L’Islande lutte contre le CO2 // Iceland is fighting against CO2

Alors que la France aura bien du mal à tenir ses engagements climatiques, l’Islande est en train de prendre la tête des pays qui font des efforts pour réduire leurs émissions de CO2, l’un des principaux gaz à effet de serre qui contribuent au réchauffement de notre planète.

Dans des articles publiés le 15 novembre 2017 et le 23 juin 2019, j’expliquais que l’Islande pourrait être le bon endroit pour stocker dans le sol l’excès de dioxyde de carbone (CO2) dans l’atmosphère. C’est actuellement l’objectif du projet CarbFix qui vise à capter ce gaz et à l’enfouir dans le substrat rocheux de nature basaltique.

Un article publié ces derniers jours sur le site Iceland Review nous apprend qu’une nouvelle technologie destinée à la production d’aluminium offre l’espoir d’éliminer les émissions de CO2 de la production. La société Arctus Metals, en coopération avec le Centre d’Innovation Islandais, a réussi à produire de l’aluminium avec ce nouveau procédé qui émet de l’oxygène au lieu du CO2.
L’élément clé de cette technologie est l’utilisation de plusieurs anodes verticales en alliage métallique inerte et de cathodes en céramique, au lieu d’électrodes en carbone. Cette innovation pourrait éliminer les émissions de CO2 des fonderies d’aluminium en Islande et dans d’autres pays.
Les trois fonderies d’aluminium islandaises produisent plus de 800 000 tonnes d’aluminium par an et émettent plus de 1,6 million de tonnes de CO2 dans le même temps. Si toutes les fonderies d’aluminium islandaises adoptaient cette nouvelle technologie, les émissions de CO2 seraient réduites de 30%, ce qui permettrait au pays de remplir les obligations internationales du pays en matière d’émissions de gaz à effet de serre.
En utilisant la nouvelle technologie mise au point par Arctus Metals, une fonderie d’aluminium de la taille de celle du groupe Rio Tinto à Straumsvík dans le sud-ouest de l’Islande produirait autant d’oxygène qu’une forêt de 500 kilomètres carrés.

Un accord de coopération a été signé avec la société allemande Trimet Aluminium, l’un des plus grands producteurs mondiaux d’aluminium, qui poursuivra le processus de développement et prévoit d’adapter la production de ses quatre fonderies à cette nouvelle technologie.
Source : Iceland Review.

——————————————–

While France will find it difficult to meet its climate commintents, Iceland is currently leading the world in its efforts to reduce the emissions of CO2, one of the main greenhouse gases that contribute to global warming.

In posts released on 15 November 2017 and 23 June 2019, I explained that this country could be the right place to store in the ground the excess of carbon dioxide (CO2) in the atmosphere. It is the goal of the CarbFix project which intends to capture that gas and stick it back into basalt bedrock.

A recent article on the website Iceland Review explains that a new Icelandic technology intended for aluminum production offers hopes of eliminating CO2 emissions from the production. The company Arctus Metals, in cooperation with Innovation Center Iceland, has successfully produced aluminum with this new process which emits oxygen instead of creating CO2.

The main part of the innovation consists of using multiple, vertical inert metal-alloy anodes and ceramic cathodes, instead of using electrodes made of carbon. This innovation could potentially eliminate CO2 emissions from aluminum smelters in Iceland and elsewhere.

Iceland’s three aluminum smelters produce more than 800,000 tons of aluminum a year and emit more than 1.6 million tons of CO2 a year. Their emissions make up 30 percent of Iceland’s total CO2 emissions.

If all our aluminum smelters adopted this new technology, Iceland’s CO2 emissions would be reduced by 30 percent, enabling us to fulfill the country’s international obligations and more.

Using the new Arctus Metals method, an aluminum smelter the size of Rio Tinto’s in Straumsvík in Southwest Iceland would produce as much oxygen as a forest covering 500 square kilometers.

A cooperation agreement has been signed with the German company Trimet Aluminum, one of the world’s largest producers of aluminum, which will continue the development process and is planning to eventually convert production in their four smelters to this method.

Source: Iceland Review.

Fonderie du groupe Rio Tinto de Straumsvík, dans le sud-ouest de l’Islande (Crédit photo: Iceland Review).

Les volcans de vos vacances…

Voici quelques informations – la liste n’est pas exhaustive – sur les destinations volcaniques les plus visitées par les touristes pendant l’été. Il est bien évident qu’en 2020 les déplacements dépendront de la situation sanitaire dans le monde et des autorisations d’entrée dans les pays concernés.

En Europe, on pourra se rendre en Islande avec ses phénomènes hydrothermaux et ses superbes paysages. La crise sismique en cours dans la Zone de fracture de Tjörnes semble s’atténuer.

Plus au sud, le volcan sous-glaciaire Grimsvötn a montré des signes de réveil ces dernières semaines, mais aucune activité éruptive n’a été observée. Si une éruption devait se produire, elle déclencherait très probablement des inondations glaciaires (jokulhlaups en islandais) avec des restrictions de circulation, en particulier sur la Route n°1 au sud de l’île.

°°°°°°°°°°

Beaucoup de volcanophiles auront envie de se rendre en Sicile où l’activité est en ce moment relativement faible, que ce soit sur l’Etna ou le Stromboli.

Aucune anomalie thermique n’a été détectée sur l’Etna où l’activité éruptive observée au printemps dans les différents cratères s’est donc considérablement réduite.

Sur le Stromboli, on recense chaque heure une dizaine d’explosions stromboliennes de faible à moyenne intensité.

La visite de la zone sommitale de ces deux volcans ne peut se faire qu’avec les guides. S’agissant du Stromboli, l’accès ne pouvait se faire que jusqu’à l’altitude 400 mètres ces dernières semaines. Se renseigner auprès du bureau des guides pour la situation du moment.

°°°°°°°°°°

Sur l’île de la Réunion, on observe une reprise de la sismicité et de l’inflation sur le Piton de la Fournaise, mais il n’y a pas d’éruption en ce moment. Vous pourrez admirer la superbe vue sur le volcan depuis le Pas de Bellecombe. Les plus courageux pourront emprunter le sentier qui conduit jusque sur la lèvre du Cratère Dolomieu. Le trajet est un peu long mais ne présente pas de difficultés techniques. Bien suivre les marques blanches au sol et surtout ne pas s’en éloigner en cas de brouillard.

°°°°°°°°°°

Impossible de dire aujourd’hui si toutes les liaisons aériennes seront assurées avec l’Amérique

Il n’y a pas de vols pour les Etats-Unis en ce moment. L’épidémie de covid-19 reste très présente dans de nombreux Etats, y compris Hawaii où aucune activité éruptive n’est observée.

°°°°°°°°°°

Au Mexique, le Popocatepetl montre son activité habituelle d’émissions de vapeur, ponctuées d’explosions de cendre quand la pression des gaz pulvérise le dôme à l’intérieur du cratère. Il est fortement déconseillé de s’approcher de la zone sommitale à cause du risque de projections. Des touristes se sont déjà fait tuer. De plus le CENAPED demande d’éviter les ravines où des coulées de boue peuvent survenir en cas de fortes pluies.

°°°°°°°°°°

Au Guatemala, on observe une petite activité strombolienne au sommet du Pacaya et une coulée de lave d’environ 200 m sur le flanc sud.

Le Fuego reste très actif avec des explosions parfois très fortes dans le cratère. Des avalanches de matériaux peuvent emprunter plusieurs ravines.

L’approche de ces deux volcans est fortement déconseillée par la CONRED, la Coordination nationale pour la prévention des catastrophes au Guatemala.

°°°°°°°°°°

En Ethiopie, les images satellitaires montrent que le lac de lave est probablement réapparu dans le cratère sud de l’Erta Ale, mais cette information demande confirmation.

°°°°°°°°°°

En Indonésie, le Krakatau est en niveau d’alerte 2. On observe des émissions de vapeur. Il est demandé au public de respecter le rayon de 2 km de sécurité autour du cratère.

Des explosions secouent ponctuellement le dôme de lave dans le cratère du Merapi, en déclenchant des coulées pyroclastiques. Il est demandé de respecter la zone d’exclusion de 3 km ;

°°°°°°°°°°

Rien de significatif à signaler sur les volcans du Kamchatka où des explosions peuvent se produire à tout moment et sans prévenir, en particulier sur le Karymsky, le Bezymianny, le Sheveluch et le Klyuchevskoy.

°°°°°°°°°°

En Nouvelle Zélande, l’accès à White Island reste interdit, mais on peut visiter les zones hydrothermales de l’Ile du Nord et parcourir le célèbre et magnifique Tongariro Crossing.

(Photos : C. Grandpey)

Islande : la sismicité persiste sur la Zone de fracture de Tjörnes // Iceland : seismicity still high on the Tjörnes Fracture Zone

Je n’ai jamais vu une sismicité aussi intense en Islande. L’essaim qui secoue la zone de fracture de Tjörnes continue, avec de nouveaux événements au-dessus de M 5,0. Un séisme fort et superficiel enregistré par l’USGS avec une magnitude  de M 6.0 et de M 5.7 par l’IMO a secoué la zone à 19h07 UTC le 21 juin 2020. L’épicentre était situé à 50 km au NNE de Siglufjörður (1190 habitants) et 101 km N d’Akureyri (17693 habitants). L’hypocentre a été localisé à une profondeur de 10 km, comme la plupart des événements précédents. Plus de 2000 secousses ont été enregistrées depuis le 19 juin 2020.

Selon des témoins, les personnes qui ont ressenti les plus fortes secousses ont décrit comment les choses tremblaient dans leurs maisons et les objets tombaient des étagères. Le patron d’un bateau d’observation des baleines a déclaré que lorsque l’une des secousses s’est produite, il a ressenti comme un coup sur le bateau. Il a pensé que le moteur avait un problème ou que quelque chose s’était coincé dans l’hélice. Une autre personne qui vit au troisième étage d’une maison en bois a dit qu’elle avait l’impression que quelqu’un avait percuté la maison avec son véhicule ; la maison a tremblé pendant une trentaine se secondes. Aucun blessé et aucun dégât matériel majeur n’a été signalé, à l’exception de chutes de pierres dans les montagnes près de Siglufjörður et Ólafsfjörður.
Cette activité sismique devrait se poursuivre au cours des prochains jours, et il a été demandé aux gens d’éviter de randonner dans les montagnes autour de Siglufjörður et Ólafsfjörður jusqu’à ce que la crise soit terminée. L’Icelandic Met Office indique qu’il existe toujours un risque de séismes plus importants dans la région.

Source : Icelandic Met Office (IMO), Iceland Review.

———————————————–

 I have never seen such an intense seismicity in Iceland. The swarm that is shaking the Tjörnes fracture zone continues with more events above M 5.0. A strong and shallow earthquake registered by the USGS as M6.0 and by IMO as 5.7 hit the area at 19:07 UTC on June 21st, 2020. The epicentre was located 50 km NNE of Siglufjörður (pop. 1 190) and 101 km N of Akureyri (pop.17693). The hypocentre was located at a depth of 10 km, like most of the previous events. More than 2 000 earthquakes have been recorded since June 19th.

According to witnesses, people who felt the largest earthquakes described how things trembled in their houses and items fell from shelves. The skipper of a whale watching boat said that when a quake occurred, there was a blow to the boat. He thought the engine had malfunctioned, or something had got stuck in the propeller. Another person who lives on the third floor of a wooden house said it felt like someone had driven into the house, which shook for about half a minute. No injuries or major property damage have been reported, except a substantial amount of falling rocks in mountains near Siglufjörður and Ólafsfjörður.

This seismic activity is likely to continue for the coming days, and people have been asked to avoid hiking in the mountains around Siglufjörður and Ólafsfjörður until it is over. The Icelandic Met Office indicates there is a chance of more large earthquakes in the area.

Source: IMO, Iceland Review.

Source : IMO

Carte montrant la répartition de la sismicité à travers l’Islande, avec une orientation typique SO / NE. Les zones sismiques les plus actives (Péninsule de Reykjanes et Zone de fracture de Tjörnes) sont parfaitement visibles (Source : CSEM / EMSC)

Très fort essaim sismique sur la Zone de Fracture de Tjörnes (Islande) // Very strong seismic swarm on the Tjörnes Fracture Zone (Iceland)

Alors que la situation est relativement calme sur la Péninsule de Reykjanes, c’est la région de la Péninsule de Tjörnes qui attire l’attention aujourd’hui. Plus précisément, la sismicité est particulièrement élevée depuis quelques heures sur la Zone de fracture de Tjörnes qui mesure environ 150 km de longueur et 80 km de largeur.. Un essaim sismique est en cours ; un événement a atteint la magnitude de M 5,2 à 15h06 et un autre la magnitude de M 5,6 à 19h26 ce samedi 20 juin 2020. Leurs hypocentres ont été localisés respectivement à 9,2 km et 10 km de profondeur.

Située au large de la péninsule du même nom, la zone de fracture de Tjörnes est une section de failles transformantes. Elle sépare la zone volcanique septentrionale de l’Islande de la dorsale de Kolbeinsey qui fait elle-même partie de la dorsale médio-atlantique. La Smithsonian Institution nous apprend qu’une éruption sous-marine a pu avoir lieu en 1867-1868 dans la partie SE du système de fractures, au large de la côte septentrionale de l’Islande, juste au nord de Manareyjar Island. La sismicité a déjà été forte dans cette région au début de l’année 2018. On a alors pensé qu’il pouvait s’agir d’une possible éruption sous-marine.

Les essaims sismiques sont fréquents dans cette partie de l’Islande et ont en général une origine purement tectonique, sans manifestation volcanique associée. Ils peuvent atteindre des magnitudes de M 7 – 7,5, comme cela s’est produit en 1963.

——————————————

While the situation is relatively calm on the Reykjanes Peninsula, it is the Tjörnes Peninsula region that is drawing attention today. More specifically, the seismicity has been particularly high for a few hours over the Tjörnes Fracture Zone which measures approximately 150 km in length and 80 km in width. A seismic swarm is underway and one of the events has reached the magnitude of M 5, 2 at 3:06 pm this Saturday June 20, 2020. The hypocentre was located 9.2 km deep.

Located off the peninsula with the same name, the Tjörnes fracture zone is a section of transform faults. It separates the northern volcanic area of Iceland from the Kolbeinsey Ridge which is itself part of the Mid-Atlantic Ridge. The Smithsonian Institution informs us that a submarine eruption may have occurred in 1867-1868 in the SE part of the fracture system, off the north coast of Iceland, just north of Manareyjar Island. Seismicity was already strong in this region at the beginning of 2018. It was then thought the cause could be a possible submarine eruption.

Seismic swarms are common in this part of Iceland and are generally of purely tectonic origin, with no associated volcanism. They can reach magnitudes of M 7 – 7.5, as happened in 1963.

Source : IMO

Agitation sismique et volcanique en Islande // Seismic and volcanic unrest in Iceland

Il semble que l’on assiste ces jours-ci à une hausse de l’activité dans la Péninsule de Reykjanes et au niveau du Grimsvötn, mais personne ne peut dire ce qui va se passer dans les prochains jours, les prochaines semaines ou les prochains mois.

L’Icelandic Met Office (IMO) indique que l’inflation a repris dans la Péninsule de Reykjanes, près de Grindavík. Il se peut que ce soulèvement du sol soit lié à une intrusion magmatique. L’IMO explique que ce serait le troisième événement de ce type depuis le début de l’année, à l’ouest du Mont Thorbjörn. L’intrusion a commencé vers la mi-mai mais l’activité sismique a commencé à augmenter seulement vers la fin de ce même mois. Quelque 2000 événements ont été détectés depuis cette époque et plusieurs d’entre eux ont été localisés à l’est du Mt Thorbjörn, à quelques kilomètres au nord de Grindavík. La secousse la plus significative s’est produite le samedi 13 juin 2020, avec une magnitude de M 3,5.
Depuis le début de l’activité en janvier 2020, le soulèvement du sol dans la région a atteint environ 12 cm. Entre les périodes d’inflation, une légère déflation a également été observée. Les volcanologues locaux pensent qu’elle est peut-être due au refroidissement du magma de l’intrusion ou à une interaction avec le système hydrothermal. Une modélisation numérique montre que cette troisième intrusion s’est produite pratiquement dans la même zone que les précédentes, à environ 1 km à l’ouest du M Thorbjörn, à une profondeur de 3-4 km, avec une largeur de quelques centaines de mètres et avec une orientation NE-SW sur une longueur d’environ 6 km. On estime que le volume de magma accumulé au cours de cette troisième intrusion est d’environ 1,2 million de mètres cubes. L’activité sismique se produit sur une zone plus grande que l’intrusion proprement dite. Cela serait dû à des variations de contrainte au niveau de la croûte terrestre sur la péninsule.
L’Iceland Geosurvey a effectué des mesures gravimétriques sur la zone de l’intrusion. Les résultats confirment la présence d’une intrusion magmatique en profondeur. De nouvelles mesures seront effectuées au milieu de l’été.
Des mesures hebdomadaires de gaz ont été effectuées sur deux sites proches de la zone d’intrusion mais «leur interprétation n’est pas encore claire. » Aucune modification chimique n’a été détectée dans la centrale géothermique de Svartsengi. Toutefois, les mesures révèlent une perméabilité et une augmentation des écoulements de fluides dans la roche environnante. Ce phénomène est peut-être lié à l’activité sismique, à l’inflation et au soulèvement du sol dans la région, avec l’ouverture de nouvelles fissures et la réactivation d’anciennes.
Comme je l’ai dit précédemment, la zone où la sismicité et le soulèvement du sol sont enregistrés est très complexe car elle comprend à la fois une activité tectonique et volcanique. Ce qui me surprend, c’est l’absence d’émission significative de gaz que l’on observe généralement lors d’une intrusion magmatique. Ce que je ne comprends pas non plus, c’est pourquoi l’intrusion – si intrusion il y a – n’a pas provoqué d’augmentation de température dans les champs fumerolliens de la Péninsule de Reykjanes.

Attendons pour voir ce qui se passera dans les jours et les semaines à venir, en espérant qu’une éruption n’aura pas lieu au cœur de l’été, avec fermeture de l’aéroport de Keflakik, maintenant que les touristes sont à nouveau autorisés à entrer en Islande.

°°°°°°°°°°

L’IMO nous informe également que certains signes montent que le Grímsvötn pourrait bientôt entrer en éruption. La dernière s’est produite en 2011. Entre les éruptions, les données de déformation révèlent l’accumulation de nouveau magma en profondeur et l’augmentation de la pression dans le système.
En mai et juin 2020, les scientifiques de l’IMO ont mesuré le SO2 dans la partie sud-ouest de la caldeira du Grimsvötn, près du site des dernières éruptions de 2004 et 2011. C’est la première fois qu’ils mesuraient de tels niveaux de SO2 sur un volcan en Islande en dehors d’une phase éruptive ; la présence de ce gaz indique du magma à faible profondeur. En plus du niveau élevé de SO2, la zone où l’activité géothermale peut être détectée a considérablement augmenté.
Une étude antérieure du Grimsvötn a laissé supposer une corrélation entre les jökulhlaup (inondations glaciaires) et les éruptions de ce volcan. Lorsque la pression augmente dans le système volcanique en raison de l’accumulation de magma, et lorsqu’un grand volume d’eau est stocké dans le lac glaciaire, la chute de pression suite à la vidange du lac lors d’un jökulhlaup  peut faciliter la remontée du magma à la surface et déclencher une éruption. Ce type de scénario a été observé en 2004, mais aussi en 1934 et 1922. [Cette hypothèse de rebond isostatique a été envisagée au niveau de l’Islande dans son ensemble. Certains scientifiques pensent que la fonte des glaciers pourrait alléger leur masse à la surface du sol et ainsi favoriser l’ascension du magma, avec un plus grand nombre d’éruptions sur l’île.]
De nos jours, le niveau de l’eau dans le lac est assez élevé et la pression dans la chambre magmatique en dessous de la caldeira a atteint des valeurs comparables à celles d’avant la dernière éruption. Par conséquent, les volcanologues locaux pensent que la possibilité d’une éruption déclenchée par une inondation glaciaire dans les semaines ou les mois à venir doit être envisagée. Il se peut aussi que ce ne soit pas le cas, et la prochaine inondation glaciaire pourrait ne pas se solder par une éruption. En bref, cela signifie que personne ne peut prédire si et quand une nouvelle éruption se produira!
Source: IMO

——————————————–

It looks as if activity has been increasing in the Reykjanes peninsula and at Grimsvötn volcano, but nobody can tell what will happen next.

The Icelandic Met Office (IMO) indicates that inflation has started again on the Reykjanes peninsula, close to Grindavík. This ground uplift might suggest a magma intrusion. IMO says it would be the third event of this kind since the beginning of this year west of Mt Thorbjörn. The intrusion began around mid May but seismic activity started to increase toward the end of the month. A swarm of about 2000 earthquakes has been detected since then and several events are located east of Thorbjörn, few kilometres North of the town of Grindavík. The largest earthquake of this swarm occurred on Saturday June 13th, 2020 with a magnitude M 3.5.

Since the beginning of the volcanic unrest in January 2020, the total uplift measured in the area has reached about 12 cm. Between the inflation periods, slight deflation has been observed. Local volcanologists think it probably reflects the cooling of the intruded magma or the interaction with the geothermal system. Numerical modelling results show that this third intrusion is occurring roughly in the same area as the previous ones, about 1 km west of M Thorbjörn, at a depth of 3-4 km, with a width of few hundred metres and oriented NE-SW for about 6 km. The estimated volume of magma accumulated during this third intrusion episode is estimated to be 1.2 million cubic metres. The seismic activity is occurring over an area larger than the extension of the intrusion itself and this is probably due to the stress change induced to the crust which affects a wider sector of the peninsula.

Iceland Geosurvey performed micro-gravity measurements along some profiles in late January when the intrusion started near Thorbjörn and they repeated the measurements in late April. The results confirm the presence of intruded magma at depth. Therefore there is a reason to repeat the measurements again and it will be done in mid-summer.

Weekly gas measurements at two sites near the area of the intrusion but their interpretation is still unclear. No chemical changes have been detected at the geothermal power plant in Svartsengi. However, measurements of the geothermal system reveal an increased permeability and increased fluid flow in the surrounding rock, which can be linked to the earthquake activity, inflation and uplift in the area, which triggered the creation of new cracks and opening of older ones.

As I put it before, the area where seismicity and ground uplift are recorded is very complex as it includes both potential tectonic and volcanic activity. What surprises me is the absence of significant amount of gases that are usually produced during magma intrusion. What I also fail to understand is why the intrusion – if there was an intrusion – did not cause any increase in temperature in the fumarolic fields in the Reykjanes Peninsula. We’ll see what happens in the coming days and weeks and hope that an eruption does not take place at the heart of the summer and close Keflakik airport, now that tourists are again allowed to enter Iceland.

°°°°°°°°°°

IMO also informs us that  there is evidence that Grímsvötn volcano is getting ready for the next eruption  It has been noticed that Grímsvötn erupts on average each 5-10 years, although the notion of eruptive cycle has never been clearly proved and that “accidents” may happen. The last eruption occurred in 2011. Between eruptions, the deformation data indicate the gradual accumulation of new magma at depth and the increased pressure in the system.

In May and June 2020, IMO scientists measured SO2 in the southwest corner of the Grimsvötn caldera, close to where the last eruptions in 2004 and 2011 took place. They said it was the first time that they measured so much SO2 at a volcano in Iceland that is not in an eruptive phase and its presence is indicative of magma at shallow level. In addition to the high level of SO2, the area where geothermal activity can be detected at the surface of the volcano has notably increased.

A previous study of Grimsvötn has suggested a correlation between jökulhlaup (glacial floods) and eruptions at Grimsvötn. When the pressure in the volcanic system is increased due to magma accumulation and if a large volume of water is stored in the lake, the pressure release following the removal of water during a flood could facilitate the magma rising to the surface and trigger an eruption. This kind of scenario was observed in 2004, but also in 1934 and 1922.

These days, the water level is rather high and the pressure in the magma chamber below the caldera has reached values comparable to those prior to the last eruption. Therefore, local volcanologists think that the possibility of an eruption triggered by a glacial flood, which could occur in the coming weeks or months, has to be considered. However, this may not be the case, and the next glacial flood may not lead to an eruption. In short, this means nobody is able to predict if and when a new eruption will occur!

Source : IMO.

Grindavik et le Mt Thorbjörn (C’édit photo : IMO)

Site fumerollien sur la Péninsule de Reykjanes (Photo : C. Grandpey)

Caldeira du Grímsvötn avec le Grímsfjall et le lac subglaciaire à l’air libre suite à l’éruption de 2011 (Source : NASA)

Volcans du monde // Volcanoes of the world

Voici quelques nouvelles de l’activité volcanique dans le monde.

Selon le Met Office islandais (IMO), le volcan Grímsvötn pourrait entrer en éruption à court terme, d’ici quelques semaines ou quelques mois.
Selon un volcanologue local, on enregistre une hausse des gaz magmatiques, en particulier dans la partie sud-ouest du volcan, près de l’endroit où se sont produites les éruptions de 2004 et 2011.
De plus, le volcan connaît une inflation révélatrice d’une ascension du magma. Une éruption est d’autant plus probable que le lac glaciaire du Grímsvötn se vidange en été, ce qui diminue la pression exercée sur le volcan.

La dernière éruption du Grimsvötn a eu lieu en 2011, avec un VEI 4. Le volcan a alors émis un panache de cendres et de vapeur qui s’est élevé à environ 20 kilomètres au-dessus du niveau de la mer. Les cendres ont réduit la visibilité à environ 50 mètres en certains endroits. L’éruption a également provoqué la fermeture de l’aéroport de Keflavik.
Source: OMI.

Plus de détails sur une note séparée à propos de ce risque éruptif du Grimsvötn et de l’activité sur la Péninsule de Reykjanes.

++++++++++

L’AVO a enregistré une hausse de la sismicité sur le volcan Makushin (nord de l’île Unalaska, Est des Aléoutiennes) avec deux événements de magnitude supérieure à M 4. Il se peut que cette sismicité soit en relation avec de l’activité volcanique. En conséquence, la couleur de l’alerte aérienne et le niveau d’alerte volcanique sont respectivement passés à la couleur Jaune et à « Advisory » (Surveillance conseillée). L’AVO explique que « cette activité pourrait déboucher sur une éruption, mais ce n’est pas une certitude. »
Le Makushin est un gros stratovolcan recouvert de glace qui culmine à 2010 m. d’altitude. La caldeira sommitale, de 3 km de diamètre, est le siège de fréquentes petites éruptions de vapeur et de cendres; cependant, aucune éruption majeure n’a été observée au cours de ce siècle. Le village d’Unalaska et le port de Dutch Harbor se trouvent à 25 km à l’est du volcan Makushin.

++++++++++

L’année dernière, à la fin de ma conférence au CDST de St Pierre (Martinique), certaines personnes m’ont posé des questions sur l’activité à Kick’em Jenny, un volcan sous-marin actif à 8 km au nord de la Grenade. Aucune activité particulière n’était signalée à l’époque.
Il semble que les choses soient en train de changer et que Kick ’em Jenny s’agite de nouveau. La dernière activité a été observée du 5 au 12 juin 2020, avec plus de 1 300 événements sismiques d’une magnitude allant jusqu’à M 1,8.

Bien que les signes d’activité aient diminué et que le niveau d’alerte reste à la couleur Jaune (niveau 2 sur 4), il est demandé aux visiteurs et aux pêcheurs d’être vigilants lorsqu’ils traversent la zone. Le public doit observer une zone d’exclusion de 1,5 km par rapport au sommet du volcan.
Kick’em Jenny est entré en éruption au moins 14 fois depuis sa découverte en 1939. la plus récente a eu lieu le 29 avril 2017.
Source: Université des Antilles.

++++++++++

L’activité du Sangay (Équateur) se concentre sur deux cratères sommitaux: le cratère central qui émet de la candre et des gaz, et le dôme Ñuñurcu qui émet de la lave. La lave, les écoulements pyroclastiques et les matériaux générés par les effondrements empruntent la ravine de la rivière Volcán sur le flanc SE. L’activité du Sangay s’est intensifiée les 8 et 9 juin 2020 avec des effondrements de fronts de coulées de lave, des coulées pyroclastiques sur le flanc SE et d’importantes émissions de cendres s’élevant jusqu’à 3 km au-dessus du cratère. Des retombées de cendres ont été signalées dans plusieurs provinces
Source: Instituto Geofísico.

++++++++++

On enregistre actuellement une moyenne de 4 à 13 explosions par heure sur le Fuego (Guatemala), avec des panaches de cendres montant jusqu’à 1,1 km au-dessus du cratère. Des retombées de cendres sont signalées dans plusieurs zones sous le vent. Les ondes de choc provenant des explosions secouent parfois les maisons à proximité du volcan. Des matériaux incandescents sont projetés à 100-300 m de hauteur et provoquent des avalanches de blocs dans plusieurs ravines. Une nouvelle coulée de lave a parcouru 250 m le long de la ravine Seca sur le flanc NW le 12 juin 2020.
Source: INSIVUMEH.

++++++++++

L’activité à White Island (Nouvelle-Zélande) montre actuellement une tendance à la baisse. La température au niveau des bouches qui émettent des gaz reste élevée (plus de 450°C). Bien que le magma demeure à faible profondeur, probablement à environ 1 km sous la surface, les émissions de gaz et la déformation du sol n’ont pas augmenté. De plus, la sismicité et le tremor volcanique restent à un niveau bas depuis février-mars. Le niveau d’alerte volcanique a été abaissé à 1 et la couleur de l’alerte aérienne reste au Jaune.
Source: GeoNet.

++++++++++

Un survol du cratère du Popocatepetl (Mexique) a été effectué le 13 juin 2020 (http://www.cenapred.gob.mx/popo/2020/jun/v0614202.mp4). Il a permis d’observer l’intérieur du cratère qui présente un diamètre de 350-380 mètres et une profondeur de 100-150 mètres. Au fond du cratère subsistent des restes de matériaux d’un dôme de lave qui s’est probablement édifié au cours du mois de mai. Le dôme est régulièrement détruit par la pression des gaz.

Le niveau d’alerte volcanique reste à la couleur Jaune Phase 2. Un périmètre de sécurité de 12 km reste en place autour du Popocatepetl .

Source : CENAPRED.

———————————————

Here is some news of volcanic activity around the world.

According to the Icelandic Met Office (IMO), Grímsvötn volcano is showing signs that an eruption might occur in the short term, a matter of weeks or months..

According to a local atmospheric volcanologist, high levels of magmatic gasses are present in the southwest corner of the volcano, near the place where it erupted in 2004 and 2011.

In addition, the volcano is experiencing inflation, indicating magma ascent. An eruption is all the more likely as the Grímsvötn’s lake drains during summer, releasing pressure on the volcano.

Grimsvötn’s last eruption took place in 2011, with a VEI 4. The volcano emitted a plume of ash and steam that rose up to about 20 kilometres above sea level. Ash reduced visibility to about 50 metres in some places. It also caused the closure of Keflavik airport.

Source: IMO.

More details on a separate post about the eruptive hazard at Grimsvötn and activity on the Reykjanes Peninsula.

++++++++++

AVO has recorded an increase in seismicity on Makushin volcano (northern Unalaska Island, eastern Aleutians) with two earthquakes with magnitudes above M 4. This seismicity may be associated with volcanic unrest. As a result the Aviation Colour Code and Volcano Alert Level havz been increased to YELLOW/ADVISORY, respectively. AVO explains that “this unrest could result a future eruption, however that is not a certainty.”

Makushin is a broad, ice-capped stratovolcano which rises to an elevation of 2010 m. The summit caldera, 3 km diameter, is the site of frequent steam and minor ash eruptions; however, no large eruptions have occurred in this century. The community of Unalaska and port of Dutch Harbor are located 25 km east of Makushin volcano.

++++++++++

Last year, at the end of my conference at the CDST of St Pierre (Martinique), some people asked be about activity at Kick’em Jenny, an active submarine volcano 8 km off the north shore of Grenada,. The volcano was quiet by that time and no significant activity was observed. .

It looks as if things are changing and Kick ’em Jenny is showing new signs of unrest. The latest activity was observed from June 5th to 12th, 2020, with more than 1 300 earthquakes with magnitudes up to M 1.8.

Although the unrest has declined and the alert level remains at Yellow (level 2 out of 4), visitors and fishermen are asked to be vigilant when traversing the area. The public should observe an exclusion zone of 1.5 km from the summit of the volcano.

Kick’em Jenny erupted at least 14 times since it was discovered in 1939, most recently on April 29th, 2017.

Source: University of the West Indies.

++++++++++

Activity at Sangay (Ecuador) is centered at two summit vents: the Central Crater which produces ash-and-gas emissions and the Ñuñurcu dome which effuses lava. Lava, pyroclastic flows, and collapsed material are channelled down the Volcán River drainage on the SE flank. Activity at Sangay intensified on June 8th and 9th, 2020 with lava-flow collapses, pyroclastic flows on the SE flank, and significant ash emissions rising up to 3 km above the crater. Ashfall has been reported in several provinces

Source: Instituto Geofísico.

++++++++++

An average of 4-13 explosions per hour is currently recorded at Fuego (Guatemala), with ash plumes rusing as high as 1.1 km above the crater rim. Ashfall is reported in several downwind areas. Shock waves from explosions sometimes rattle houses in the vicinity of the volcano. Incandescent material is ejected 100-300 m high and causes avalanches of blocks in several drainages. A new lava flow travelled 250 m down the Seca drainage on the NW flank on June 12th, 2020.

Source : INSIVUMEH.

++++++++++

Activity at White Island (New Zealand) recently showed a downward trend. Temperatures at the gas vents remained high (over 450°C). Although magma remains at a shallow depth, probably about 1 km below the surface, gas discharge and ground deformation have not increased. Additionally, seismicity and the volcanic tremor have been low since February-March. The Volcanic Alert Level has been lowered to 1 and the Aviation Colour Code remains at Yellow.

Source : GeoNet.

++++++++++

An overflight of the crater of Popocatepetl (Mexico) was performed on June 13th, 2020 (http://www.cenapred.gob.mx/popo/2020/jun/v0614202.mp4). It allowed to observe the interior of the crater which has a diameter of 350-380 metres and a depth of 100-150 metres. At the bottom of the crater there are remains of materials from a lava dome which was probably built during the month of May. The dome is regularly destroyed by the pressure of the gases.
The volcanic alert level remains at Yellow Phase 2. Visitors are asled to keep outside a 12-km security perimeter around Popocatepetl.
Source: CENAPRED.

Cratère du Popocatepetl le 13 juin 2020 (Source: CENAPRED)

Le recul glaciaire en Islande // Glacial retreat in Iceland

Le site Internet « Iceland Review » a publié le dernier numéro de la newsletter Melting Glaciers qui dresse un bilan de la situation glaciaire en Islande. Ce bulletin est le fruit d’une collaboration entre l’Icelandic Met Office, l’Institut des Sciences de la Terre de l’Université d’Islande, la Iceland Glaciological Society, le Southeast Iceland Nature Center et le parc national du Vatnajökull. Il est publié avec le soutien du Ministère Islandais de l’Environnement et des Ressources Naturelles.

Dans l’introduction de la newsletter, on peut lire que « les glaciers islandais reculent rapidement depuis un quart de siècle. Ce phénomène est l’une des conséquences les plus visibles du réchauffement climatique dans le pays. »

Voici quelques extraits de la newsletter:

Evolution des glaciers :
Depuis l’an 2000, la superficie des glaciers islandais a diminué d’environ. 800 km2 et elle a perdu près de 2200 km2 depuis la fin du 19ème siècle, époque les glaciers ont atteint leur extension maximale depuis la colonisation du pays au 9ème siècle. La surface des glaciers a en moyenne diminué d’environ. 40 km2 par an ces dernières années et les glaciers ont reculé de plusieurs dizaines de mètres en 2019. Le Hagafellsjökull, qui appartient à la calotte glaciaire du Langjökull, ainsi que le Síðujökull et le Tungnárjökull qui font partie de la calotte glaciaire du Vatnajökull, détiennent le record de recul pour 2019 avec 150 mètres de retrait au cours de cette seule année. Le glacier Breiðamerkurjökull, issu de la calotte glaciaire du Vatnajökull recule encore plus rapidement au moment de son vêlage dans le Jökulsárlón. Le recul du front de vêlage a atteint entre 150 et 400 mètres en 2019.

Lagon glaciaire du Jökulsárlón :
Le lagon glaciaire du Jökulsárlón montre à quel point le vêlage dans l’océan ou dans un lac peut être important pour le bilan massique des glaciers. Le Jökulsárlón a commencé à se former au milieu des années 1930. Les lagons situés devant le front des glaciers Breiðamerkurjökull, Jökulsárlón et Breiðárlón, ainsi que quelques lagons plus petits, présentent actuellement une superficie totale de plus de 30 km2. En moyenne, la surface de ces lagons glaciaires a augmenté de 0,5 à 1 km2 par an au cours des dernières années. Le glacier Breiðamerkurjökull recule et s’amincit en raison d’un bilan massique de surface négatif dû au réchauffement climatique, mais également en raison du vêlage dans le lagon du Jökulsárlón. Le vêlage représente actuellement environ un tiers de la perte de masse du Breiðamerkurjökull.

Rebond isostatique :
La fonte rapide des glaciers entraîne un soulèvement de la croûte terrestre en bordure de la glace en raison de la faible viscosité du manteau sous l’Islande. A Höfn, dans le Hornafjörður au sud-est de l’Islande, le sol se soulève actuellement d’environ 10 à 15 mm par an et la vitesse de soulèvement a considérablement varié au cours des deux dernières décennies en raison des fluctuations de perte de masse du glacier. La vitesse de soulèvement la plus importante a été observée sur la bordure ouest du Vatnajökull où elle atteint environ 40 mm par an.

Le Hoffellsjökull :
Le glacier Hoffellsjökull a reculé et s’est considérablement aminci depuis la fin du 19ème siècle, période où le glacier a atteint son extension maximale. La zone située à l’avant du Hoffellsjökull permet d’observer les effets géomorphologiques du retrait des glaciers. Le recul du glacier a conduit à la formation, devant sa partie frontale, d’un lac qui s’est agrandi rapidement depuis le début du 21ème siècle. La superficie du Hoffellsjökull a diminué d’environ. 40 km2 depuis la fin du 19ème siècle et de plus de 0,5 km2 par an au cours des dernières années.

Bilan massique des glaciers :
Le bilan massique des plus grands glaciers islandais est négatif depuis 1995, à l’exception de l’année 2015 où il est devenu positif pour la première fois en 20 ans. Le bilan massique en 2016 a de nouveau été négatif, avec une ampleur semblable à celle des années précédentes. Le bilan massique du Langjökull et de l’Hofsjökull a de nouveau été nouveau négatif en 2017, alors que le Vatnajökull a été pratiquement en équilibre. Ces trois calottes glaciaires ont été presque à l’équilibre en 2018. L’été 2019 a été chaud et le bilan massique des trois glaciers a été négatif. Ils ont perdu environ. 250 km3 de glace depuis 1995, ce qui correspond à environ 7% de leur volume total.

Bilan massique des glaciers islandais négatif en 2019 :
Les glaciers islandais ont reculé rapidement après le milieu des années 1990 en raison du réchauffement climatique. La perte de masse a été équivalente à environ 1 m d’eau par an en moyenne sur la période 1997-2010. Après 2010, certains étés ont été frais et humides, ce qui s’est reflété dans la perte de masse des glaciers. Pendant la période 2011-2018, elle se situait entre le tiers et la moitié de la moyenne des décennies précédentes. L’été 2019 a été chaud et ensoleillé. Par conséquent, l’ablation glaciaire a considérablement augmenté et la perte de masse a été équivalente à environ 1,5 m d’eau par an, ce qui est l’une des valeurs les plus élevées jamais enregistrées.

L’intégralité de la newsletter Melting Glaciers se trouve (en islandais et en anglais) à cette adresse:
https://www.vedur.is/media/loftslag/frettabref-joklar-newsletter-glaciers-iceland-2019-1-.pdf

————————————————

The “Iceland Review” website has released that latest issue of the newsletter Melting Glaciers which describes the situation of glaciers in Iceland. The newsletter is a collaborative effort between the Icelandic Met Office, the Institute of Earth Sciences at the University of Iceland, the Iceland Glaciological Society, the Southeast Iceland Nature Centre, and Vatnajökull National Park. It is published with support from the Icelandic Ministry for the Environment and Natural Resources.

In the introduction of the newsletter, one can read that “glaciers in Iceland have retreated rapidly for a quarter of a century, and glacier downwasting is one of the most obvious consequences of a warming climate in the country.”

Here are some excerpts from the newsletter :

Glacier changes.:

Since 2000, the area of Iceland’s glaciers has decreased by about. 800 km2 and by almost 2200 km2 since the end of the 19th century when the glaciers reached their maximum extent since the country’s settlement in the 9th century. The glacier area has on average shrunk by about. 40 km2 annually in recent years. Glaciers typically retreated by tens of metres in Hagafellsjökull in Langjökull ice cap and Síðujökull and Tungnárjökull in Vatnajökull ice cap hold the 2019 record, retreating by 150 m in this single year. The Breiða-merkurjökull outlet glacier of the Vatnajökull ice cap retreats even faster, where it calves into Jökulsárlón lagoon. The retreat of the calving front measured 150–400 m in 2019.

The Jökulsárlón glacier lagoon :

The Jökulsárlón glacier lagoon demonstrates how important calving into the ocean or terminal lakes can be for the mass balance of glaciers. Jökulsárlón lagoon started to form in the mid-1930s because of the retreat of the glacier. The lagoons by the terminus of Breiðamerkurjökull, Jökulsárlón and Breiðárlón, as well as some smaller lagoons, now have a combined area of over 30 km2. On average, the lagoons have grown by 0.5–1 km2 annually in recent years. The Breiðamerkurjökull glacier retreats and thins due to negative surface mass balance in a warming climate but also due to calving into Jökulsárlón lagoon. Calving currently causes about 1/3 of the mass loss of Breiðamerkurjökull.

Crustal movements :

Rapid melting of glaciers leads to crustal uplift near the ice margins because of the low viscosity of the mantle under Iceland. The land at Höfn in Hornafjörður in SE-Iceland currently rises by about 10–15 mm per year and the rate of uplift has varied substantially over the last two decades due to variations in the rate of mass loss of the glacier. The rate of uplift is even larger near the western margin of Vatnajökull where it has been measured at about 40 mm per year.

The Hoffellsjökull outlet glacier :

The Hoffellsjökull outlet glacier has retreated and thinned greatly since the end of the 19th century, when the glacier reached its maximum extent in recent times. The foreland of Hoffellsjökull provides unique opportunities to observe the geomorphological effects of glacier retreat. The retreat of the glacier has led to the formation of a terminus lake that has grown rapidly since the turn of the 21st century. The area of Hoffellsjökull has descreased by about 40 km2 since the end of the19th century and by more than 0.5 km2 annually in recent years.

Glacier mass balance :

The mass balance of the largest Icelandic glaciers has been negative since 1995, with the exception of the year 2015 when it became positive for the first time in 20 years. The mass balance in 2016 was again negative by a magnitude similar to that in previous years. The mass balance of Langjökull and Hofsjökull was again negative in 2017, whereas Vatnajökull was almost in balance. All three ice caps were near balance in 2018. The summer of 2019 was quite warm and the mass balance of all three ice caps was negative. The glaciers have lost about. 250 km3 of ice since 1995, which corresponds to about 7% of their total volume.

Mass balance of the Icelandic glaciers negative in 2019 :

Glaciers in Iceland retreated rapidly after the mid-1990s as a consequence of warming climate. The mass loss was about 1m water per year on average in the period 1997–2010. After 2010, some summers have been cool and wet and this is reflected in the glacier mass loss, which in the period 2011–2018 was on average only one-third to one-half of the average of the preceding one or two decades. The summer of 2019 was warm and sunny. Consequently, the glacier ablation increased substantially and the mass loss was measured as about 1.5 m water per year which is among the highest values on record.

The entire newsletter Melting Glaciers can be found (in Icelandic and in English) at this address :

https://www.vedur.is/media/loftslag/frettabref-joklar-newsletter-glaciers-iceland-2019-1-.pdf

Source : Wikipedia

Variations du  Breiðamerkurjökull au niveau du vêlage dans le lagon du Jökulsárlón

(Source : Glacier Melting)

Vêlage du Vatnajökull (Photo : C. Grandpey)