L’officier romain d’Herculanum // Herculanum’s Roman officer

Un squelette retrouvé à Herculanum, que l’on pensait être celui d’un simple soldat, était probablement celui d’un officier supérieur de la marine envoyé dans la ville romaine lors de l’éruption du Vésuve.

Le squelette est l’un des quelque 300 découverts sur le site dans les années 1980. Une nouvelle analyse des objets trouvés à côté des ossements révèle que le soldat était en fait un officier de la marine romaine stationnée dans la baie de Naples et qui avait à sa tête Pline l’Ancien, commandant militaire et historien.

La découverte confirme que Pline a ordonné l’envoi d’une mission à Herculanum, qui, comme Pompéi, était en train d’être dévastée par l’éruption du Vésuve. L’officier essayait probablement de diriger de manière ordonnée l’évacuation de la zone côtière alors que des avalanches de matériaux volcaniques s’abattaient sur le site.

Les archéologues ont découvert sur le squelette un ceinturon en cuir décoré d’argent et d’or montrant qu’il s’agissait d’un soldat occupant un rang élevé. Il avait également une épée avec une poignée en ivoire et un poignard décoré. À côté du squelette on a trouvé un grand nombre de pièces de monnaie, dont 12 deniers en argent, indiquant qu’il était plus qu’un simple légionnaire. L’homme avait un sac à dos rempli d’outils de menuiserie indiquant qu’il était un faber navalis, le terme latin désignant les officiers à bord des navires militaires romains qui avaient des compétences en ingénierie et en menuiserie. Le squelette a été retrouvé non loin des restes d’un navire militaire, ce qui confirme cette hypothèse.

Quarante ans après la fouille de ce qui était avant 79 le littoral d’Herculanum, les archéologues vont entamer une nouvelle campagne de fouilles grâce au financement du Packard Humanities Institute, une fondation à but non lucratif qui contribue à la protection des vestiges de la ville romaine depuis 2001.

J’ai expliqué dans une note précédente (12 février 2021) que certains des 300 squelettes trouvés sur le site dans les années 1980 appartenaient à des personnes qui tentaient de s’abriter de l’éruption dans des hangars à bateaux le long du rivage, mais elles ont été incinérés par la chaleur extrême générée par l’éruption. Leurs crânes ont explosé et leurs chairs se sont vaporisées.

Source: The Telegraph.

———————————–

A skeleton found at Herculaneum, long thought to be that of a lowly soldier, was probably a senior naval officer sent on a daring mission by Pliny the Elder to save the inhabitants of the ancient Roman town during the eruption of Vesuvius.in 79 A.D..

The skeleton was one of around 300 found at the site in the 1980s.
Fresh analysis of the items found alongside the skeletal remains suggests that the soldier was actually an officer with the Roman fleet stationed in the Bay of Naples, which at the time was led by Pliny, a military commander and historian.

The discovery provides fresh evidence that Pliny ordered a mission to be sent to Herculaneum, which along with neighbouring Pompeii was being devastated by the eruption of the volcano

The officer was most likely directing the panic-stricken evacuation of the beach as volcanic debris rained down. Archaeologists have discovered that a leather belt found on the skeleton was decorated with silver and gold, suggesting he was of senior rank. He also had a sword with an ivory hilt and a decorated dagger. Next to the skeleton was found a large collection of coins, including 12 silver denarii, again indicating that he was more than just a low-ranking legionary.

The man had a knapsack which was packed with carpentry tools, indicating that he was a faber navalis, the Latin term for officers on board Roman military ships who had specialised engineering and carpentry skills. The skeleton was found not far from the remains of a military vessel, which confirms the hypothesis.

Forty years after Herculaneum’s ancient beach was excavated, archaeologists are to embark on a new dig with funding from the Packard Humanities Institute, a non-profit foundation which has helped protect the remains of the Roman town since 2001.

I explained in a previous post (12 February, 2021) that some of the 300 skeletons found at the site in the 1980s had tried to shelter from the eruption in boat sheds along the beach but were incinerated by the extreme heat generated by the eruption, which made their skulls explode and their flesh vaporize.

Source: The Telegraph.

Squelettes des personnes réfugiées sous les hangars à bateaux à Herculanum (Source: Wikipedia)

Vue des hangars à bateaux le long de la plage où de nombreux Romains ont été incinérés par la chaleur extrême générée par l’éruption (Crédit photo : Wikipedia)

Calibrage des gravimètres sur le Mauna Kea (Hawaii) // Calibrating gravimeters on Mauna Kea (Hawaii)

Un nouvel article publié par l’Observatoire des Volcans d’Hawaii, le HVO, nous explique comment la mesure de la gravité sur le Mauna Kea permet de surveiller le Mauna Loa. Au début de l’article, un scientifique conduit son 4X4 entre Hilo et le sommet du Mauna Kea avec deux gravimètres identiques à l’intérieur de son véhicule. Il s’arrête une demi-douzaine de fois au niveau de points de repère (benchmarks) installés depuis les années 1960. C’est ici qu’il va utiliser les deux gravimètres pour mesurer les variations d’intensité du champ de pesanteur.

Les gravimètres sont des instruments extrêmement précis capables de mesurer les variations de force gravitationnelle avec une précision de l’ordre du milligal [Le milligal, mgal, correspond à un millième de gal qui est l’unité CGS d’accélération (1 gal = 1 cm/s2)]. Cette force varie en fonction de la distance et de la quantité de masse entre l’instrument et le centre de la Terre. Tout comme la pression atmosphérique, elle varie en fonction de l’altitude. Plus on monte en altitude, plus on s’éloigne du centre de la Terre et plus la force gravitationnelle est faible. Cet effet d’élévation est la principale contribution aux changements de gravité mesurés sur le Mauna Kea. Les variations du champ de pesanteur ne sont pas aussi perceptibles que le changement d’atmosphère (il est difficile de respirer au sommet), mais une personne de taille moyenne pèse environ 150 grammes de moins – le poids d’une orange – au sommet du Mauna Kea que dans la ville de Hilo!

Depuis les années 1970,  les scientifiques mesurent les  petits changements de gravité (microgravité), variables avec le temps, sur le Mauna Loa et le Kilauea pour savoir si du magma s’accumule dans leurs réservoirs magmatiques. Cette intrusion magmatique ouvre et remplit souvent des fractures et / ou des espaces vides à l’intérieur de l’édifice volcanique, ce qui provoque une augmentation de la masse du volcan qui peut être mesurée avec un gravimètre.

La mesure de la gravité est un moyen de savoir ou de confirmer si l’inflation en cours, comme celle observée sur le Mauna Loa depuis 2014, est provoquée par l’arrivée d’un nouveau magma à l’intérieur du volcan. Comme indiqué précédemment, les gravimètres sont des appareils extrêmement précis et sensibles et ils nécessitent un étalonnage régulier. Comme l’effet principal mesuré provient des changements d’altitude, il est nécessaire de calibrer les gravimètres sur le Mauna Kea pour mesurer les changements provoqués par l’activité volcanique du Mauna Loa (4170 m). Le Mauna Kea (4207 m) convient parfaitement car il n’est pas influencé par l’activité volcanique étant donné que la dernière éruption du volcan remonte à plus de 4 500 ans.

Sans le Mauna Kea, les scientifiques du HVO devraient envoyer pour calibrage les gravimètres en Californie, avec le risque qu’ils soient endommagés pendant le voyage. La possibilité de calibrer les gravimètres du HVO sur Mauna Kea permet de concevoir un programme de surveillance gravimétrique pour mieux comprendre l’activité volcanique du Mauna Loa. Parallèlement à la déformation du sol et à la sismicité, les levés gravimétriques permettent de détecter la quantité de magma qui arrive lentement dans la chambre magmatique superficielle du Mauna Loa.

Source: USGS / HVO.

—————————————–

A new article released by the Hawaiian Volcano Observatory (HVO) explains us how measuring gravity on Mauna Kea helps monitor Mauna Loa. The Observatory starts the article with a scientist driving between Hilo and the summit of Mauna Kea with two identical gravimeters in his car. He stops approximately half a dozen times at a series of benchmarks established beginning in the 1960s. At these benchmarks, the scientist uses the two gravimeters to measure the variation of the force in gravity.

Gravimeters, essentially extremely precise pendulums, can measure a change in the force of gravity to one-in-one billionth of the force one can feel every day. This force varies based on the distance and the amount of mass between the instrument and the center of the Earth.

Just like atmospheric pressure, the force of gravity changes depending on altitude. The higher in elevation one goes, the farther away one gets away from the centre of the Earth, and the weaker the force of gravity. This elevation effect is the primary contribution to changes in gravity measured on Mauna Kea. The changes in gravity are not as noticeable as the change in the atmosphere (it’s hard to breathe at the summit), but the average person also weighs about one-third of a pound less – the weight of an orange – at the summit of Mauna Kea than in Hilo!

Since the 1970s, small changes in time-varying gravity (microgravity) have been measured on Mauna Loa and Kilauea, both active volcanoes, to determine whether magma is accumulating in their magma reservoirs. This intruding magma often opens and fills cracks and/or empty spaces, causing a net increase in the volcano’s mass that can be measured with a gravimeter.

Measuring the gravity is an independent way to confirm whether ongoing uplift, like that occurring at Mauna Loa since 2014, is from new magma intruding into the volcano.

The precision and sensitivity of the gravimeters make them extremely delicate, and they require regular calibration. As the dominant effect that is measured is from changes in elevation, the ability to measure volcanic changes on the high elevations of Mauna Loa (4,170 m) requires to calibrate the instruments over similar elevations on Mauna Kea where there is currently no influence from volcanic activity. The volcano’s last eruption was more than 4,500 years ago.

Without Mauna Kea, HVO scientists would have to send the gravimeters back to California to be calibrated, making them susceptible to damage on their long journey. The opportunity to calibrate HVO gravimeters on Mauna Kea provides the ability to design a gravity monitoring program to help understand volcanic unrest at Mauna Loa. Along with ground deformation and seismicity, future gravity surveys could help detect how much magma is slowly being supplied to Mauna Loa’s shallow magma storage system.

Source: USGS / HVO.

Vue du Mauna Loa et du Mauna Kea (Photo : C. Grandpey)

L’énergie des volcans sous-marins // The energy of submarine volcanoes

La plus grande partie de l’activité volcanique sur Terre se produit dans les profondeurs de nos océans, souvent à plusieurs kilomètres sous leur surface. Toutefois, contrairement aux volcans terrestres, la détection d’une éruption sur le fond marin se révèle souvent très difficile. Il reste encore beaucoup à apprendre sur le volcanisme sous-marin et ses effets sur le milieu environnant. Comme je l’ai souligné à plusieurs reprises, nous connaissons la surface de la planète Mars,  nous sommes capables d’y faire voler un hélicoptère, mais les abysses de nos océans, là où se produit le phénomène de subduction et où se déclenchent les séismes les plus meurtriers, restent inconnus.

Une nouvelle étude publiée dans Nature Communications explique que les volcans sous-marins en éruption au fond des océans peuvent générer une énergie extrêmement puissante. On croyait auparavant que les volcans sous-marins étaient beaucoup moins puissants que ceux sur terre en raison des coulées de lave relativement lentes qu’ils produisent. Toutefois, des submersibles déployés dans le nord-est du Pacifique ont fourni des données qui montrent que les volcans sous-marins peuvent libérer de puissants panaches – appelés méga panaches – qui distribuent des cendres volcaniques sur de grandes distances sous-marines. Les panaches sont poussés par des colonnes d’eau chauffée à haute température. Ils suivent les mêmes schémas que les panaches générés par les éruptions volcaniques sur terre. Ils se déplacent d’abord verticalement puis s’étalent horizontalement.

Les chercheurs estiment que les méga panaches produits par les grandes éruptions sous-marines produisent suffisamment d’eau pour remplir environ 40 millions de piscines olympiques. Cependant, leur source est restée longtemps ambiguë. La nouvelle étude est la première à relier le phénomène à l’émission de magma d’un énorme volcan sous-marin.

Pour mieux comprendre le processus des éruptions volcaniques sous-marines, les chercheurs ont proposé une simulation qui montre que l’énergie nécessaire pour générer de tels panaches de cendres est énorme. Les éruptions les plus puissantes peuvent libérer suffisamment d’énergie pour alimenter un continent. Le problème est de savoir comment exploiter cette énergie.

La nouvelle étude fournit la preuve que les méga panaches sont directement liés à l’émission de lave et sont responsables du transport des cendres volcaniques dans les profondeurs de l’océan. Les recherches montrent également que ces panaches peuvent se former en quelques heures en libérant une énorme quantité d’énergie.

À l’avenir, les scientifiques espèrent utiliser les technologies de télédétection pour observer en direct l’activité des volcans sous-marins afin de pouvoir mieux l’étudier.

Référence : « Rapid heat discharge during deep-sea eruptions generates megaplumes and disperses tephra » – Pegler, S. S., & Ferguson, D. J. – Nature Communications.

Source : The Watchers.

——————————————–

The majority of Earth’s volcanic activity occurs underwater, mostly at depths of several kilometres, but in contrast to terrestrial volcanoes, detecting that an eruption has occurred on the seafloor can be very difficult. There remains a lot to be done to learn about submarine volcanism and its effects on the marine environment. As I have pointed out several times, we know the surface of Mars, we are able to fly a helicopter there, but the abyss of our oceans, where the phenomenon of subduction occurs and where the the deadliest earthquakes are triggered,  remain unknown.

A new research published in Nature Communications explains that submarine volcanoes erupting at the bottom of the oceans can release extremely powerful energy, high enough to power a continent. It was previously believed that underwater volcanoes were much less powerful than those on land due to relatively slow-moving lava flows. Submersibles operated in the North East Pacific have released data which show that submarine volcanoes can release powerful and huge plumes called megaplumes, distributing volcanic ash across wide underwater distances. The plumes are formed by columns of heated water. They follow the same patterns as plumes generated by volcanic eruptions on land. The plumes move vertically first and then spread out horizontally..

The researchers estimate that the megaplumes produced by large underwater eruptions have enough water to fill about 40 million Olympic-sized swimming pools. However, their source have long remained ambiguous. The new research is the first to link the phenomenon with the release of magma from a huge submarine volcano.

To better understand the process of underwater volcanic eruptions, the researchers came up with a simulation, which showed that the release of energy needed to generate such expansive ash plumes was enormous. The largest eruptions could release energy high enough to power a continent. The problem is how to tap this energy.

The new study provides evidence that megaplumes are directly linked to the eruption of lava and are responsible for transporting volcanic ash in the deep ocean. It also shows that plumes can form in a matter of hours, creating an immense rate of energy release.

In the future, scientists hope to use remote-sensing technologies to livestream activity of underwater volcanoes as they are happening.

Reference : « Rapid heat discharge during deep-sea eruptions generates megaplumes and disperses tephra » – Pegler, S. S., & Ferguson, D. J. – Nature Communications.

Source : The Watchers.

Source : Wikipedia

Prévision éruptive : où en est-on ?

L’actualité volcanique a été particulièrement riche ces dernières semaines, avec quatre éruptions quasi simultanées sur la péninsule de Reykjanes en Islande, sur l’Etna  en Sicile, sur le Piton de la Fournaise à la Réunion et sur La Soufrière de St Vincent. Comment les scientifiques ont-ils appréhendé ces éruptions qui, pour le moment, n’ont fait aucune victime ? Il est vrai que trois d’entre elles sont effusives, avec un risque relativement faible pour la population. Il faut garder à l’esprit que la prévision éruptive ne revêt réellement de l’importance lorsque des populations sont menacées et qu’il s’agit de définir une stratégie pour les protéger.

Après beaucoup de questions et de tergiversations parmi les scientifiques islandais pour savoir si la sismicité enregistrée sur la péninsule de Reykjanes était due à la présence d’un dyke, et ensuite si le dyke allait donner naissance à une éruption, la lave a enfin percé la surface à 18h45 (heure locale) le 19 mars 2021. La zone de l’éruption, la Geldingadalur se situait loin des zones habitées et il a été relativement facile pour les autorités islandaises de gérer cet événement.

Un très grand nombre d’Islandais sont venus assister au spectacle. Plusieurs sentiers d’accès ont été mis en place au fur et à mesure de l’évolution des coulées de lave. Au bout de quelques jours, les scientifiques ont eu la surprise de voir de nouvelles bouches apparaître le long de la fracture éruptive, mais leur activité ne posait pas le moindre problème. Seuls les gaz auraient pu incommoder les personnes présentes, Il leur a été conseillé de veiller à avoir le vent dans le dos pour éviter tout désagrément. Contrairement au Piton de la Fournaise, « chaleur et toxicité des gaz »  n’ont tué personne en Islande. On a juste recensé quelques blessures (entorses, foulures, etc.) sans gravité.

Très peu de visiteurs étrangers ont pu observer l’éruption jusqu’à présent à cause des interdictions de circuler en vigueur dans de nombreux pays, mais aussi à cause des restrictions d’accès imposées par les autorités islandaises.

Au final, on peut dire que, s’agissant de l’éruption en cours,  la prévision éruptive n’a, pour le moment, qu’une importance très relative en Islande.

Crédit photo : http://www.ruv.is

Le Piton de la Fournaise (Ile de la Réunion) nous offre, lui aussi, une éruption effusive depuis le 9 avril 2021. Comme à l’accoutumée, elle se déroule dans l’Enclos Fouqué et aucune population n’est menacée. Là aussi, le prévision éruptive n’a qu’une importance relative. Il en irait différemment si la lave décidait de sortir de l’Enclos et menaçait des maisons, comme cela s’est déjà produit par le passé. Malgré tout, avec une éruption effusive comme celle-ci ou celle en Islande, le risque humain est quasiment nul. On l’a vu en 2018 avec l’éruption du Kilauea (Hawaii) qui a détruit plusieurs centaines de structures, sans faire de victimes.

L’OVPF fournit quotidiennement des informations  qui permettent de bien suivre le déroulement des événements. Deux randonneurs ont perdu la vie ces derniers jours, mais ils se trouvaient dans l’Enclos dont l’accès était interdit. La cause exacte de leur décès reste à déterminer.

Source : OVPF

Après une période calme, l’Etna (Sicile) semble vouloir reprendre du service. Une activité strombolienne anime à nouveau le Cratère SE. Allons-nous assister à une nouvelle série de « paroxysmes » ? L’INGV explique qu’il n’a pas la réponse. Tant que cette activité éruptive restera concentrée dans la zone sommitale du volcan, il s’agira juste d’un beau spectacle pour les yeux. Nous sommes particulièrement gâtés par les webcams dont certaines proposent de superbes images en streaming. La situation serait plus inquiétante si des coulées de lave menaçaient des bourgades sur les flancs du volcan, comme ce fut le cas pour Zafferana Etnea au cours de l’éruption de 1991-1994. Là encore, les dégâts seraient matériels et, sauf imprudence, aucune vie humaine ne serait en jeu.

La cendre volcanique est le seul problème pour la population qui est contrainte à manier le balai au moment des paroxysmes. C’est aussi un problème pour les agriculteurs car les plantations n’apprécient guère les dépôts de cendre. En fonction de la direction du vent, l’aéroport de Catane est parfois contraint d’arrêter ses activités mais, répétons le, des vies humaines ne sont pas menacées directement par une éruption de l’Etna, donc la prévision prend, là aussi, une importance relative.

Il en va différemment lorsqu’il s’agit d’un volcan explosif situé dans une zone de subduction, comme La Soufrière à St Vincent-et-les-Grenadines. Cela faisait plusieurs semaines que les scientifiques s’inquiétaient car on observait la croissance d’un dôme de lave dans le cratère du volcan, juste à côté de celui laissé par l’éruption de 1979. Personne ne savait comment ce dôme allait évoluer. Allait-il cesser de croître sans autre conséquence ? Allait-il continuer sa croissance et déborder du cratère en déclenchant des coulées pyroclastiques ? Allait-il exploser ? Personne n’avait la réponse. On savait que l’une de ces hypothèses était probablement la bonne, mais laquelle ? Prévision éruptive nulle !

Le 8 avril 2021, les scientifiques de l’Université des Antilles (UWI) en charge de la surveillance du volcan ont observé une très forte intensification de la sismicité. Ils ont alerté les autorités et il a été décidé – en appliquant le principe de précaution – d’évacuer la population dans la zone nord de l’île, celle qui était le plus sous la menace du volcan. La décision était la bonne car le 9 avril, un très volumineux panache de cendre s’échappait du cratère, avec des très importantes retombées de cendre.

On peut dire que les scientifiques de l’UWI ont eu beaucoup de chance car l’éruption aurait pu débuter plus rapidement et différemment, dès le 8 avril, avec des coulées pyroclastiques. La situation aurait alors pris une autre tournure au niveau humain. Par bonheur, les coulées pyroclastiques se sont produites plusieurs jours plus tard , et uniquement sue le versant ouest de La Soufrière.

Les dégâts causés par la cendre sont immenses et il faudra très longtemps pour que St Vincent retrouve une situation acceptable. Heureusement, l’aide internationale et celle des autres îles de la Caraïbe permettent d’amortir le choc.

Cela fait plusieurs jours que le volcan s’est calmé, mais l’UWI prévient que des sursauts d’activité restent possibles et demande à la population de rester très vigilante.

Quelque 13 000 personnes ont été déplacées par l’éruption. Environ  6 200 vivent dans des abris temporaires et doivent faire face aux problèmes habituels de promiscuité et de santé, en sachant que l’épidémie de Covid-19 n’arrange pas les choses.

On peut donc dire que, pour le moment – contrairement à l’éruption de 1902 et ses 1600 victimes – l’éruption de La Soufrière se passe sans perte humaine, en dépit des difficultés de la prévision éruptive sur ce type de volcan. Le principe de précaution a été mis en œuvre et c’est une sage décision.

Source : UWI

Viscosité du magma et prévision éruptive // Magma viscosity and eruptive prediction

Suite à l’éruption du Kilauea (Hawaii) en 2018, une nouvelle étude explique que la mesure précoce de la viscosité du magma pourrait aider à prévoir certaines éruptions volcaniques

L’éruption du Kilauea de 2018 a fourni aux scientifiques une occasion unique d’identifier de nouveaux facteurs permettant de prévoir le comportement du magma et les risques des futures éruptions ainsi que les dangers associés.

Une équipe de chercheurs de l’Université d’Hawaï a identifié un indicateur de viscosité du magma susceptible d’être mesuré avant une éruption. Leurs résultats ont été publiés dans la revue Nature.

Les auteurs de l’étude expliquent que les propriétés du magma à l’intérieur d’un volcan affectent le déroulement d’une éruption. En particulier, sa viscosité est un facteur majeur qui influence le degré de dangerosité d’une éruption pour les localités à proximité. Il est bien connu que les magmas très visqueux déclenchent des explosions plus puissantes car les gaz peuvent difficilement s’échapper, ce qui entraîne une accumulation de la pression à l’intérieur du système d’alimentation du volcan. De plus, l’extrusion d’un magma plus visqueux donne naissance à des coulées de lave plus lentes. A Hawaï, le magma sort à des températures très élevées, ce qui explique sa grande fluidité et que les coulées de lave parcourent parfois de très longues distances.

Les chercheurs ont remarqué que la viscosité du magma n’est généralement évaluée qu’après une éruption, pas avant. C’est pourquoi ils ont essayé d’identifier les premiers indices de viscosité du magma. L’événement de 2018 a débuté avec une première phase d’activité dans la Lower East Rift Zone du Kilauea. La première des 24 fractures éruptives s’est ouverte début mai et l’éruption s’est poursuivie pendant trois mois. Cette situation a permis aux scientifiques d’obtenir une foule d’informations. En particulier, ils ont obtenu de nombreuses données sur le comportement du magma à haute et basse viscosité, ainsi que sur les contraintes pré-éruptives qui se sont exercées dans le substrat rocheux sous le Kilauea.

On sait que l’activité tectonique et volcanique provoque la formation de failles dans la roche qui constitue la croûte terrestre. Lorsque les contraintes géologiques agissent sur ces failles, les géologues peuvent mesurer leur orientation 3D et leur mouvement en analysant la sismicité. En étudiant ce qui s’est passé dans Lower East Rift Zone du Kilauea en 2018, ils ont pu déterminer que la direction des mouvements des failles dans cette zone avant et pendant l’éruption pouvait être utilisée pour estimer la viscosité du magma pendant les périodes précédant l’activité volcanique. Les chercheurs ont ainsi pu montrer qu’avec une surveillance digne de ce nom, ils peuvent établir une relation entre la pression et les contraintes dans le système d’alimentation d’un volcan et le mouvement en profondeur d’un magma plus visqueux. Ils pensent que de telles analyses permettront de mieux anticiper le comportement éruptif de volcans comme le Kilauea et de prendre des mesures adaptées à la situation.

Source: West Hawaii Today.

[Remarque personnelle: S’agissant du Kilauea, le processus éruptif est assez bien connu et ne réserve guère de surprises. Comme le volcan se trouve sur un point chaud et est alimenté par du magma à très haute température en provenance du manteau terrestre, la lave est en général très fluide avec des coulées de lave qui parcourent de longues distances et peuvent être destructrices, comme on l’a vu lors de l’éruption de 2018. Sur d’autres volcans du monde qui ont des magmas plus différenciés, une telle étude pourrait présenter un intérêt certain pour anticiper le comportement éruptif.

Vous pourrez également lire le résumé de l’étude que j’ai effectuée sur le processus de refroidissement de la lave sur le Kilauea:

https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/]

——————————————

In the wake of Kilauea’s 2018 eruption in Hawaii, a new study explains that measuring magma viscosity early could forecast volcanic eruptions The 2018 Kilauea eruption provided scientists with a unique opportunity to identify new factors to help forecast the behaviour and associated hazards of future eruptions.

A team of researchers from the University of Hawaii identified an indicator of magma viscosity that can be measured before an eruption. Their findings were published in the journal Nature.

The authors of the study explain that the properties of the magma inside a volcano affect how an eruption will play out. In particular, its viscosity is a major factor in influencing how hazardous an eruption could be for nearby communities. It is well known that very viscous magmas are linked with more powerful explosions because they can block gas from escaping through vents, allowing pressure to build up inside the volcano’s plumbing system. Moreover, the extrusion of more viscous magma results in slower-moving lava flows. In Hawaii, magma comes out at very high temperatures, which accounts for its high fluidity and for lava flows travelling sometimes very long distances.

The researchers have noticed that magma viscosity is usually only quantified well after an eruption, not in advance. So, they have tried to identify early indications of magma viscosity that could help forecast a volcano’s eruption style.

The 2018 event included the first eruptive activity in Kilauea’s Lower East Rift Zone since 1960. The first of 24 fissures opened in early May, and the eruption continued for three months. This situation provided the scientists with unprecedented access to information. In particular, the event provided a wealth of simultaneous data about the behaviour of both high- and low-viscosity magma, as well as about the pre-eruption stresses in the solid rock underlying Kilauea.

It is known that tectonic and volcanic activity cause faults to form in the rock that makes up Earth’s crust. When geologic stresses cause these faults to move against each other, geoscientists measure the 3D orientation and movement of the faults using seismic instruments. By studying what happened in Kilauea’s Lower East Rift Zone in 2018, they determined that the direction of the fault movements in the lower East Rift Zone before and during the volcanic eruption could be used to estimate the viscosity of rising magma during periods of precursory unrest. The researchers were able to show that with robust monitoring that they can relate pressure and stress in a volcano’s plumbing system to the underground movement of more viscous magma. They think this will enable monitoring experts to better anticipate the eruption behaviour of volcanoes like Kilauea and to tailor response strategies in advance.

Source: West Hawaii Today.

[Personal note: As far as Kilauea is concerned, the eruptive process is fairly well known. As the volcano lies on a hotspot with magma coming at very high temperature from the Earth’s mantle, the lava is very fluid with long distance lava flows that can de destructive, as could be seen during the 2018 eruption. On other volcanoes in the world which have more differentiated magmas, a similar study could prove useful to predict the behaviour of the eruptions.

You can also read  the abstract of the study I made about the lava cooling process on Kilauea volcano: https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/]

Eruption 2018 du Kilauea (Fissure 8) [Crédit photo : HVO]

Photo : C. Grandpey

L’Islande va stocker le CO2 dans le basalte // Iceland is going to store CO2 in basalt

Dans une note rédigée le 17 juin 2016, j’expliquais qu’une équipe dirigée par des chercheurs de l’Université de Southampton avait participé au projet CarbFix, à côté d’une centrale géothermique dans la périphérie de Reykjavik. Cette centrale exploite une source de vapeur produite par le magma à faible profondeur, en sachant que du CO2 et des gaz soufrés d’origine volcanique sont émis en même temps que la vapeur. Le but est de capter le gaz et de le réinjecter dans le sous-sol. Le processus se fait avec un puits d’injection foré dans le soubassement basaltique. Les chercheurs séparent le dioxyde de carbone de la vapeur produite par la centrale et l’envoient vers un puits d’injection. Le dioxyde de carbone est injecté dans un tuyau qui de trouve lui-même logé à l’intérieur d’un autre tuyau rempli d’eau en provenance d’un lac situé à proximité. A plusieurs dizaines de mètres de profondeur, le dioxyde de carbone est libéré dans l’eau où la pression est si élevée qu’il se dissout rapidement. Ce mélange d’eau et de dioxyde de carbone dissous, qui devient très acide, est envoyé plus profondément dans une couche de roche basaltique où il commence à lessiver des minéraux comme le calcium, le magnésium et le fer. Les composants du mélange finissent par se recomposer et se minéraliser en roches carbonatées.

L’idée d’injecter du CO2 dans le substratum basaltique a fait son chemin depuis 2016 et la construction d’une installation de stockage et d’élimination du dioxyde de carbone – la première du genre au monde – est en passe de démarrer à Straumsvík, sur la Péninsule de Reykjanes. La structure, baptisée Coda Terminal, recevra du CO2 de l’Europe du Nord par bateau. Le projet devrait créer 600 emplois directs et indirects.

Le CO2 proviendra d’émetteurs industriels du nord de l’Europe et sera injecté dans le substrat basaltique où il se transformera rapidement en pierre grâce à la technologie Carbfix. En fonctionnement maximal, Coda Terminal pourra stocker chaque année 3 millions de tonnes de CO2.

En recevant du CO2 des pays voisins pour son stockage permanent dans le substrat basaltique, l’Islande joue un rôle de pionnier en Europe. Le CO2 sera acheminé par des navires spécialement conçus. Le transport du CO2 vers l’Islande est rendu possible par les faibles coûts associés au stockage sur la terre ferme. Coda Terminal sera le premier projet de stockage géologique à grande échelle en Europe à être réalisé sur la terre ferme. Dans une note publiée le 12 novembre 2020, j’avais indiqué que la Norvège avait l’intention de stocker le CO2 dans d’anciens gisements de gaz naturel sous la mer du Nord.

La technologie Carbfix sera par la suite utilisée pour transformer de façon permanente et en toute sécurité le CO2 en pierre, au plus profond du substrat rocheux basaltique. Coda Terminal pourra également stocker le CO2 en provenance des industries locales, ainsi que le CO2 capté directement dans l’air. La construction se fera en trois phases. Le forage des premiers puits est prévu pour 2022, avec pour objectif de démarrer l’exploitation en 2025 et d’atteindre la pleine capacité d’ici 2030.

Source: Iceland Monitor.

———————————

In a post written on June 17th, 2016, I explained that a team led by a University of Southampton researcher was involved in the CarbFix project, located next to a geothermal power plant outside Reykjavik. This plant basically taps a source of steam above Iceland’s shallow magma chambers, but some volcanic CO2 and sulfur gas come along with it. The goal is to capture that gas and stick it back underground. That’s done with an injection well drilled down into basalt bedrock. The researchers separate the carbon dioxide from the steam produced by the plant and send it to an injection well. The carbon dioxide gets pumped down a pipe that’s actually inside another pipe filled with water from a nearby lake. Dozens of metres below the ground, the carbon dioxide is released into the water, where the pressure is so high that it quickly dissolves. That mix of water and dissolved carbon dioxide, which becomes very acidic, gets sent deeper into a layer of basaltic rock, where it starts leaching out minerals like calcium, magnesium and iron. The components in the mixture eventually begin to mineralize into carbonate rocks.

The idea to inject CO2 into the basalt bedrock has worked its way since 2016 and preparations are underway for the construction of a carbon dioxide storage and disposal facility – the first of its kind in the world – in Straumsvík, on the Reykjanes peninsula.

The facility, Coda Terminal, will receive CO2 from Northern Europe by ship. It is expected to create 600 jobs, directly and indirectly.

The CO 2 will be sourced from industrial emitters in Northern Europe and will be injected into the basaltic bedrock where it rapidly turns into stone via the Carbfix technology. At full scale, the Coda Terminal will provide an annual storage amounting to three million tonnes of CO2.

By receiving CO2 from neighbouring countries for permanent mineral storage, Iceland takes a pioneering role within Europe. The Coda Terminal will receive CO2 transported by specifically designed ships. The transport of CO2 to Iceland is enabled by the low costs associated with onshore mineral storage. In fact, the Coda Terminal will be the first large scale geological storage project in Europe that is carried out onshore. In a post published on November 12th, 2020, I indicated that Norway intended to store CO2 in former natural gas fields under the North Sea.

The Carbfix technology will then be used to permanently and safely turn CO 2 into stone, deep in within the basaltic bedrock. The Terminal will also be able to store CO2 from local industries, as well as CO2 captured directly from the air.

Construction will be done in three phases. Drilling of the first wells is planned for 2022, with the aim of beginning operation in 2025 and reaching full capacity by 2030.

Source : Iceland Monitor.

Source : Carbfix

Prévision éruptive par les variations thermiques d’un volcan // Eruptive prediction through the thermal fluctuations of a volcano

On peut lire sur le site web The Watchers un article intéressant sur une nouvelle méthode imaginée par des scientifiques du Jet Propulsion Laboratory (JPL) de la NASA et de l’Université de l’Alaska (UA) et qui pourrait être utilisée pour essayer de prévoir les éruptions volcaniques.

Les volcanologues s’appuient en général sur des signes avant-coureurs tels que l’augmentation de l’activité sismique, des changements dans les émissions gazeuses et la déformation du sol pour dire qu’un volcan est susceptible d’entrer en éruption. Cependant, la prévision éruptive est difficile car chaque volcan possède un comportement qui lui est propre. La situation est d’autant plus complexe qu’un petit nombre de volcans actifs dans le monde possèdent des systèmes de surveillance dignes de ce nom.

À l’aide de données satellitaires, les scientifiques du JPL et de l’UA ont proposé une nouvelle méthode qui pourrait rendre la prévision volcanique plus fiable. Elle se base sur une augmentation subtile mais significative des émissions de chaleur autour d’un volcan dans les années qui précèdent une éruption. Cela permet de constater qu’un volcan s’est réveillé, souvent bien avant l’apparition des autres signes mentionnés ci-dessus.

L’équipe scientifique a analysé plus de 16 années de données sur le rayonnement thermique capté par les instruments MODIS (Moderate Resolution Imaging Spectroradiometer) à bord des satellites Terra et Aqua de la NASA sur plusieurs types de volcans qui sont entrés en éruption au cours des 20 dernières années. En dépit du fait que l’on a affaire à différents types de volcans, les résultats sont identiques. Dans les années précédant une éruption, la température de surface émise par la majorité des volcans a augmenté de 1°C par rapport à son état normal. Elle a ensuite diminué après chaque éruption.

Les scientifiques pensent que cette hausse de température peut résulter de l’interaction entre les systèmes hydrothermaux et les réservoirs magmatiques. Lors de l’ascension du magma à l’intérieur de l’édifice volcanique, les gaz se diffusent à la surface et peuvent dégager de la chaleur. De même, ce dégazage peut favoriser la remontée des eaux souterraines et la circulation hydrothermale, ce qui peut faire s’élever la température du sol.

Cette approche pourrait fournir de nouvelles informations sur le comportement des volcans, en particulier si on l’associe à des informations provenant d’autres satellites et  d’autres modèles. Les chercheurs ont découvert que les données thermiques se superposaient aux données semblables de déformation, mais avec un certain décalage dans le temps.

Bien que cette nouvelle méthode de prévision éruptive ne réponde pas à toutes les questions, elle ouvre la porte à de nouvelles approches de télédétection, en particulier pour les volcans isolés ou éloignés, souvent dépourvus de systèmes locaux de surveillance. .

Il faut noter que les mesures InSAR de déformation de la surface du sol permettent également aux observatoires volcanologiques du monde entier d’identifier les volcans les plus susceptibles d’entrer en éruption, ainsi que ceux qui devraient être instrumentés pour des observations plus approfondies.

Référence: « Large-scale thermal unrest of volcanoes for years prior to eruption » – Girona, T., et al. – Nature Geoscience.

————————————————-

One can read on the website The Watchers an interesting article about a new method that could be used to try and predict volcanic eruptions.

Scientists at NASA’s Jet Propulsion Laboratory (JPL) and the University of Alaska (UA) have developed a new method that may lead to earlier predictions of volcanic eruptions.

Up to now, volcanologists have referred to warning signs such as an increase in seismic activity, changes in gas emissions, and sudden ground deformation to say that a volcano was likely to erupt in the future. However, forecasting eruptions is difficult because each volcano displays its own behaviour. The situation is all the more complex as a small number of the world’s active volcanoes have monitoring systems in place.

Using satellite data, scientists at JPL and UA came up with a new method that might make volcanic prediction more reliable. It is is based on a subtle but significant increase in heat emissions over large areas of a volcano in the years leading up to its eruption. It allows to see that a volcano has reawakened, often well before any of the other signs have appeared.

The scientific team studied more than 16 years of radiant heat data from the Moderate Resolution Imaging Spectroradiometers (MODIS) instruments aboard NASA’s Terra and Aqua satellites for several types of volcanoes that erupted in the last 20 years. Despite the differences among the volcanoes, the results were the same. In the years leading up to an eruption, the radiant surface temperature over the majority of the volcanoes increased by 1°C from its normal state. Then, it decreased after each eruption.

Scientists believe that the thermal increase may result from the interaction between hydrothermal systems and magma reservoirs. When magma rises through a volcano, the gases diffuse to the surface and can give off heat. Similarly, this degassing can promote the up-flow of underground water and hydrothermal circulation, which can heat up soil temperature.

The new method may provide more insight into volcano behaviour, especially when combined with information from other satellites and models. The researchers found that the thermal time series very much mimicked the deformation time series but with some time separation.

Although the research does not answer all of the questions, it opens the door to new remote sensing approaches, especially for distant volcanoes which are devoid of local monitoring systems.

The InSAR ground-surface deformation measurements also help allow volcano observatories around the world to identify which volcanoes are most probably to erupt, as well as which should be instrumented for closer observations.

Reference : « Large-scale thermal unrest of volcanoes for years prior to eruption » – Girona, T., et al. – Nature Geoscience.

Image thermique du Parc National de Yellowstone (délimité en rouge). A gauche l’image du Parc en couleurs réelles. A droite l’image thermique avec les températures les plus élevées en blanc. (Source :  Goddard Space Flight Center de la NASA).

Yellowstone ne sera pas forcément le volcan le plus facile pour la détection des variations thermiques.