L’IMO indique que beaucoup de personnes dans l’île n’ont pas dormi la nuit dernière à cause des nombreuses secousses. Au cours des dernières 48 heures, 1536 séismes ont été détectés. L’IMO pense que l’activité sismique va probablement diminuer et que le séisme de M 5,2 de ce matin est le plus puissant de la série, mais il pourrait y avoir un événement encore plus important ou un autre de magnitude semblable. Le Bureau confirme également que l’activité sismique est d’origine purement tectonique et n’a pas une cause volcanique. C’est aussi mon opinion. Je ne suis pas sismologue mais on peut observer que tous les événements dans l’essaim sont relativement superficiels. Il n’y a jamais eu d’indication d’une sismicité profonde correspondant à une quelconque ascension du magma. En outre, il convient de noter qu’au cours des dernières semaines, la sismicité ne s’est pas limitée à Grimsey. De nombreux autres événements ont été enregistrés le long de la zone de rift qui traverse l’Islande au sud-ouest / nord-est, avec des événements supérieurs à M 3,0 dans la péninsule de Reykjanes. Il serait intéressant de savoir comment les extensomètres ont réagi à l’essaim sismique et, par exemple, s’il y a eu une accélération du phénomène d’accrétion.

——————————————-

The seismic swarm is going on at Grimsey, with occasional significant events. An M. 5.2 earthquake was detected on the island at about 7:00 this morning. It was was felt in many parts of North Iceland.  According to the Iceland Met Office, a number of Grimsey locals, who are used to the smaller earthquakes, called the Office this morning a bit more worried as their coffee had been shaken out of their cups. The Iceland Met Office says that many people in the island didn’t sleep last night due to the numerous earthquakes. In the last 48 hours, 1.536 earthquakes have been detected. IMO thinks it is likely that the seismic activity will die down and that this morning’s quake was the largest, but there could be a larger one or another one of a similar size. The Office also confirms that the seismic activity is caused by continental drift but not to volcanic unrest. This is also my opinion. I am not a seismologist but one can observe that all the events in the swarm are quite shallow. There has never been any indication of a deep-seated seismicity corresponding with some kind of magma ascent. Besides, it should be noted that in the past weeks, seismicity has not been limited to Grimsey. Many other events were recorded along the rift that crosses Iceland southwest / northeast, with events above M 3.0 in the Reykjanes Peninsula. It would be interesting to know how extensometers reacted to the seismic swarm and, for instance, if there has been an acceleration in the accretion phenomenon.

Source: Icelandic Met Office

Essaim sismique à Grimsey (suite) // Seismic swarm at Grimsey (continued)

Dans une note publiée le 16 février 2018, l’Icelandic Met Office (IMO) explique que «des essaims sismiques se produisent fréquemment dans les environs de Grímsey. Un tel essaim a débuté à environ 10-12 km au nord-est de Grímsey le 14 février. À midi, le 16 février, plus de 1000 secousses ont été détectés, avec 10 supérieures à M 3.0. L’intensité de l’essaim a tendance à diminuer, mais elle pourrait reprendre de la vigueur dans les prochaines heures. L’événement le plus significatif, avec une magnitude estimée à M 4,1, s’est produit à 19h27 le 15 février. Certaines secousses ont été ressenties à Grímsey. C’est l’essaim le plus intense dans la région depuis 2013, époque où événement de magnitude M 5,5 avait été suivi d’une série de répliques significatives.
La libération d’énergie associée à cet essaim est, pour le moment, inférieure à celle de 2013, bien que cet essaim soit plus constant. Les mesures GPS à Grímsey ne montrent aucune déformation associée à l’essaim, ce qui laisse supposer que l’essaim est de nature tectonique bien que l’activité géothermale dans la zone puisse agir comme déclencheur. Il n’y a aucun signe d’activité magmatique. »
Comme le laissait entendre l’IMO, l’essaim sismique continue en ce moment. Un séisme de magnitude M 3.7 a été enregistré à 06h33 (TU) ce matin à une profondeur de 12 km. Il avait été précédé par deux événements de M 3.0 et M 3.3 à 6h25 et 6h27, avec des profondeurs respectives de 11,9 et 0,3 km.
Source: IMO.

————————————

In a note released on February 16th, 2018, the Icelandic Met Office (IMO) explains that « earthquake swarms are happening frequently in the vicinity of Grímsey. An earthquake swarm about 10-12 km North-East of Grímsey started on February 14th. As of noon on February 16th, over 1000 earthquakes have been detected, with 10 over magnitude 3. As of this time, the intensity of the swarm is diminishing, however the activity could reinvigorate. The largest, with an estimated magnitude of 4.1, occurred at 19:27 on February 15th. Some of the earthquakes have been felt in Grímsey. This is the most intense swarm in the area since 2013, when a magnitude M 5.5 event triggered a significant aftershock sequence.

The energy release associated with this swarm, until noon on February 16th, is significantly less than the 2013 sequence, although this swarm is more steady. Continuous GPS measurements in Grímsey  show no detectable deformation associated with the swarm, suggesting that the swarm is tectonic in nature although geothermal activity in the area may act as a trigger. There is no sign of magmatic activity. »

As suggested by IMO, the seismic swarm is going on right now. An M 3.7 quake was registered at 6:33 (UTC) this morning at a depth of 12 km. It had been preceded by two events of M 3.0 and M 3.3 at 6:25 and 6:27, with depths of 11,9 and 0.3 km, respectively.

Source: IMO.

Sismicité à Grimsey. Les étoiles montrent les séismes d’une magnitude supérieure à M 3,0. (Source: IMO)

Essaim sismique à Grimsey (Islande) // Seismic swarm at Grimsey (Iceland)

Située juste sur le cercle polaire arctique, dans le nord de l’Islande, Grimsey a une population de 90 habitants. Des séismes sont souvent enregistrés sur cette petite île qui est située sur la zone de fracture de Tjörnes, le long de la dorsale médio-atlantique.
Un essaim sismique particulièrement intense y est observé depuis une semaine, avec plus de 1100 événements détectés depuis le 14 février 2018. Le plus significatif avait une magnitude de M 4.1 le 15 février, à environ 10 km à l’ENE de Grimsey, à une profondeur de 10 km. Un séisme de magnitude M 3,2 s’est également produit dans la même zone, suivi de deux autres d’une magnitude supérieure à M 3, toujours le même jour.
Selon l’Icelandic Met Office (IMO), il n’y a aucun signe d’activité volcanique. Une telle sismicité se produit périodiquement dans ce secteur qui fait partie de la zone de fracture de Tjörnes. En conséquence, de nouvelles secousses sont possibles pendant les prochains jours.
La dernière éruption dans la région remonte à 1868.
Les cartes ci-dessous montrent 1) l’intensité de l’essaim sismique en cours et 2) l’emplacement de son activité le long de la zone de fracture de Tjörnes qui fait partie de la zone d’accrétion entre les plaques tectoniques nord-américaine et eurasienne.
Sources: OMI, Iceland Review, CSEM / EMSC.

———————————–

Located right on the Arctic Circle to the north of Iceland, Grimsey has a population of 90. Earthquakes are often recorded on this small island which is located on the Tjörnes Fracture Zone, on the Mid-Atlantic Ridge.

An intense earthquake swarm has been observed for the past seven days, with more than 1100 events detected since February 14th, 2018. The largest quake measured M 4.1 on February 15th, about 10 km ENE of Grimsey, at a depth of 10 km. An M 3.2 earthquake also occurred in the same area, followed by two events above M 3, still on that same day.

According to The Icelandic Met Office (IMO), there are are no signs of any volcanic activity. Similar seismicity periodically occurs along this area which is part of the Tjörnes Fracture Zone. As a consequence, more seismicity cannot be excluded.

The last known eruption in the area was in 1868.

The maps below show 1) the intensity of the ongoing seismic swarm and 2) the location of theis activity along the Tjörnes Fracture Zone, part of the accretion zone between the North American and Eurasian tectonic plates.

Sources: IMO, Iceland Review, CSEM/EMSC.

Source: IMO

Source: CSEM/EMSC