La Tara Polar Station, une station polaire bientôt dans l’Arctique

Avec l’intensification du réchauffement climatique et la fonte de la banquise, les pôles intéressent de plus en, plus les scientifiques. Dans plusieurs notes dont celle du 16 mars 2021, j’expliquais que Jean-Louis Etienne était en train de lancer officiellement sa prochaine expédition à bord du Polar Pod autour du continent antarctique.

De son côté, la Fondation Tara Océan a dévoilé la Tara Polar Station, dont la première expédition est prévue en 2025. Il s’agit d’un laboratoire dérivant qui permettra d’étudier et analyser la biodiversité en Arctique. Une autre mission de la station sera d’anticiper les conséquences du changement climatique sur l’ensemble de la planète.

Vue de l’extérieur, la Tara Polar Station ressemblera un peu à un igloo posé sur la glace de l’océan Arctique. Sa structure ovale présente une superficie de 400 m2 sur quatre niveaux. En réalité, la Tara Polar Station est un navire, doté d’un moteur alimenté en biocarburant afin de limiter son empreinte carbone. Sa construction doit débuter à l’automne 2022 et s’achever en 2024. Sa mise en service officielle est prévue en 2025. .

La Tara Polar Station restera dans l’Arctique tout au long de l’année, ce qui permettra aux scientifiques d’étudier la variation de la biodiversité d’une saison à l’autre, en particulier entre le dégel de la glace en automne et la prolifération d’algues au printemps.

La Tara Polar Station mesurera également les gaz à effet de serre ainsi que la pollution au plastique et aux hydrocarbures. En effet, comme je l’ai indiqué à plusieurs reprises, l’Arctique se réchauffe environ deux fois plus vite que le reste de la planète.

Une autre mission de la Tara Polar Station sera de « prédire les bouleversements à venir, pour mieux s’y préparer ».

Toutes ces recherches seront menées sous pavillon français, dans le cadre de la « stratégie polaire française » dévoilée par l’Ambassadeur pour les pôles et les enjeux maritimes Olivier Poivre d’Arvor. Sur les 700 millions d’euros dédiée aux pôles et à la recherche scientifique jusqu’en 2030, 13 millions correspondent à l’investissement de l’État pour la Tara Polar Station.

L’équipage de la station sera constitué d’une douzaine de marins, scientifiques, techniciens de laboratoire, ingénieurs-mécaniciens et d’un médecin. Ils seront rejoints au cours de l’été par sept ou huit artistes et journalistes invités à bord.

Toutes les réparations devront être effectuées en autonomie, et l’ensemble des soins (traumatologie, gelures) seront assurés sur la station qui sera reliée en permanence à l’hôpital de Chamonix et à celui de Toulouse-Purpan. L’eau potable proviendra de la désalinisation de l’eau de mer.

La station polaire comptera aussi deux chiens pour la protection contre les ours lorsque les scientifiques devront s’aventurer hors de la station afin d’effectuer des mesures et des prélèvements.

Vous trouverez d’autres informations à propos de la mission de la Tara Polar Station en visitant le site Internet à cette adresse :

https://fondationtaraocean.org/goelette/tara-polar-station/

Vue d’artiste de la Tara Polar Station (Source: Fondation Tara Océan)

Formation des grands gisements de cuivre // Formation of major copper deposits

Un article paru sur le site de Futura Sciences nous apprend comment ce sont formés les grands gisements de cuivre dans le monde. Pour cela, il est fait référence à une nouvelle étude parue dans la revue Nature Communications Earth and Environment et qui nous explique les conditions nécessaires à la formation de tels gisements. On apprend qu’ils seraient associés à des éruptions ratées.

Le cuivre, en raison de ses propriétés thermiques et conductives, fait partie des métaux les plus utilisés de nos jours. Il n’est guère de semaine où la presse ne fait pas état de vols de dépôts de cuivre dont le prix ne cesse d’augmenter suite à l’importance de la demande. Cette hausse est loin d’être terminée car le cuivre représente un élément clé dans la transition énergétique voulue par de nombreux gouvernements. En effet, tous les systèmes électroniques et électriques présents dans les technologies « bas carbone » nécessitent, pour leur fabrication, de grandes quantités de cuivre.

Le secteur des transports est grand demandeur de cuivre, ce qui fait craindre une pénurie à l’horizon 2050, si aucune production secondaire issue du recyclage n’est mise en place à grande échelle.

Le cuivre se trouve à l’état naturel au sein des porphyres cuprifères. Ces dépôts sont formés par la circulation, au sein de la croûte terrestre, de fluides chauds produits lors du refroidissement des magmas. Le cuivre précipite à partir de ces fluides et se dépose sous la forme de porphyres entre 1 et 6 km de profondeur, à proximité des réservoirs magmatiques. L’étude précise que ce processus n’est pas instantané. Il faut des centaines de milliers d’années pour que ces dépôts se forment.

De récentes études ont permis de mieux définir les mécanismes de la genèse des porphyres cuprifères, mais également l’environnement tectonique et magmatique dans lequel ils se mettent en place. Ces dépôts semblent généralement associés à la production de magmas calco-alcalins caractéristiques d’arcs volcaniques qui se développent dans la croûte continentale au niveau de certaines zones de subduction.

Dans ce contexte, il apparaît que l’importance du dépôt de porphyre cuprifère va principalement dépendre de la quantité de fluide exsolvé par le magma qui va, elle-même, dépendre du volume de magma en train de refroidir. Cependant, l’accumulation de grandes quantités de magma dans la croûte ne garantit pas la formation de minerais de cuivre. D’autres paramètres entrent en jeu.

Dans la nouvelle étude mentionnée plus haut, des chercheurs se sont attelés à caractériser de manière plus précise les conditions permettant la formation de grands gisements de cuivre. Leurs résultats montrent que la formation des porphyres cuprifères est très dépendante du volume de magma, mais également de sa vitesse de transfert vers la croûte supérieure et le réservoir magmatique. La formation d’importants dépôts nécessite donc l’injection de grands volumes de magma avec une vitesse de remontée assez rapide, à un débit supérieur à 0,001 km3 par an.

Ce type de comportement magmatique est caractéristique des grandes éruptions qui surviennent habituellement en environnement de rift, de point chaud ou de subduction. Or, pour garantir la formation d’importants dépôts, il ne faut pas que ce système magmatique arrive jusqu’au stade de l’éruption. En effet, lorsqu’une éruption se produit, les fluides issus du magma et à partir desquels les porphyres cuprifères peuvent se former, vont être expulsés dans l’atmosphère au lieu de rester au sein de la croûte continentale.

Les auteurs de l’étude concluent donc que les plus abondants gisements de cuivre se forment lorsque ces grandes éruptions avortent. D’importants volumes de magma et de fluides restent ainsi stockés au sein de la croûte supérieure, ce qui permet la genèse de porphyre cuprifère. Ces nouvelles données vont permettre de mieux cibler les lieux de prospection, avec l’espoir de découvrir les nouveaux et vastes gisements de cuivre qui seront nécessaires à notre industrie dans un futur proche.

Vous trouverez l’article dans son intégralité en cliquant sur ce lien:

https://www.futura-sciences.com/planete/actualites/geologie-eruptions-ratees-sont-origine-importants-gisements-cuivre-98531/

——————————————-

An article published on the Futura Sciences website tells us how the large copper deposits in the world are formed. For this, reference is made to a new study published in the journal Nature Communications Earth and Environment and which explains the necessary conditions to the formation of such deposits. We learn that they are probably associated with failed eruptions.
Copper, due to its thermal and conductive properties, is one of the most widely used metals today. There is hardly a week when the press does not report thefts of copper materials whose price keeps rising due to the importance of demand. This rise is far from over because copper represents a key element in the energy transition advocated by many governments. Indeed, all the electronic and electrical systems present in « low carbon » technologies require, for their manufacture, large quantities of copper.
The transport sector is a major copper user, which raises fears of a shortage by 2050, if no secondary production from recycling is implemented on a large scale.
Copper is found naturally in copper-bearing porphyries. These deposits are formed by the circulation, within Earth’s crust, of hot fluids produced during the cooling of magmas. Copper precipitates from these fluids and is deposited in the form of porphyries between 1 and 6 km deep, near magmatic reservoirs. The study specifies that this process is not instantaneous. It takes tens of hundreds of thousands of years for these deposits to form.
Recent studies have made it possible to better define the mechanisms of the genesis of copper-bearing porphyries, but also the tectonic and magmatic environment in which they are set up. These deposits seem generally associated with the production of calco-alkaline magmas characteristic of volcanic arcs which develop in the continental crust at certain subduction zones.
In this context, it appears that the importance of the copper porphyry deposit mainly depends on the quantity of fluid exsolved by the magma which will, itself, depend on the volume of magma in the cooling process. However, the accumulation of large amounts of magma in the crust does not guarantee the formation of copper ores. Other parameters come into play.
In the new study mentioned above, researchers set out to characterize more precisely the conditions allowing the formation of large copper deposits. Their results show that the formation of copper-bearing porphyries largely depends on the volume of magma, but also on its speed of transfer to the upper crust and the magmatic reservoir. The formation of large deposits therefore requires the injection of large volumes of magma with a fairly rapid ascent rate, at a rate greater than 0.001 km3 per year.
This type of magmatic behaviour is characteristic of large eruptions that usually occur in rift, hotspot, or subduction environments. However, to guarantee the formation of large deposits, this magmatic system must not reach the stage of eruption. Indeed, when an eruption occurs, the fluids from the magma and from which the copper-bearing porphyries can form, will be expelled into the atmosphere instead of remaining within the continental crust.
The authors of the study therefore conclude that the most abundant copper deposits are formed when these large eruptions abort. Large volumes of magma and fluids thus remain stored within the upper crust, which allows the genesis of copper-bearing porphyry. These new data will make it possible to better target prospecting sites, with the hope to discover the new and vast copper deposits that will be necessary for our industry in the near future.
You can find the article in its entirety (in French) by clicking on this link:

https://www.futura-sciences.com/planete/actualites/geologie-eruptions-ratees-sont-origine-importants-gisements-cuivre-98531/

Vue panoramique de la mine de cuivre de Chuquicamata, à 2 850 mètres d’altitude au Chili. Située à proximité de Calama, c’est en volume extrait la plus grande mine de cuivre à ciel ouvert au monde. La cavité géante mesure 4,5 kilomètres de long, 3,5 kilomètres de large, avec une profondeur de 850 mètres. Par la taille, c’est la deuxième mine à ciel ouvert la plus profonde au monde, après celle de Bingham Canyon dans l’Utah aux États-Unis. J’ai été particulièrement impressionné par la taille des camions et celle de leurs roues. Tout est gigantesque dans cette mine. (Photo: Wikipedia).

Exploration de la dorsale médio-atlantique // Exploring the Mid-Atlantic Ridge

L’Organisation des Nations Unies a mis en place des journées internationales. Ainsi, en juin 2022, il y a eu la journée des parents, de la bicyclette, de la langue russe… Vous trouverez la liste complète avec de lien: https://www.un.org/fr/observances/list-days-weeks

Le 8 juin 2022 était la Journée mondiale des océans, afin de mieux faire connaître l’immense masse d’eau salée qui couvre environ 71% de la surface de la Terre. Cependant, le plancher océanique reste l’un des endroits les plus mal connus de notre planète. Comme je le dis souvent, nous connaissons mieux la surface de Mars que les abysses de nos océans. Il est vrai que les couleurs des corps célestes sont plus fascinantes et font davantage rêver que l’obscurité complète des fonds marins.
De mai à août 2022, une mission d’exploration océanique de la NOAA – « Journey to the Ridge 2022 » (Voyage sur le Dorsale) – explorera une section mal connue de la dorsale médio-atlantique (DMA) au nord et autour des Açores. Ces neuf îles forment une région autonome du Portugal à la jointure des plaques nord-américaine, eurasienne et africaine. Les Açores sont l’expression du volcanisme de point chaud, bien qu’il diffère considérablement du point chaud observé à Hawaii.
Avec une longueur nord-sud de 16 100 km le long de l’Atlantique, la DMA est la plus longue chaîne de montagnes au monde et l’une des quatre principales dorsales qui donnent naissance à une nouvelle croûte océanique. De ce fait, la DMA est le site d’une activité volcanique et sismique intense. Dans certaines zones de la DMA, des bouches hydrothermales spectaculaires apparaissent souvent là où le magma fournit de la chaleur au cours de son ascension vers le fond marin.
Ces bouches, appelées aussi fumeurs noirs, servent d’habitat à de nombreuses communautés biologiques qui se développent grâce à des réactions chimiques qui remplacent la lumière du soleil. Cependant, on sait peu de choses sur la vie sur ces sites une fois que les bouches hydrothermales cessent leur activité, ou sur la vie qui se trouve au-delà des bouches, le long de la zone de faille. Les expéditions passées ont permis de découvrir de nouvelles espèces, inconnues auparavant.
L’expédition « Journey to the Ridge » fait partie d’un important programme d’exploration océanique pluriannuel et multinational axé sur l’amélioration des connaissances et de la compréhension de l’océan Atlantique Nord.
L’océan Atlantique Nord joue un rôle essentiel pour l’humanité car il fournit des ressources biologiques et géologiques, produit des fruits de mer et régule le climat; c’est aussi une voie de commerce et de voyage entre l’Europe et les Amériques. Avec la mondialisation, la nécessité de comprendre, conserver, gérer et défendre les ressources océaniques est devenu une priorité.
Le véhicule télécommandé (ROV) de la NOAA est capable d’atteindre des profondeurs allant de 250 à 6 000 m. Au cours des plongées, les chercheurs exploreront les habitats de coraux et d’éponges en eau profonde, d’éventuelles bouches d’hydrothermales, des systèmes de sulfures polymétalliques éteints, les zones de rift, ainsi que la colonne d’eau.
Source : HVO.

——————————————–

June 8th, 2022 was World Oceans Day, a day to appreciate the huge body of saltwater that covers about 71% of the Earth’s surface. However, the ocean floor remains one of the most poorly understood places on our planet. As I put it quite often, we know the surface of Mars better than the abysses of our oceans. It is true that the colours of space bodies are more fascinating than the complete darkness of the deep ocean floor.

From May to August 2022, a NOAA Ocean Exploration mission called “Journey to the Ridge 2022” will explore a poorly explored section of the Mid-Atlantic Ridge (MAR) north of and around the Azores Islands. These nine islands are an autonomous region of Portugal that sits at the triple junction boundary that separates the North American, Eurasian and African Plates. These volcanic islands are the expression of hotspot volcanism, though it differs significantly from the Hawaiian hotspot.

Spanning the north-south length of the Atlantic Ocean and stretching over 16,100 km, the MAR is the longest mountain range in the world and one of four major spreading ridges that create new oceanic crust. The MAR is the site of volcanic activity and frequent earthquakes. In other areas of the MAR, spectacular hydrothermal vents often form where magma provides heat as it rises to the seafloor.

These vents, called black smokers,are known to support diverse biologic communities that thrive on chemical reactions that replace the sunlight at the bottom of the ocean. However, little is known about life at these sites once vents go extinct, or what life lies beyond the vents, further away from the rift zone. Past expeditions have resulted in the discovery of new species, unseen before.

The « Journey to the Ridge » expedition is a part of a major multi-year, multi-national ocean exploration program focused on raising collective knowledge and understanding of the North Atlantic Ocean.

The North Atlantic Ocean plays a pivotal role to humankind, providing biological and geological resources, seafood production and climate regulation and a route for trade and travel between Europe and the Americas. With increased globalization, efforts to understand, conserve, manage and defend the maritime commons have become an essential shared responsibility.

The dives with the remotely operated vehicle (ROV) may span depths ranging from 250 to 6,000 m deep. During dives, the researchers expect to explore deep-sea coral and sponge habitats, potential hydrothermal vent and extinct polymetallic sulfide systems, fracture and rift zones, and the water column.

Source: HVO.

Carte bathymétrique de la dorsale médio-atlantique (Source: Wikipedia)

Image du robot télécommandé (ROV) « Deep Discoverer » qui sera utilisé au cours de la mission « Voyage to the Ridge 2022 ». (Crédit photo: NOAA)

Nouvelles mesures sur le Kilauea (Hawaii) // New measurements on Kilauea Volcano (Hawaii)

Alors que l’éruption sommitale du Kilauea se poursuit dans le cratère de l’Halema’uma’u, les géologues du HVO sont impliqués dans deux projets qui devraient leur permettre de mieux comprendre comment fonctionne le volcan, ainsi que le déroulement de l’éruption et l’effondrement du sommet du Kīlauea en 2018.
Les deux projets qui débuteront cet été mettent en jeu le transport aérien d’une boucle de fil oblongue d’une part, et l’enfouissement de bobines de fil d’autre part. La zone cible est l’ensemble du Kilauea, depuis la pointe orientale de Kumukahi au sud-ouest, jusqu’à Punaluʻu. Les deux projets détermineront la distribution des résistivités électriques sous la surface, ce qui peut être utilisé pour cartographier le magma. Le projet aéroporté cartographiera également les variations du champ magnétique pour déterminer dans quelle mesure le champ terrestre est présent dans les minéraux magnétiques du Kilauea.
Le premier projet consistera à enfouir des électrodes et des bobines de fil à faible profondeur pour mesurer l’énergie électromagnétique (EM) générée par la foudre autour de l’équateur. Les orages accompagnés de foudre sont courants dans les régions équatoriales. Ils produisent un bruit électromagnétique constant qui se déplace autour du globe dans l’atmosphère entre la surface de la Terre et l’ionosphère. La réponse de la Terre à cette stimulation EM distante peut indiquer aux géologues les propriétés électriques de la Terre sous les bobines à des profondeurs d’environ 10 km. Le système, d’une surface d’un mètre carré, sera déplacé vers quelque 125 emplacements au sol sur le volcan. Les données obtenues serviront à mettre au point une image détaillée du fonctionnement interne de Kilauea. Cette étude s’étalera sur deux saisons : la première en 2022 durant les mois de mai et juin; la deuxième à l’été 2023.
La deuxième partie du projet utilisera une boucle de fil de forme ovale de 15 m par 25 m suspendue à 30 m sous un hélicoptère survolant la majeure partie du volcan.

 

Source: USGS

La boucle transmettra et recevra de l’énergie EM à très basse fréquence et devra voler à 35–50 m au-dessus du sol ou de la cime des arbres. Un petit capteur mesurera également l’intensité du champ magnétique. Il s’agit de cartographie électromagnétique et magnétique aéroportée (AEM).
Les données AEM permettront d’obtenir une image de la structure peu profonde (600 m de profondeur) du volcan, y compris les eaux souterraines et les schémas d’altération causés par les fluides hydrothermaux comme ceux qui se sont infiltrés dans le lac d’eau de l’Halema’uma’u en 2019-2020. Le champ magnétique terrestre le long de la trajectoire de vol permettra de cartographier également la signature du dyke qui a acheminé le magma vers le district de Puna en 2018. Cette partie du projet est également prévue au cours des mois de juin et juillet 2022.
Les survols actuels ne concernent aucune zone résidentielle ni aucune autre région interdite par la Federal Aviation Administration (FAA) ou le Parc national des volcans d’Hawaï. En revanche, les prochains vols auront lieu de jour et seront coordonnés avec la FAA. Des pilotes expérimentés spécialement formés pour le vol à basse altitude piloteront l’hélicoptère. Aucun des instruments utilisés pendant le projet ne présente de risque pour la santé des personnes ou des animaux.
L’AEM et le champ magnétique terrestre ont été cartographiés pour la dernière fois en 1978 sur le Kilauea et le Mauna Loa. Les résultats ont montré que l’East Rift Zone du Kilauea présentait une forte aberration de champ magnétique typique des dykes verticaux qui alimentent d’innombrables éruptions latérales à partir de la zone sommitale.
L’équipement et le logiciel utilisés pour ces projets ont été beaucoup améliorés au cours des 20 dernières années et les géophysiciens qui supervisent le projet actuel ont utilisé avec succès les nouvelles techniques pour cartographier d’autres volcans aux Etats Unis. La finalité du projet en cours est de produire une image de l’ensemble du système magmatique du Kilauea.
Source : USGS, HVO.

A noter que l’étude aéroportée du volcan a déjà été mise en oeuvre sur le Piton de la Fournaise (Ile de la Réunion). Voir ma note du 22 décembre 2019:

https://claudegrandpeyvolcansetglaciers.com/2019/12/22/nouvelle-approche-de-lile-de-la-reunion-et-son-volcan-new-approach-of-reunion-island-and-its-volcano/

———————————————–

While the summit eruption of Kilauea is continuing within Halema’uma’u Crater, HVO geologists are involved in two projects that will help scientists better understand how the volcano works and how the 2018 eruption and collapse of Kīlauea summit happened.

The two projects that will start this summer employ flying an oblong wire loop and burying wire coils. The target area is the entire volcano of Kilauea, from the eastern point of Kumukahi southwest almost to Punaluʻu. Both project will determine the distribution of electrical resistivities below the surface, which can be used to map magma. The airborne project will also map variations in the magnetic field to determine how well the Earth’s field is frozen into Kīlauea’s magnetic minerals.

The first project will deploy electrodes and wire coils buried at shallow depths to passively measure the electromagnetic (EM) energy generated by lightning strikes around the equator.. Lightning storms are common in equatorial regions and those storms produce surprisingly constant electromagnetic noise that travels around the globe in the atmosphere between the Earth’s surface and the ionosphere. The response of the earth to this distant EM stimulation can tell geologists the electrical properties of the earth below the coils to depths of about 10 km. The one-square-meter setup will be moved to about 125 ground locations on the volcano. The resulting data will be used to develop a detailed picture of Kilauea’s inner workings. This study will be done over two field seasons with the first season in 2022 during the months of May and June. The second season will be in the summer of 2023.

The second part of the project will use a 15 by 25 m oval-shaped wire loop suspended 30 m beneath a helicopter flying over most of the volcano. (see image above) The loop assembly will transmit and receive very low frequency EM energy and will need to be flown 35–50 m above the ground or treetops. A small sensor will also be measuring magnetic field strength. The technique is called airborne electromagnetic and magnetic (AEM) mapping.

AEM data will allow imaging of the shallow (upper 600 m) structure of the volcano including groundwater and patterns of alteration caused by hydrothermal fluids like those that seeped into Halemaʻumaʻu water lake in 2019–2020. Earth’s magnetic field along the flight path will also map the signature of the cooling dike that transported magma to lower Puna in 2018. This part of the project is also scheduled for 2022 in the months of June and July.

Currently planned flight lines do not fly over any residential areas or other regions excluded by the Federal Aviation Administration (FAA) or Hawaiʻi Volcanoes National Park. Flights will occur during daylight hours and be coordinated with the FAA. Experienced pilots specially trained and approved for low-level flying will operate the helicopter. None of the instruments in either part of the project pose a health risk to people or animals.

AEM and Earth’s magnetic field were last mapped in 1978 over both Kilauea and Mauna Loa. The 1978 results showed that Kilauea’s East Rift Zone was clearly outlined by a strong magnetic field aberration typical of vertical dikes that fed countless eruptions laterally from the summit area.

The equipment and software have been much improved in the past 20 years and the geophysicists overseeing the current project have successfully used the technique to map other US volcanoes. Their hope is now to produce a picture of the entire magmatic system of Kilauea.

Source: USGS, HVO.

It should be noted that the airborne technology was already used on Piton de la Fournaise (Reunion Island). See my post of December 22nd, 2019:

https://claudegrandpeyvolcansetglaciers.com/2019/12/22/nouvelle-approche-de-lile-de-la-reunion-et-son-volcan-new-approach-of-reunion-island-and-its-volcano/

Vue de la zone couverte par la campagne de mesures ‘Source: HVO)