Öræfajökull (Islande / Iceland): Hausse du niveau d’alerte // The alert level has been raised

Alors que certains commençaient à parier sur une éventuelle éruption du Bardarbunga, un nouveau ‘chaudron’ de glace s’est formé cette semaine dans la caldeira du volcan Öræfajökull et a incité le Bureau Météorologique islandais (OMI) à élever au JAUNE la couleur de l’alerte aérienne du volcan le 17 novembre 2017. Le dernier épisode éruptif de l’Öræfajökull a débuté en août 1727 et s’est terminéen mai de la même année.
La dépression qui s’est creusée dans le glacier mesure environ 1 km de diamètre et traduit une augmentation récente de l’activité géothermale dans la caldeira.
L’OMI a également enregistré une augmentation de l’activité sismique au cours des derniers mois, mais elle est restéefaible ces derniers jours.
Malgré la hausse du niveau d’alerte, il n’y a actuellement aucun signe d’éruption imminente.
L’Öraefajökull, le plus haut sommet d’Islande, est un volcan recouvert par un glaciersitué dans la partie SE de la calotte glaciaire du Vatnajökull.

Source: IMO.

——————————————

While some persons were beginning to bet on a possible eruption of Bardarbunga Volcano, a new ice-cauldron that formed this week within the Öræfajökull volcano caldera prompted the Icelandic Meteorological Office (IMO) to raise the aviation colour code for the volcano to Yellow on Novemver 17th 2017. The last eruptive episode of Öræfajökull started in August 1727 and ended in May of that same year.
The cauldron is about 1 km in diameter and it reflects a recent increase in geothermal activity within the caldera.
The IMO has also registered an increase in the seismic activity in the last few months, but it has been low for the past days.
Despite the increase in the alert level, there are currently no signs of an imminent eruption.
Öraefajökull, Iceland’s highest peak, is a broad glacier-clad central volcano at the SE end of the Vatnajökull icecap.

Source: IMO.

Publicités

Vers un réveil du Bárðarbunga (Islande)? // Is Bárðarbunga going to wake up in Iceland ?

Le Bárðarbunga, l’un des volcans les plus actifs d’Islande, sous la partie nord-ouest du glacier Vatnajökull, a montré récemment plusieurs hausses de l’activité sismique qui ont inquiété les volcanologues islandais. Cette sismicité s’est accompagnée d’une intensification inhabituelle de l’activité géothermale sous la partie nord-ouest du Vatnajökull. Depuis plusieurs semaines, la Jökulsá á Fjöllum, le cours d’eau qui évacue l’eau de fonte de la bordure nord-ouest du glacier, montre des signes d’une hausse de l’activité géothermale sous le glacier, avec une augmentation de la conductivité électrique, une couleur rougeâtre et une forte odeur de soufre.
La semaine dernière, les scientifiques pensaient que les changements d’activité dans les montagnes de Kverkfjöll, un site d’activité géothermale bien connu, étaient à l’origine du pic de conductivité électrique dans la Jökulsá á Fjöllum. Cependant, le dernier bulletin du Bureau Météorologique Islandais (OMI) aboutit à une conclusion très différente: selon le Bureau, le volcan Bárðarbunga est très probablement responsable de cette situation.
Le mauvais temps sur le glacier Vatnajökull a d’abord empêché les scientifiques de monter une expédition pour apprécier la situation. Ils ont pu survoler la zone concernée pour la première fois au cours du week-end dernier. Les photographies aériennes ne montrent aucun changement d’activité dans les Kverkfjöll. En ce qui concerne Bárðarbunga, les photos montrent un niveau inhabituel d’eau de fonte à la sortie du Dyngjujökull, langue glaciaire qui recouvre le Bárðarbunga.
Il est important de savoir si la source de l’activité géothermale a sa source sous les Kverkfjöll ou au niveau du Bárðarbunga. Les montagnes de Kverkfjöll sont un ancien système volcanique connu pour son activité géothermale intense. La dernière éruption majeure dans les Kverkfjöll aurait eu lieu il y a 1300 ans. Les scientifiques pensent également que des éruptions mineures ont pu avoir lieu au cours des derniers siècles, mais la probabilité d’une éruption sur le site des Kverkfjöll est considérée comme très faible.
De son côté, le Bárðarbunga est l’un des volcans les plus actifs d’Islande. Il montre des signes d’activité depuis la fin de l’éruption dans l’Holuhraun en 2014-15. Cette éruption a produit le plus grand champ de lave jamais observé en Islande depuis le 18ème siècle.
Source: Iceland Magazine.

NDLR: Il faut toutefois noter que la récente sismicité observée au niveau du Bárðarbunga était superficielle est était probablement liée à des mouvements de fluides hydrothermaux, comme cela se produit fréquemment en Islande, au niveau du volcan Katla, sur le Myrdasjökull, par exemple. Si elle mérite d’être surveillée attentivement, elle n’annonce pas forcément une éruption à court terme. D’autres paramètres comme le tremor et la chimie des gaz doivent également être pris en compte.

 

—————————————-

Bárðarbunga, one of Iceland’s most active volcanoes, located beneath the NW part of Vatnajökull, has shown several recent increases in seismic activity which worried Icelandic volcanologists. They were accompanied by an.unusual spike in geothermal activity beneath the northwestern corner of Vatnajökull glacier. For several weeks, Jökulsá á Fjöllum, which carries meltwater from the northwestern edge of the glacier, has been showing signs of increased geothermal activity beneath the glacier, a spike in electrical conductivity, a reddish colour and a strong smell of sulphur.

Last week scientists believed that changes in activity at Kverkfjöll mountains, a well-known geothermal hotspot, were the source of a spike in electrical conductivity in Jökulsá á Fjöllum. However, the latest statement from the Icelandic Meteorological Office (IMO) reaches a very different conclusion: According to thre Office, Bárðarbunga Volcano is most likely to blame.

Bad weather on the Vatnajökull Glacier initially stopped scientists from mounting an expedition to inspect conditions. They were able to fly over the area for the first time during the last weekend. A study of these aerial photographs shows no signs of changing activity at Kverkfjöll. As far as Bárðarbunga is concerned, the photos show unusual levels of meltwater coming from Dyngjujökull outlet glacier which covers Bárðarbunga.

It is important to know whether the source of the geothermal activity is beneath Kverkfjöll or Bárðarbunga. Kverkfjöll mountains are an old volcanic system known for significant and powerful geothermal activity. The last major eruption in Kverkfjöll is believed to have taken place 1300 years ago. Scientists also believe some minor eruptions could have taken place in the past few hundred years, but the likelihood of an eruption in Kverkfjöll is believed to be minimal.

Bárðarbunga, on the other hand, is one of the most active volcanoes in Iceland. The volcano has been showing growing signs of activity since the end of the Holuhraun eruption in 2014-15. This eruption produced the largest lava field ever seen in Iceland since the 18th century.

Source : Iceland Magazine.

Personal remark: It should be noted, however, that the recent seismicity observed at Bárðarbunga was shallow and was probably related to hydrothermal fluid movements, as is frequently the case in Iceland, for example at the Katla volcano on Myrdasjökull. If it deserves to be watched closely, it does not necessarily announce a short-term eruption. Other parameters such as the tremor and gas chemistry also need to be taken into account.

Vue de l’éruption de 2014-2015 (Crédit photo: Wikipedia)

L’Islande enterre le gaz carbonique ! // Iceland buries carbon dioxide !

Dans une note publiée le 17 juin 2016, j’expliquais qu’une équipe dirigée par des chercheurs de l’Université de Southampton a participé au projet CarbFix, à côté d’une centrale géothermique dans la périphérie de Reykjavik. Cette centrale exploite une source de vapeur produite par le magma à faible profondeur, en sachant que du CO2 et des gaz soufrés d’origine volcanique sont émis en même temps que la vapeur. Le but est de capter le gaz et de le réinjecter dans le sous-sol. Le processus se fait avec un puits d’injection foré dans le soubassement basaltique. Les chercheurs séparent le dioxyde de carbone de la vapeur produite par la centrale et l’envoient vers un puits d’injection. Le dioxyde de carbone est injecté dans un tuyau qui de trouve lui-même logé à l’intérieur d’un autre tuyau rempli d’eau en provenance d’un lac situé à proximité. A plusieurs dizaines de mètres de profondeur, le dioxyde de carbone est libéré dans l’eau où la pression est si élevée qu’il se dissout rapidement. Ce mélange d’eau et de dioxyde de carbone dissous, qui devient très acide, est envoyé plus profondément dans une couche de roche basaltique où il commence à lessiver des minéraux comme le calcium, le magnésium et le fer. Les composants du mélange finissent par se recomposer et se minéraliser en roches carbonatées.
Les chercheurs ont été surpris de voir à quelle vitesse la roche islandaise absorbe le CO2. Des expériences en laboratoire ont montré qu’il faudrait des décennies pour que le CO2 injecté dans le basalte parvienne à minéraliser. Les résultats du projet islandais démontrent, quant à eux, que la minéralisation pratiquement intégrale du CO2 in situ dans les roches basaltiques peut se produire en moins de 2 ans.
Suite à ce premier succès, Reykjavik Energy, qui exploite la centrale géothermique, a accéléré l’injection de CO2 au cours des deux dernières années. Les techniciens vont bientôt injecter dans le sous-sol un quart du CO2 émis par la centrale. Le coût du projet est relativement faible, d’environ 30 dollars par tonne de CO2.
Malgré son succès, il n’est pas certain que cet exemple de stockage du CO2 en Islande puisse être appliqué dans le monde entier. On ne sait pas vraiment ce qui permet la minéralisation rapide sur le site de CarbFix. Ce peut être dû à une combinaison de caractéristiques géologiques du sous-sol et de la géochimie des eaux souterraines, bien que les chercheurs pensent que leur approche de dissolution du CO2 dans l’eau avant l’injection joue un rôle important. D’autres expériences ailleurs dans le monde ont révélé des taux plus lents de minéralisation. En conséquence, même si le projet CarbFix est encourageant, il y a encore de grands défis à relever si l’on veut utiliser cette technologie pour réduire les émissions de gaz à effet de serre dans l’atmosphère.

Un récent reportage diffusé sur le site de la radio France Info revient sur ce projet fort intéressant. En conclusion, le journaliste évoque son utilisation dans les régions volcaniques françaises, comme le Massif Central, la Guadeloupe ou l’Ile de la Réunion. Vous accéderez au reportage en cliquant sur ce lien :

http://www.francetvinfo.fr/monde/environnement/rechauffement-climatique-l-islande-enterre-le-co2_2468294.html

———————————————

In a post released on June 17th 2016, I explained that a team led by a University of Southampton researcher was involved in the CarbFix project, located next to a geothermal power plant outside Reykjavik. This plant basically taps a source of steam above Iceland’s shallow magma chambers, but some volcanic CO2 and sulfur gas come along with it. The goal is to capture that gas and stick it back underground. That’s done with an injection well drilled down into basalt bedrock. The researchers separate the carbon dioxide from the steam produced by the plant and send it to an injection well. The carbon dioxide gets pumped down a pipe that’s actually inside another pipe filled with water from a nearby lake. Dozens of metres below the ground, the carbon dioxide is released into the water, where the pressure is so high that it quickly dissolves. That mix of water and dissolved carbon dioxide, which becomes very acidic, gets sent deeper into a layer of basaltic rock, where it starts leaching out minerals like calcium, magnesium and iron. The components in the mixture eventually begin to mineralize into carbonate rocks.

The researchers were surprised to see how quickly it all happened. Laboratory experiments have shown that it ought to take decades for CO2 injected into basalt to mineralize. However, the results of this study demonstrate that nearly complete in situ CO2 mineralization in basaltic rocks can occur in less than 2 years.

Following on this early success, Reykjavik Energy, which operates the geothermal power plant, has ramped up injection over the past couple years. They’ll soon be injecting a quarter of the CO2 released by the plant. The cost of the project is comparatively low, about $30 per ton of CO2.

Although successful, it is not sure this breakthrough demonstration of CO2 storage can be emulated around the world. It’s not entirely clear what allowed such rapid mineralization about the CarbFix site. It could be some combination of characteristics of the geology and groundwater chemistry, although the researchers think their approach of dissolving the CO2 in water before injection played a role. Other experiments elsewhere in the world have revealed slower rates of mineralization. As a consequence, even though the CarbFix project is encouraging, there are still some big challenges to be met if we want to use this technology to reduce greenhouse gas emissions in the atmosphere.

A recent report video on the website of the French radio France Info develops this very interesting project. In conclusion, the journalist imagines its use in the French volcanic regions, such as the Massif Central, Guadeloupe or Reunion Island. You will access the report by clicking on this link:
http://www.francetvinfo.fr/monde/environnement/rechauffement-climatique-l-islande-enterre-le-co2_2468294.html

Principe de l’enfouissement du CO2 dans le basalte islandais (Source: France Info)

Bárðarbunga (Islande / Iceland)

La sismicité est actuellement faible sur le Bárðarbunga (voir ci-dessous), le volcan qui se cache sous la glace du glacier Vatnajökull. Cependant, beaucoup d’articles dans les journaux – les tabloïds britanniques en particulier – prédisent une éruption à court terme. Ces articles se réfèrent à quatre séismes de magnitude M 3.2 à M 4.7 qui ont secoué le volcan à la fin du mois d’octobre 2017.
La cause de cette sismicité est peut-être le remplissage du réservoir magmatique sous le volcan après la dernière éruption qui a eu lieu de septembre 2014 à février 2015. Les volcanologues islandais pensent que la sismicité pourrait s’accentuer suite à l’effondrement de la caldeira du volcan pendant la dernière éruption. En conséquence, il se peut que le magma pousse et fasse se soulever à nouveau cette caldeira en provoquant des séismes plus importants.
En fait, personne ne sait vraiment ce qui se passe sous le Vatnajökull. Notre capacité à prédire les éruptions est très faible, comme l’a récemment confirmé la situation sur le Mont Agung en Indonésie. Le système volcanique du Bárðarbunga a une longueur d’environ 190 kilomètres et une largeur de 25 kilomètre. Il est entré en éruption au moins 26 fois au cours des 1100 dernières années. Avant l’éruption de 2014-2015, le système s’était manifesté pour la dernière fois en 1910. Le glacier Vatnajokull recouvre une partie de ce système volcanique. Si le magma stocké sous le glacier devait atteindre la surface, il ferait rapidement fondre la glace et provoquerait très certainement une inondation désastreuse. Toutefois, ne nous affolons pas. Comme le dit le proverbe, « Avec des si, on mettrait Paris en bouteille. »
Personne ne sait vraiment ce qui va se passer dans cette partie de l’Islande. Comme l’a dit un scientifique: « Il se pourrait que cette sismicité ponctuée d’événements plus importants continue pendant des années … Il se peut aussi que l’équilibre du volcan se rompe rapidement et que l’on assiste à une nouvelle éruption, mais c’est difficile à dire. »
Source: Iceland Monitor.

—————————————-

Seismicity is currently low at Bárðarbunga (see below), the volcano that hides under the ice of the Vatnajökull Glacier. However, there are many articles in the newspapers – the British tabloids in particular – to predict an eruption in the short term. These articles refer to four earthquakes with magnitudes ranging from M 3.2 to M 4.7 that shook the volcano in late October 2017.

The causes of this seismicity may be the refilling of the magma reservoir beneath the volcano after the last eruption from September 2014 to February 2015. Experts think the earthquakes may get stronger because the volcano’s caldera floor collapsed somewhat during the last eruption, so that the magma may be pushing the caldera back up, leading, in part, to these larger earthquakes.

Actually, nobody knows for sure. Our ability to predict eruptions is very low, as the situation on Mt Agung in Indonesia really confirmed it. The Bárðarbunga volcanic system is about 190 kilometres long and 25 kilometres wide. It has erupted at least 26 times over the past 1,100 years. Before the 2014-2015 eruption, the system had last erupted in 1910. The Vatnajokull Glacier covers part of this system. If the magma stored under the glacier were to erupt, it could rapidly melt the ice there and cause a disastrous flood. As the saying goes, “If ifs and ands were pots and pans, there’d be no work for tinkers’ hands.”

Nobody really knows what will happen next in that part of Iceland. As one expert said: « It might be that this trend of large earthquakes might continue for years…Or, the equilibrium of the volcano will be broken soon, and we will see another eruption. It is hard to say. »

Source: Iceland Monitor.

Source: IMO

Quatre séismes secouent le Bárðarbunga (Islande) // Four earthquakes shook Bárðarbunga (Iceland)

Quatre séismes ont été enregistrés hier soir sur le Bárðarbunga. Ce sont les événements les plus significatifs depuis l’éruption volcanique de 2014-2015.
La première secousse avait une magnitude de M 3,9: elle est survenue à 23h02 le 26 octobre, et a été suivie d’un événement de M 3,2 à 23h03. Le troisième séisme a secoué le volcan à 23h26, avec une magnitude de M 4,7. Le quatrième séisme de magnitude M 4,7 s’est produit 16 minutes après minuit.
Leurs profondeurs étaient respectivement de 4,1 km, 0,1 km, 5 km et 3,1 km. Cette faible profondeur tend à prouver qu’il s’agissait d’événements purement tectoniques (et non volcano-tectoniques). En outre, aucune fluctuation significative n’a été observée dans le tremor éruptif.
Un séisme de M 4.1 a déjà eu lieu dans la même zone au début de cette semaine. Plusieurs autres séismes avaient également été enregistrés sur le volcan en septembre.
Source: Iceland Review.

———————————

Four earthquakes occurred on Bárðarbunga volcano last night, the largest earthquakes since the 2014-2015 volcanic eruption.

The first earthquake had a magnitude M 3.9: it occurred at 23:02 on October 26th, followed by an M 3.2 event at 23:03. The third quake hit the volcano at 23:26 and measured M 4.7. The fourth earthquake of magnitude M 4.7 occurred 16 minutes past midnight.

Their depths were located at 4.1km, 0.1 km, 5 km and 3.1 km, respectively. These shallow depths tend to prove they were purely tectonic (and not volcano-tectonic) events. Besides, no significant fluctuation was observed in the eruptive tremor.

An M 4.1 earthquake already took place in the same area earlier this week. Several earthquakes had also hit the volcano in September.

Source : Iceland Review.

Source: IMO.

La fonte de la glace arctique : Des défis économiques énormes // The melting of Arctic ice : Enormous economic challenges

Au mois de juin dernier, au cours de la formation de son gouvernement, le Président  Macron a nommé Ségolène Royal Ambassadrice chargée de la négociation internationale pour les Pôles. Cette information s’est répandue comme une traînée de poudre sur les réseaux sociaux avec le lot de moqueries qui accompagnent habituellement l’ancienne ministre de l’environnement.

Pourtant, la situation est loin d’être drôle et cette fonction est beaucoup plus importante qu’on pourrait le croire. Comme je l’ai indiqué à plusieurs reprises, la fonte de la calotte glaciaire et de la glace de mer dans l’Arctique est devenue le nouveau centre d’attention, non pas à cause de la catastrophe environnementale qu’elle représente, mais bien pour les enjeux économiques colossaux qu’elle va permettre. Tous les pays se préparent actuellement à l’exploitation des ressources qui seront bientôt libérées par la fonte des glaces et aux nouvelles voies maritimes qu’il sera possible d’emprunter. Beaucoup de pays lorgnent sur les ressources minières du Groenland, tandis que d’autres s’apprêtent à naviguer dans les passages du nord-est et du nord-ouest libérés de leurs glaces.

Mis à part quelques négationnistes du réchauffement climatique, les climatologues sont unanimes : la fonte des glaces est de plus en plus inquiétante. Pour nombre d’observateurs, les jeux sont faits ! Notre incapacité à remettre en question notre modèle économique a déjà scellé le sort de la planète pour les décennies à venir. Les chiffres parlent d’eux-mêmes. La glace de mer dans l’Arctique couvrait 10 millions de km2 en 1950. Aujourd’hui, cette surface s’est réduite à 4 millions de km2 et un Océan Arctique libre de glace en été à l’horizon 2040 est une perspective très probable.

Un article du journal Le Monde paru en mai 2017 informait les lecteurs que dans cette nouvelle course au profit, la France semblait occuper une bonne place. L’archipel Saint-Pierre et Miquelon représenterait le meilleur atout de la France pour profiter des retombées de cette future économie, à l’horizon 2025. Cet archipel serait un atout pour l’économie arctique de la France, et pour s’assurer une place géopolitique stratégique. Situé à seulement 1600 kilomètres de New York au sud, tout comme des mines d’uranium groenlandaises au nord,  Saint-Pierre et Miquelon se situe à la croisée des routes maritimes arctiques et atlantique Nord, et dans une zone riche en hydrocarbures. Géographiquement, l’archipel est idéalement placé au départ du Passage du Nord-Ouest, et à l’arrivée sud de l’Arctic Bridge.

L’ouverture de nouvelles voies maritimes et l’accès à de nouveaux gisements pétroliers et miniers annonce de nouveaux rapports de force entre les États et une modification des influences politiques dans la région et, par voie de conséquence, dans le monde. La France aura-t-elle des atouts suffisants à Saint-Pierre et Miquelon pour lutter avec les Etats-Unis et la Russie qui ont déjà planté de sérieux jalons dans l’Arctique ? Rien n’est moins sûr !

Il ne faut pas trop se faire d’illusions. Malgré une bonne volonté apparente pour développer les énergies renouvelables, les Etats signataires de l’accord climatique de Paris ne feront guère d’efforts pour rester sous la barre des 2°C de réchauffement, alors qu’ils sont déjà en marche vers ce nouvel eldorado économique tant convoité. La transition écologique et énergétique n’est pourtant pas si inintéressante en termes de considérations économiques et les solutions existent bel et bien pour limiter les dégâts environnementaux. Comme l’a fait remarquer le climatologue Jean Jouzel, « pour être à la hauteur des enjeux climatiques, il faudrait investir dans l’efficacité énergétique 600 milliards de dollars par an à l’échelle mondiale. Selon l’OCDE, les Etats dépensent 550 milliards de dollars par an en subventions à la consommation et à la production d’énergies fossiles. » Tout est donc affaire de volonté politique car ces ordres de grandeur nous disent bien que le changement est possible.

————————————

Last June, during the formation of his government, President Macron appointed Ségolène Royal as Ambassador in charge of international negotiations for the Poles. This piece of news spread like wildfire on social networks with the usual mockery that accompanies the former Minister of the Environment.
Yet the situation is far from being funny and this appointment is much more important than one might think. As I have explained on several occasions, the melting of the ice sheet and sea ice in the Arctic has become the new centre of attention, not because of the environmental catastrophe it involves, but because of the colossal economic stakes it will allow. All countries are now preparing to exploit the resources that will soon be freed by the melting of the ice and the new shipping lanes that will be open. Many countries are eyeing the mineral resources of Greenland, while others are preparing to navigate along  the northeast and north-west passages that will be free of ice.
Apart from a few negationists of global warming, climate scientists are unanimous: the melting of the ice is more and more worrying. For many observers, the game is lost! Our inability to challenge our economic model has already sealed the fate of the planet for decades to come. The numbers speak for themselves. Sea ice in the Arctic covered 10 million square kilometres in 1950. Today, this area has been reduced to 4 million square kilometres and an Arctic Ocean free of ice in the summer 2040 is a very likely prospect .
An article in the newspaper Le Monde published in May 2017 informed readers that in this new race for profit, France seemed to occupy a good place. The archipelago of Saint Pierre and Miquelon would represent France’s best asset to take advantage of the benefits of this future economy by 2025. This archipelago would be an asset for the Arctic economy of France and a strategic geopolitical location. Located just 1600 kilometres from New York to the south, and from Greenland uranium mines to the north, Saint Pierre and Miquelon is located at the crossroads of the Arctic and North Atlantic shipping routes, and in an area rich in hydrocarbons. Geographically, the archipelago is ideally located at the start of the Northwest Passage, and at the southern entrance to the Arctic Bridge.
The opening up of new shipping routes and the access to new oil and mineral deposits announces a new balance of power between the states and a change in political influences in the region and consequently in the world. Will France have sufficient assets in Saint-Pierre and Miquelon to rival with the United States and Russia which have already planted serious milestones in the Arctic? Nothing is less sure !
One must not be too illusory. Despite an apparent willingness to develop renewable energies, the signatories to the Paris climate agreement will hardly make any effort to stay below 2°C of global warming, as they are already moving towards the new economic Eldorado. The environmental and energy transition is not so uninteresting in terms of economic considerations and the solutions do exist to limit the environmental damage. As French climate scientist Jean Jouzel has remarked, « to be up to the climatic challenges, we would have to invest in energy efficiency $ 600 billion a year on a global scale. According to the OECD, states spend $ 550 billion per year on consumer and fossil fuel subsidies. Everything is therefore a matter of political will. These orders of greatness tell us that change is possible.

Photo: C. Grandpey

La fonte de la glace de mer ouvrira très bientôt des couloirs de navigation da,s les passages du nord-est et du nord-ouest… (Source: Wikipedia)

 

Le Bardarbunga s’agite en Islande // Unrest at Bardarbunga Volcano (Iceland)

Quand ce n’est pas le Katla, c’est le Bardarbunga qui fait naître les craintes d’une éruption! Le Met Office islandais a indiqué aujourd’hui qu’un essaim sismique avait débuté dans la caldera du Bardarbunga à 02h15 (TU) le 7 septembre 2017 avec une secousse de M 4.1. L’événement le plus significatif avait une magnitude de M 4.5 à 03:08 (TU). Au total, 36 séismes ont été enregistrés entre 02h15 et 17h48, avec des profondeurs comprises entre 0.8 et 7.1 km. Il n’y a actuellement aucun signe d’augmentation de l’activité volcanique dans la région et le tremor volcanique n’est pas apparu sur les instruments.
La dernière éruption du Bardarbunga a commencé en septembre 2014 et s’est terminée en février 2015.
Source: Icelandic Met Office.

—————————————

When it is not Katla, it is Bardarbunga that raises fears of a possible eruption ! The Icelandic Met Office (IMO) indicated today an earthquake swarm started in the Bardarbunga caldera at 02:15 UTC on September 7th, 2017 when an M 4.1 earthquake occurred. The largest event had a magnitude of M 4.5 at 03:08 UTC.  A total of 36 earthquakes were registered between 02:15 and 17:48 UTC, with depths between 0.8 and 7.1 km. There are currently no signs of increased volcanic activity in the area and no volcanic tremor has appeared.

The last eruption of this volcano started in September 2014 and ended in February 2015.

Source: Icelandic Met Office.

Source: Icelandic Met Office