Le soulèvement de l’Antarctique // Antarctica’s uplifting

Une étude publiée le 21 juin 2018 dans la revue Science révèle que le substrat rocheux sous l’Antarctique se soulève beaucoup plus vite qu’on le pensait, à raison d’environ 41 millimètres par an, probablement en raison de l’amincissement de la glace qui se trouve au-dessus. En effet, à mesure que la glace fond, son poids et sa pression sur la masse rocheuse diminuent. Avec le temps, lorsque d’énormes quantités de glace disparaissent, le substratum rocheux se soulève, poussé par le manteau visqueux sous la surface de la Terre. C’est un phénomène qui a été baptisé rebond isostatique par les scientifiques.
Ce soulèvement du substrat rocheux de l’Antarctique est à la fois une bonne et une mauvaise nouvelle. La bonne nouvelle, c’est que ce soulèvement du substrat rocheux pourrait stabiliser la calotte glaciaire. La mauvaise nouvelle, c’est qu’il a faussé les mesures satellitaires montrant la perte de glace qui a probablement été sous-estimée d’au moins 10%.
Le substrat rocheux de l’Antarctique est difficile à étudier parce qu’il est en grande partie recouvert d’une épaisse couche de glace; D’après la NASA, l’Antarctique contient environ 90% de toute la glace de la Terre, de sorte que sa fonte intégrale pourrait entraîner une hausse d’environ 60 mètres du niveau des océans. Pour mesurer les changements intervenus sur le continent, les chercheurs ont installé six stations GPS en différents points de l’Amundsen Sea Embayment (ASE), une vaste échancrure littorale de la Baie d’Admundsen, de la taille du Texas. Ils ont placé les capteurs GPS dans des endroits où le substrat rocheux était accessible, ce qui a permis de recueillir des données à une résolution spatiale de 1 km, plus élevée que celle obtenue dans des études antérieures.
Les scientifiques s’attendaient à voir un lent rebond isostatique. Au lieu de cela, ils ont constaté qu’il était environ quatre fois plus rapide que prévu. C’est le plus rapide jamais enregistré dans des zones glaciaires. Les résultats laissent supposer que le manteau sous-jacent est très réactif lorsque le poids important de la glace s’amoindrit, ce qui entraîne un soulèvement rapide du substrat.
Le soulèvement du substrat rocheux est certes le résultat de la perte de glace au cours du siècle dernier, mais cette perte de glace continue de nos jours à une vitesse inquiétante sous l’effet du changement climatique induit par l’homme. La quantité de glace qui a disparu du continent antarctique depuis 1992 a provoqué une élévation du niveau de la mer d’environ 8 mm. Les scientifiques de la NASA ont récemment prédit que le West Antarctic Ice Sheet (WAIS) – inlandsis antarctique occidental – pourrait disparaître entièrement dans les 100 prochaines années, entraînant une élévation du niveau de la mer de près de 3 mètres.
Les chercheurs font remarquer  que la fonte de l’Antarctique occidental pourrait avoir un aspect positif. Le soulèvement du substrat rocheux sous cette région pourrait permettre de stabiliser la calotte glaciaire et empêcher sa disparition totale, en dépit du réchauffement climatique qui affecte la planète.
Le point négatif, c’est que les estimations de la perte de glace en Antarctique dépendent des mesures satellitaires qui peuvent être affectées par des changements de masse significatifs. Les mesures risquent donc d’être faussées, avec des marges d’erreur pouvant atteindre jusqu’à 10 pour cent.
Source: Live Science.

———————————————–

A study published on June 21st, 2018 in the journal Science reveals that the bedrock under Antarctica is rising more swiftly than ever recorded — about 41 millimetres upward per year, probably due to the thinning of the ice above. Indeed, as ice melts, its weight on the rock below lightens. And over time, when enormous quantities of ice have disappeared, the bedrock rises in response, pushed up by the flow of the viscous mantle below Earth’s surface, a phenomenon called post-glacial rebound or isostatic rebound.

This uplifting is both bad news and good news for the frozen continent. The good news is that the uplift of supporting bedrock could make the remaining ice sheets more stable. The bad news is that in recent years, the rising earth has probably skewed satellite measurements of ice loss, leading researchers to underestimate the rate of vanishing ice by as much as 10 percent.

Antarctica’s bedrock is difficult to study because most of it is covered by thick layers of ice; the continent’s ice sheet cover holds about 90 percent of all the ice on Earth, containing enough water to elevate sea levels worldwide by about 60 metres, according to NASA. To measure how it was changing, the researchers installed six GPS stations at locations around the Amundsen Sea Embayment (ASE), a region of the ice sheet roughly the size of Texas, that drains into the Amundsen Sea. They placed the GPS monitors in places where bedrock was exposed, gathering data at a spatial resolution of 1 km, higher than any recorded in prior studies.

The scientists expected to see some evidence of slow uplift in the bedrock over time. Instead, they saw that the rate of the uplift was about four times faster than anticipated from ice-loss data. The velocity of the rebound in the ASE was one of the fastest rates ever recorded in glaciated areas. The findings suggest that the mantle underneath is fast-moving and fluid, responding rapidly as the heavy weight of ice is removed to push the bedrock upward very quickly.

The bedrock uplift is a result of ice loss over the past century, but ice continues to vanish from parts of Antarctica at a dramatic rate, spurred by human-induced climate change. The amount of ice that has vanished from the continent since 1992 caused about 8 mm of sea level rise. And scientists recently predicted that the West Antarctic Ice Sheet (WAIS) could collapse entirely within the next 100 years, leading to sea level rise of up to nearly 3 metres.

But the researchers suggest that there may be a ray of hope for the weakening WAIS. The deforming bedrock under Antarctica, buoyed by a fluid mantle, could provide an unexpected source of support for the WAIS. In fact, the bedrock’s uplift could stabilize the WAIS enough to prevent a complete collapse, even under strong pressures from a warming world.

There’s a downside to the scientists’ findings, too. Estimates of ice loss in Antarctica depend on satellite measurements of gravity in localized areas, which can be affected by significant changes in mass. If the bedrock under Antarctica is rapidly adjusting in response to ice loss, its uplift would register in gravity measurements, compensating for some ice loss and obscuring just how much ice has truly disappeared by about 10 percent.

Source : Live Science.

Source: NOAA

Publicités

Si l’Öræfajökull (Islande) entrait en éruption… // If Öræfajökull erupted in Iceland…

L’Öræfajökull est un volcan sous-glaciaire dans le sud-est de l’Islande. Il est entré deux fois en éruption dans les temps historiques, en 1362 et en 1728. L’éruption en 1362 a provoqué la destruction d’une région connue sous le nom de Litla-Hérað et la cendre volcanique a atteint l’Europe occidentale. Plus de 40 ans se sont écoulés avant que les gens s’installent à nouveau dans la région connue aujourd’hui sous le nom d’Öræfi, ou terre désertique.
Il n’y a actuellement aucun signe qu’une éruption est imminente, mais il y a une dizaine de mois, un regain d’activité a été observé au niveau de l’Öræfajökull. Une hausse de la sismicité a été détectée, ainsi que le creusement d’une dépression à la surface de la glace dans la caldeira, et la présence dans une rivière glaciaire de gaz provenant d’une activité géothermale. À cette époque, on a considéré que l’activité sous l’Öræfajökull était en hausse par rapport aux décennies précédentes.
Selon le Met Office islandais, l’activité sismique  sous l’Öræfajökull a diminué et s’est stabilisée au cours des derniers mois. Les mesures hydrologiques et géochimiques montrent des valeurs stables. Des mesures effectuées à la fin du mois de mars ont indiqué que la production de chaleur due à l’acticité géothermale sous la caldeira avait considérablement diminué. Au final, il n’y a aucun signe d’une éruption imminente.
Toutefois, si une éruption majeure devait se produire sur l’Öræfajökull, elle pourrait paralyser le trafic aérien en Europe pendant plusieurs jours. Tout le monde a encore en tête l’éruption de l’Eyjafjallajökull en avril 2010. Elle a bloqué le trafic aérien en Europe pendant plusieurs jours et a empêché des millions de passagers d’atteindre leur destination. L’éruption a causé la plus grande perturbation du trafic aérien depuis la Seconde Guerre mondiale et entraîné des pertes estimées à 5 milliards de dollars avec plus de 100 000 vols annulés.

Un groupe de chercheurs de l’Université d’Islande a établi deux scénarios d’éruption pour l’Öræfajökull en se basant sur des événements historiques, afin de prévoir les impacts possibles d’éruptions plus importantes que celles survenues sur l’Eyjafjallajökull. Les deux scénarios ont été modélisés en s’appuyant sur les conditions météorologiques de l’éruption de 2010. Le modèle NAME, modèle de dispersion de la cendre mis au point par le VAAC (Volcanic Ash Advisory Centre) de Londres, a été utilisé pour simuler les nuages ​​de cendre dans les deux scénarios.
1) Le premier scénario décrit des éruptions à répétition de l’Eyjafjallajökull avec un volume de cendre similaire à celui de 2010, mais suppose que la durée totale de l’éruption est de six mois, soit quatre fois plus longue qu’en 2010. Des éruptions de cette durée sont possibles, comme l’a montré la dernière éruption dans l’Holuhraun qui a débuté à la fin de l’été 2014 et s’est poursuivie pendant six mois. Un tel scénario aurait principalement un impact sur le trafic aérien à basse altitude et affecterait essentiellement les décollages et les atterrissages.

2) Le deuxième scénario décrit une éruption de l’Öræfajökull en se basant sur l’éruption de 1362, l’une des plus grandes éruptions en Islande depuis l’arrivée des premiers colons. Le scénario propose une importante émission de cendre sur une période assez courte. Il montre qu’une émission de cendre d’une telle ampleur paralyserait le trafic aérien en Europe, affecterait les vols à toutes les altitudes et interromprait tout le trafic pendant plusieurs jours. Les effets de l’éruption dans ce scénario pourraient même atteindre l’Atlantique Nord où elle affecterait également le trafic maritime, comme pendant l’éruption de 1362: A cette époque l’éruption a provoqué l’accumulation d’une épaisse couche de pierre ponce à la surface de l’océan. Un événement de ce genre de nos jours pourrait nuire au trafic maritime et à la pêche.

L’étude sur une possible éruption de l’Öræfajökull montre que «l’infrastructure de gestion des risques qui s’appuie sur les événements de 2010 peut donner une fausse impression de sécurité à l’industrie aéronautique et à d’autres secteurs. […] Des années après cet événement très perturbateur, le manque de sensibilisation au risque d’éruptions accompagnées de cendre volcanique en Europe est flagrant et est en partie dû à des lacunes dans l’échange d’informations entre les différents secteurs. Un plan alternatif est nécessaire. Lorsque les aéronefs ne peuvent pas décoller, le transport des passagers et des marchandises doit être transféré vers les routes, les voies ferrées et les voies maritimes afin de réduire les problèmes et les pertes économiques. Un effort commun des différents secteurs est nécessaire pour anticiper les problèmes et pour établir des plans d’urgence alternatifs.  »
Source: Iceland Review.

————————————————

Öræfajökull is an ice-covered volcano in South East Iceland. It has erupted twice in historical times, in 1362 and in 1728.  The eruption in 1362 caused the distruction of a district known as Litla-Hérað and volcanic ash travelled as far as to western Europe. More than 40 years passed before people settled in the area now known as Öræfi which means wasteland.

There are no signs of an imminent eruption, but about ten months ago some unrest was detected in Öræfajökull. Elevated seismicity was detected, as well as the development of a depression in the ice surface within the caldera, and the presence of geothermal gases from a glacial river. At that time, geothermal activity beneath Öræfajökull was assessed to be high relative to previous decades.

According to the Iceland Met Office, seismic activity at Öræfajökull has declined and been stable over the past months. Hydrological and geochemical measurements show stable values. Measurements in late March indicated that the geothermal heat output beneath the cauldron had diminished significantly. On the whole, there are no signs of an imminent eruption.

If a major eruption were to occur in Öræfajökull, this could paralyse all air traffic across Europe for days on end. Everybody has in mind the Eyjafjallajökull eruption in April 2010 which wreaked international havoc. It halted air traffic in Europe for several days and prevented millions of passengers from reaching their destinations. The eruption led to the greatest disruption of air traffic since World War II and caused an estimated worldwide loss of 5 billion dollars with over 100,000 flights cancelled.

A research group at the University of Iceland has formulated two eruption scenarios for Öræfajökull based on historical events to predict possible impacts of eruptions larger than the one that occurred in Eyjafjallajökull. Both scenarios were modelled around the weather conditions from the 2010 eruption. The NAME model, an ash dispersion model used by the London Volcanic Ash Advisory Centre (VAAC), was used to simulate the ash clouds in the eruption scenarios.

1) The first scenario describes recurring eruptions of the Eyjafjallajökull volcano with an ash volume similar to the event in 2010, but assumes a total eruption time of six months, four times longer than in 2010. Eruptions of this duration are feasible, like during the recent eruption in Holuhraun which began in late summer 2014 and continued for six months. This scenario would mostly impact air traffic at low altitudes, affecting take-offs and landings.  2) 2) The second scenario, an eruption in Öræfajökull, is based on the volcano’s eruption in 1362, one of the largest eruptions in Iceland since the settlement. It describes a large ash emission over a rather short period of time. It reveals that such an enormous ash eruption would paralyse air traffic in Europe, affect flights at all altitudes and halt all air traffic for several days. The effects of the eruption in this scenario could even reach across the North Atlantic. Not only would such an eruption affect air traffic, it would also impact maritime traffic, as indicated by records from the 1362 eruption: the eruption caused a thick layer of pumice to collect on the surface of the ocean. An event of this kind today could hinder shipping traffic and fishing.

According to the study about a possible Öræfajökull eruption, “the risk management infrastructure that is based on the parameters of the events in 2010 can provide a false sense of security to the aviation industry and to other sectors. […] Years after the highly disruptive event, the lack of risk awareness of volcanic ash eruptions in Europe is remarkable and is partly due to gaps in information exchange between sectors. An alternative plan is needed. When aircraft cannot take off, the transportation of passengers and goods needs to be transferred to roads, rail and sea passages to reduce inconvenience and economic loss. A call for a communal effort of different sectors is needed in anticipation of what lies ahead and for establishing alternative contingency plans.”

Source: Iceland Review.

Modélisation de la dispersion de cendre pour l’EyjafjallaJôkull et pour l’Öræfajökull (Source: Université d’Islande)

La fonte de l’Antarctique (suite) // Antarctica is melting (continued)

Une étude publiée le 13 juin 2018 dans la revue Nature révèle que l’Antarctique fond plus de deux fois plus vite aujourd’hui qu’en 2012. La vitesse à laquelle le continent perd sa glace s’accélère, ce qui contribue encore davantage à la hausse du niveau de la mer.
Entre 60 et 90% de l’eau douce du monde est stockée sous forme de glace dans les calottes glaciaires de l’Antarctique, un continent dont la taille est celle des États-Unis et du Mexique réunis. Si toute cette glace fondait, elle ferait s’élever le niveau de la mer d’environ 60 mètres.
Le continent est en train de fondre si vite qu’il entraînera une hausse de 15 centimètres du niveau de la mer d’ici 2100. C’est l’estimation haute des prévisions du Groupe Intergouvernemental  d’Experts sur l’Evolution du Climat (GIEC) concernant la hausse des océans avec la contribution de l’Antarctique.
Le responsable de la nouvelle étude explique qu’à Brooklyn, un quartier de New York, il y a des inondations une fois par an, mais avec une élévation de la mer de 15 centimètres, de telles inondations se produiraient 20 fois par an.
Ce qui préoccupe les scientifiques, c’est l’équilibre entre la quantité de neige et de glace qui s’accumule en Antarctique au cours d’une année donnée et la quantité qui disparaît. Entre 1992 et 2017, le continent a perdu trois mille milliards de tonnes de glace. Cela a conduit à une augmentation du niveau de la mer d’un peu plus de 7 millimètres, ce qui ne semble pas beaucoup. Le problème, c’est que 40% de cette augmentation est survenue au cours des cinq dernières années de la période d’étude, de 2012 à 2017, avec un taux de perte de glace qui a augmenté de 165%.
L’Antarctique n’est pas le seul contributeur à l’élévation du niveau de la mer. Chaque année, entre 2011 et 2014, le Groenland a perdu 375 milliards de tonnes de glace. De plus, à mesure que les océans se réchauffent, leurs eaux se dilatent et occupent plus d’espace, ce qui augmente également le niveau de la mer. La fonte des glaces et le réchauffement des eaux sont principalement causés par les émissions anthropiques de gaz à effet de serre.
La dernière étude a permis de dissiper certaines incertitudes liées aux différences régionales en Antarctique. On sait que l’Antarctique occidental et la Péninsule Antarctique perdent plus de glace que l’Antarctique oriental. En Antarctique de l’Est, l’image est restée longtemps confuse car la couche de glace gagnait de la masse certaines années et en perdait pendant d’autres. De ce fait, l’Antarctique de l’Est a parfois servi de référence aux personnes qui nient le réchauffement climatique. La région, qui représente les deux tiers du continent, est très difficile d’accès et les données sont plus rares parce qu’il y a moins de stations de mesure. Les chercheurs doivent donc extrapoler une petite quantité de données sur une superficie équivalente à celle des Etats-Unis, ce qui rend l’analyse moins précise. Pour contourner ce problème, plus de 80 chercheurs du monde entier qui ont participé à la dernière étude ont collecté des données fournies par une douzaine de mesures satellitaires différentes datant du début des années 1990. Au vu de ces données, ils ont conclu que les changements observés en Antarctique de l’Est étaient insuffisants pour compenser la perte rapide observée dans l’Antarctique de l’ouest et la Péninsule Antarctique.
Les chercheurs qui ont participé à l’étude ont effectué des calculs similaires il y a cinq ans, en utilisant 20 ans de données, mais ils ont été incapables de tirer des conclusions probantes, sauf que l’Antarctique semblait perdre de la masse à un rythme constant. Ils ont découvert l’accélération de la perte de glace lorsqu’ils ont refait les calculs, mais cette fois en prenant en compte cinq années supplémentaires de données. Ils ont eu la preuve d’une accélération considérable de la perte de glace au cours des cinq dernières années
Les progrès des satellites d’observation de la Terre ont permis aux chercheurs de mieux comprendre les régions polaires. De nombreux chercheurs pensaient que les régions polaires ajoutaient de la glace grâce au réchauffement du climat parce que les températures plus chaudes entraînent plus d’humidité dans l’atmosphère, donc plus de pluie et, selon eux, plus de neige aux pôles. L’observation directe des satellites a permis de montrer que cette approche était inexacte. Les chercheurs craignent que les informations fournies par les satellites soient en péril dans les années à venir puisque les budgets proposés par l’administration Trump prévoient une réduction de certains programmes d’observation de la Terre.
Les observations par satellite montrent la véritable cause de la perte de glace en Antarctique. La dernière étude révèle qu’il y a une plus grande perte de masse en bordure de la calotte glaciaire, là où elle est en contact avec l’océan dont l’eau se réchauffe et fait fondre la glace. Cela confirme d’autres études qui ont montré que les glaciers de l’Antarctique fondent par en dessous en raison de la température croissante des eaux océaniques.
Source: Presse internationale.

————————————————

A study published on June 13th, 2018 in the journal Nature reveals that Antarctica is melting more than twice as fast as in 2012. The continent’s rate of ice loss is speeding up, which is contributing even more to rising sea levels.

Between 60 and 90 percent of the world’s fresh water is frozen in the ice sheets of Antarctica, a continent roughly the size of the United States and Mexico combined. If all that ice melted, it would be enough to raise the world’s sea levels by roughly 60 metres.

The continent is now melting so fast that it will contribute15 centimetres to sea-level rise by 2100. That is at the upper end of what the Intergovernmental Panel on Climate Change (IPCC) has estimated Antarctica alone could contribute to sea level rise this century.

The leader of the new study explains that around Brooklyn there is flooding once a year or so, but with a sea rise of 15 centimetres, this is going to happen 20 times a year.

What concerns scientists is the balance of how much snow and ice accumulates on Antarctica in a given year versus the amount that is lost. Between 1992 and 2017, the continent lost three trillion tons of ice. This has led to an increase in sea levels of roughly 7 millimetres, which does not seem much. But 40 percent of that increase came from the last five years of the study period, from 2012 to 2017, when the ice-loss rate accelerated by 165 percent.

Antarctica is not the only contributor to sea level rise. Greenland lost an estimated 1 trillion tons of ice between 2011 and 2014. Moreover, as oceans warm, their waters expand and occupy more space, also raising sea levels. The melting ice and warming waters have all been primarily driven by human emissions of greenhouse gases.

The study also helps clear up some uncertainty that was linked to regional differences in Antarctica. West Antarctica and the Antarctic Peninsula have been known to be losing more ice than East Antarctica. In East Antarctica the picture has been muddled as the ice sheet there gained mass in some years and lost mass in others.

East Antarctica has sometimes been a focus of attention for people who deny the science of global warming. The region, which makes up two-thirds of the continent, is a remote region where data is scarcer because there are fewer measurement stations.. Researchers must extrapolate a smaller amount of data over an area the size of the United States, which can make the analysis less precise. To get around those problems in this study, more than 80 researchers from around the world collected data from about a dozen different satellite measurements dating to the early 1990s. The researchers concluded that the changes in East Antarctica were not nearly enough to make up for the rapid loss seen in West Antarctica and the Antarctic Peninsula.

The researchers in the new study ran similar calculations five years ago, using 20 years of data, but were unable to say much except that Antarctica seemed to be losing mass at a steady rate. They discovered the acceleration in the rate of ice loss when they did the calculations again, this time with an additional five years of data. Thus, they had the proof of a considerable loss of ice during the last five years.

Advancements in Earth-observing satellites have enabled researchers to better understand the polar regions. Many researchers once thought the polar regions would add ice as the climate warmed, because warmer temperatures lead to more moisture in the atmosphere, which leads to more rain, and, they thought, more snow at the poles. Direct observation from satellites upended that view. However, researchers fear that future knowledge from satellites is at risk as budgets proposed by the Trump administration have called for a reduction in some Earth observation programs.

The satellite observations show what is driving the loss of ice in Antarctica. The latest study reveals that there is a greater loss of mass along the edges of the ice sheet, where the ice sheet is making contact with the ocean, and that the warming oceans are melting the ice. This confirms other studies which showed that Antarctica’s glaciers are melting from below due to the increasing temperature of ocean water.

Source: International press.

Source: NOAA

Kilauea (Hawaii): Quand l’éruption finira-t-elle ? // When will the eruption come to an end ?

Quand l’éruption finira-t-elle? C’est la question à laquelle seule Madame Pele est capable de répondre. Bien sûr, les scientifiques qui étudient actuellement l’éruption du Kilauea tireront de nombreuses leçons des événements qu’ils ont pu observer au sommet et sur l’East Rift Zone. Ils ont à leur disposition des technologies de pointe qui n’existaient pas pendant les éruptions de 1924, 1955 et 1960. Le HVO existe depuis plus de 100 ans et les techniques de surveillance du Kilauea ont beaucoup évolué. Les volcanologues ont utilisé de nouvelles méthodes pour évaluer la profondeur du lac de lave de l’Halema’uma’u, ou encore la hauteur des panaches et les particules de cendres. Les drones ont été essentiels à la cartographie des coulées de lave. Cette éruption marque probablement l’arrivée des drones en volcanologie grâce à leur capacité de collecter des données dans des zones dangereuses et inaccessibles. En plus, ils sont relativement bon marché et ne mettent pas des personnes en danger.
Cependant, même avec toutes ces nouvelles technologies et tous les scientifiques mobilisés pour étudier l’éruption du Kilauea, beaucoup de questions restent sans réponse, au moins pour l’instant.
Si la hausse de l’activité sismique, les déformations du sol et d’autres paramètres peuvent alerter les scientifiques sur l’imminence d’une éruption, les prévisions à plus long terme restent impossibles. Comme l’a dit un volcanologue: « Il est très difficile d’étudier un volcan et de prévoir la date de sa prochaine éruption, tout comme il est impossible de prévoir les séismes. On peut examiner le comportement d’un volcan dans le passé et voir à quelle fréquence il est entré en éruption, mais nous ne savons pas vraiment ce qui se passe sous terre.  »
La question que tout le monde se pose à l’heure actuelle est la suivante: Quand cessera l’éruption du Kilauea?
L’étude des éruptions les plus récentes peut fournir quelques indices. Les événements majeurs qui se sont produits sur l’East Rift Zone en 1840, 1955 et 1960 ont duré respectivement 26 jours, 88 jours et 36 jours. La journée d’aujourd’hui marque le 41ème anniversaire de la sortie de la lave dans les Leilani Estates. La plus longue des trois éruptions précédentes a duré un peu moins de trois mois. La plus longue éruption sommitale a duré 70 ans. L’éruption qui se déroule actuellement à Puna est très différente et la plupart des scientifiques pensent qu’il est peu probable qu’elle dure aussi longtemps.
Une évaluation approximative du volume de lave émis par l’éruption actuelle a été proposée au vu de la zone couverte le 5 juin. On estime que le volume de lave dans les Leilani Estates avait alors atteint 84,5 millions de mètres cubes, ce qui est inférieur aux éruptions de 1840 (205 millions de mètres cubes), de 1955 (87,6 millions de mètres cubes) et de 1960 (113,2 millions de mètres cubes). Il y a certes une marge d’erreur dans le chiffre proposé pour l’éruption actuelle, mais la quantité de lave émise – au moins jusqu’à présent – est loin des impressionnants volumes précédents.
Le magma de l’éruption actuelle est probablement issu du point chaud qui alimente habituellement les volcans hawaiiens et il ne peut pas être exclu que l’éruption des Leilani Estates donne naissance à une nouvelle bouche qui serait active sur le long terme, comme l’a été le Pu’u O’o. Cependant, ce n’est qu’une simple hypothèse, car personne ne sait comment évoluera l’éruption en cours.
Adapté d’un article dans le Honolulu Star Advertiser.

—————————————————-

When will the eruption come to an end? This is the question only Madame Pele is able to answer. Sure, scientists studying the current eruption of Kilauea will learn a lot from the events at the summit and along the East Rift Zone. They are benefiting from advanced technologies that were not available during corresponding events in 1924, 1955 and 1960. The Hawaiian Volcano Observatory has existed for more than 100 years and the technology has changed tremendously with new ways to monitor Kilauea. For instance, scientists have been using new techniques to track the depth of the Halemaumau lava lake, plume heights and ashfall particles. Drones have been essential to mapping lava flows. This eruption may be really the coming of age of drone technology being able to collect data from dangerous and inaccessible areas relatively cheaply and with minimal danger to people.

However, even with all the advanced science and staff mobilized to document and study the Kilauea eruption, many questions about the volcano will remain unanswered, at least for now.

Although increased seismic activity, ground movement and other signs can alert scientists to imminent eruptions, longer-term forecasts are still impossible. As one volcanologist put it: “It’s very difficult to look at a volcano and put a date on a calendar when it will erupt next, just like it’s impossible to predict earthquakes. You can look at what it’s done in the past and how frequently it’s erupted, but we don’t really know what’s going on underground.”

The most pressing question at the moment is: When will Kilauea stop erupting?

Studying previous eruptions most similar to the current one may provide some clues. Major East Rift Zone events in 1840, 1955 and 1960 lasted 26 days, 88 days and 36 days, respectively. Today marks the 40th day since lava emerged in the Leilani Estates. The longest of those three previous eruptions lasted just shy of three months. The longest eruption at the summit lasted 70 years. The current one down in Puna is very different, and most scientists think it is unlikely to last that long.

A rough calculation has been made of the volume of lava produced by the current eruption, based on the area covered as of June 5th. It is estimated the Leilani Estates flows put out 84.5 million cubic metres of lava, less than the eruptions of 1840 (205 million cubic metres), 1955 (87.6 million cubic metres) and 1960 (113.2 million cubic metres). The margin of error is big, but at least so far the amount of lava is far from the impressive previous volumes.

Magma is probably still being supplied from the hotspot and it cannot be excluded that the Leilani Estates eruption will become a new long-term vent, like Pu’u O’o. However, this is just a simple hypothesis as nobody knows about the future of the current eruption.

Adapted from an article in the Honolulu Star Advertiser.

Crédit photo: USGS

Kilauea (Hawaii): S’agit-il d’une nouvelle éruption ? // Is it a new eruption ?

Depuis le début de l’éruption actuelle dans la Lower East Riift Zone le 3 mai 2018, je me demande s’il s’agit de la continuation de l’éruption du Pu’uO’o qui a commencé le 3 janvier 1983, ou s’il s’agit d’une nouvelle éruption. Les scientifiques de l’USGS se posent eux aussi la question et débattent sérieusement pour savoir si l’éruption dans les Leilani Estates est distincte de celle du Pu’u O’o. Cela signifierait que la très longue éruption du Pu’uO’o s’est terminée le 3 mai 2018!
Selon l’USGS, l’éruption de 1983 du Pu’u O’o représente la plus longue et la plus volumineuse effusion de lave dans l’East Rift Zone du Kilauea en plus de 500 ans. La lave a recouvert les secteurs de Kapaahu, Royal Gardens et Kalapana .
Les scientifiques de l’USGS sont à peu près certains qu’il s’agit d’une nouvelle éruption car le Pu’u O’o ne montre aucun nouveau signe d’activité. On enregistre encore un peu de déflation au niveau du cône, signe que celui-ci continue à se vider, mais il ne semble pas qu’un nouveau magma soit revenu dans cette zone.
On se souvient que l’éruption du Pu’u O’o a commencé le 3 janvier 1983, jour où des fractures se sont ouvertes dans l’East Rift Zone du Kilauea. Dans les mois qui ont suivi, l’éruption s’est concentrée sur une bouche unique qui, par accumulation de matériaux produite pas d’impressionnantes fontaines de lave, a donné naissance au cône baptisée Pu’u O’o. La lave de cette éruption a atteint l’océan le 28 novembre 1986, après avoir recouvert une partie de la Highway 130. Cette route, qui devient Chain of Craters Road, est maintenant en train d’être rouverte pour servir de voie d’évacuation en cas d’intensification de l’éruption dans les Leilani Estates.
Un autre fait confirme que l’éruption actuelle est nouvelle. En plus d’être alimentée par la lave du Pu’uO’o, elle reçoit la lave du sommet du Kilauea, comme le montre la vidange rapide du de l’Overlook Crater dans l’Halema’uma’u. Toute la zone sommitale du Kilauea avait connu une longue phase d’inflation au cours des derniers mois. Sous l’effet de la pression et de la gravité, le Pu’uO’o a été le premier à laisser échapper sa lave, immédiatement suivi par l’Overlook Crater car ces deux sites sont reliés dans le réseau d’alimentation du Kilauea.
Que l’éruption actuelle soit nouvelle ou non, elle est alimentée par la lave en provenance de la chambre magmatique superficielle du Kilauea dont le volume est inconnu. Les éruptions précédentes montrent que cette chambre stocke d’énormes volumes de magma. L’éruption actuelle peut donc durer encore plusieurs semaines, voire plusieurs mois.

—————————————

Since the beginning of the current eruption in the Lower East Riift Zone on May 3rd, I have been asking myself : Is it a continuation of the Pu’uO’o eruption thet began on January 3rd, 1983, or is it a new eruption ? USGS scientists are seriously debating whether the Leilani Estates eruption should be declared a “new” eruption that is distinct from the Pu’u O’o eruption. This would mean that the very long Pu’uO’o eruption ended on May 3rd, 2018!

According to USGS, the Pu’u O’o eruption ranks as the longest and most voluminous known outpouring of lava from Kilauea Volcano’s East Rift Zone in more than 500 years, and over the decades it covered the communities of Kapaahu, Royal Gardens and Kalapana.

USGS scientists are pretty much ready to call this a new eruption as Pu’u O’o doesn’t show any sign of activity at all. There is still a bit of deflation happening at the cone, a sign that lava may be draining out of the area, but it does not seem like magma will return to that area.

One can remember that the Pu’u O’o eruption began on January 3rd, 1983, when fissures opened on Kilauea’s East Rift Zone, and in the months that followed the eruption became focused at a single vent. During the next three years, a series of lava fountains built a cone of cinder and lava spatter that was dubbed Pu’u O’o. Lava from this eruption first reached the ocean on November 28th, 1986, after covering a portion of Highway 130. That highway, which becomes Chain of Craters Road, is now being reopened as an evacuation route to help cope with the Leilani Estates eruption.

Another fact confirms that the current eruption is a new one. Beside being fed by the lava from Pu’uO’o, it is also fed by lava from Kilauea’s summit, as shown by the rapid drainage of the Overlook Crater within Halema’uma’u. The whole summit area of Kilauea had been inflating during the past months. Due to the magma pressure and gravity, Pu’uO’o let go its lava first and was immediately followed by the Overlook Crater as the two vents are connected through the Kilauea feeding network.

Whether or not the current eruption is a new one, it is fed by lava from Kilauea’s shallow magma chamber whose volume is unknown. Previous eruptions show it stores huge volumes of magma. The current eruption may last several weeks or even months.

Réseau d’alimentation du Kilauea (Source: USGS)

Le Pu’uO’o en 1983 (Crédit photo: USGS)

Le Pu’uO’o vidé de sa lave le 5 mai 2018 (Crédit photo: USGS)

Cratère du Pu’uO’o en 2011 (Photo: C. Grandpey)

Lac de lave dans le cratère du Pu’uO’o en 2007 (Photo: C. Grandpey)

Le lac de lave du Nyiragongo (République Démocratique du Congo // The lava lake at Nyiragongo Volcano (DRC)

Le Nyiragongo fait partie des volcans les plus actifs au monde et il possède un lac de lave permanent. Lors d’une conférence à la réunion annuelle de la Seismological Society of America en mai 2018, des scientifiques ont présenté les différentes méthodes de surveillance du niveau du lac de lave.
Les chercheurs analysent les signaux sismiques et infrasonores générés par le volcan ainsi que les données recueillies par les satellites pour mesurer les fluctuations du niveau du lac de lave du Nyiragongo. Lors de l’éruption de 2002, qui a provoqué une crise humanitaire majeure, le lac s’est vidangé et la profondeur du gouffre laissé par l’évacuation de la lave a été estimée entre 600 et 800 mètres. Environ quatre mois après l’éruption, le cratère a recommencé à se remplir de nouveau. De nos jours, le plancher du cratère se trouve à environ 400 mètres en dessous de la lèvre et le lac de lave reste à un niveau élevé.
Le niveau du lac de lave est, entre autres, lié aux variations de pression à l’intérieur du système magmatique sous le volcan. En ce sens, le lac de lave représente une fenêtre sur ce système magmatique et les fluctuations de son niveau fournissent des informations sur les variations de l’alimentation.
Différentes techniques sont utilisées pour observer le lac de lave. Les données sismiques et infrasonores, collectées en continu, permettent aux chercheurs de mesurer les variations de pression dans l’activité magmatique. Au cours des dernières années, les nouvelles technologies ont permis à l’Observatoire Volcanologique de Goma de mettre en place l’un des systèmes de surveillance télémétrique en temps réel les plus performants d’Afrique. Grâce aux techniques de traitement modernes, ces nouvelles bases de données offrent des possibilités sans précédent pour étudier le comportement de ce système magmatique unique. En plus des données sismiques et infrasonores, les scientifiques utilisent les images radar à synthèse d’ouverture (RSO) à haute résolution capturées par des satellites lors de leur passage au-dessus du volcan pour mesurer directement les variations de niveau du lac de lave. Ces images mesurent la longueur de l’ombre projetée par le bord du cratère sur la surface du lac, ce qui permet de calculer la profondeur de la lave.
Source: Science Daily.

———————————————-

Nyiragongo is among the world’s most active volcanoes, with a persistent lava lake. In a talk at the 2018 Seismological Society of America annual meeting, there was a discussion about the multiple methods to monitor lava lake levels at the volcano.

The researchers analyze seismic and infrasound signals generated by the volcano as well as data collected during satellite flyovers to measure Nyiragongo’s lake level fluctuations. During the eruption in 2002, which caused a major humanitarian crisis, the lava lake was drained and the depth of the remaining crater was estimated between 600 and 800 metres. About four months after the eruption, the crater started filling up again. Nowadays, the inner crater floor is about 400 metres below the rim and the lava lake remains at high level.

The lava lake level is, among other things, related to the variations of the pressure inside the magmatic system underneath the volcano. In that sense, the lava lake represents a window into the magmatic system, and its level fluctuations provide information on the recharge and drainage of the magmatic system.

Different techniques are used to observe the lava lake. The seismic and infrasound data, collected continuously, help researchers gauge pressure changes in magmatic activity. Over the past few years, new technologies allowed the Goma Volcano Observatory to deploy one of the densest modern real-time telemetered monitoring systems in Africa. Combined with modern processing techniques, these newly acquired datasets provide unprecedented opportunities to investigate the behaviour of this unique magmatic system. In combination with seismic and infrasound data, the scientists are using high resolution synthetic-aperture radar (SAR) images captured by satellites passing over the volcano to directly measure the rise and fall of the lava lake level. These images measure the length of the shadow cast by the crater’s edge on the lava lake surface, which can be used to calculate the lava depth.

Source : Science Daily.

Lac de lave du Nyiragongo (Crédit photo: Wikipedia)

Les changements au sommet du Kilauea (Hawaii) vus depuis l’espace // The changes at the Kilauea summit (Hawaii) seen from space

Les images radar d’amplitude (SAR) ci-dessous ont été acquises par le système satellitaire Cosmo-SkyMed de l’Agence Spatiale Italienne et montrent les changements intervenus dans la caldeira du Kilauea entre le 5 mai à 6h12 (heure locale) – au-dessus – et le 17 mai à 6h12  – au-dessous.
Le satellite envoie un signal radar à la surface du sol et mesure la force de la réflexion. Les zones claires indiquent une forte réflexion et les zones sombres une faible réflexion. Les fortes réflexions proviennent de surfaces irrégulières ou de reliefs qui pointent en direction du radar, alors que les réflexions faibles proviennent de surfaces lisses ou de pentes inclinées à l’opposé du radar.

L’image du 17 mai a été acquise après deux petites explosions de la bouche éruptive (i.e. l’Overlook Crater) au sommet du volcan. Les principaux changements par rapport à l’image du 5 mai comprennent: (1) un assombrissement de la zone au sud de l’Halema’uma’u, qui peut correspondre à l’accumulation de cendre sur la période de 12 jours entre les images; (2) un agrandissement de la bouche éruptive sur le plancher de Halema’uma’u ; sa superficie est passée d’environ 48 500 mètres carrés le 5 mai à environ 137 000 mètres carrés le 17 mai; et (3) le creusement d’une petite dépression (d’environ 60 000 mètres carrés) au niveau de la lèvre est de l’Halema’uma’u qui traduit l’affaissement d’une partie de la lèvre vers le puits d’effondrement en train de s’agrandir sur le plancher du cratère.
Source: HVO.

——————————————-

The radar amplitude images below were acquired by the Italian Space Agency’s Cosmo-SkyMed satellite system and show changes to the caldera area of Kilauea Volcano that occurred between May 5th at 6:12 a.m. (local time) – above – and May 17th at 6:12 a.m. – below.

The satellite transmits a radar signal at the surface and measures the strength of the reflection, with bright areas indicating a strong reflection and dark areas a weak reflection. Strong reflections indicate rough surfaces or slopes that point back at the radar, while weak reflections come from smooth surfaces or slopes angled away from the radar.

The May 17th image was acquired after two small explosions from the summit eruptive vent. Major changes with respect to the May 5th image include: (1) a darkening of the terrain south of Halema‘uma‘u, which may reflect accumulation of ash over the 12-day period between the images; (2) enlargement of the summit eruptive vent on the floor of Halema‘uma‘u, from about 48 500 square metres on May 5th to about 137 000 square metres on May 17th; and (3) the development of a small depression (area of about 60 000 square metres) on the east rim of Halema‘uma‘u that reflects slumping of a portion of the rim towards the growing collapse pit on the crater floor.

Source: HVO.

Source: Agence Spatiale Italienne