Une balise pour prévoir séismes, tsunamis et éruptions // A buoy to predict earthquakes, tsunamis and eruptions

Des géophysiciens de l’Université de Floride du Sud (USF) ont mis au point et testé avec succès une balise de haute technologie, utilisable en eau peu profonde, capable de détecter les moindres variations du plancher océanique, souvent annonciateurs de catastrophes naturelles dévastatrices, telles que les séismes, les tsunamis et les éruptions volcaniques.

Le système flottant, mis au point avec l’aide d’une subvention de 822 000 dollars allouée par la National Science Foundation, a été installé à Egmont Key dans le Golfe du Mexique en 2018 et a déjà livré des données sur le mouvement tridimensionnel du plancher océanique. Ainsi, il sera capable de détecter de petites variations de contrainte dans la croûte terrestre.
En attente de brevet, ce système de géodésie présente l’aspect d’une balise ancrée au fond de la mer et surmontée d’un GPS de haute précision. L’orientation de la balise est mesurée à l’aide d’une boussole numérique fournissant des informations sur le cap, le tangage et le roulis, ce qui permet de mesurer latéralement  les mouvements de la Terre et diagnostiquer les principaux séismes déclencheurs de tsunamis.
Bien que plusieurs autres techniques de surveillance des fonds marins soient actuellement disponibles, la technologie mise au point en Floride fonctionne généralement mieux dans les milieux océaniques profonds où les interférences sonores sont moindres. Les eaux côtières peu profondes (moins de quelques centaines de mètres de profondeur) constituent un environnement plus difficile à analyser, mais également important pour de nombreuses applications, notamment certains types de séismes dévastateurs. Les processus d’accumulation et de libération de contraintes au niveau de la croûte terrestre au large sont essentiels à la compréhension des puissants séismes et des tsunamis.
Le système flottant est relié au fond de la mer à l’aide d’un lest en béton et il a pu résister à plusieurs tempêtes, dont l’ouragan Michael dans le Golfe du Mexique. Le système est capable de détecter des mouvements du plancher océanique de seulement deux centimètres.
La technologie a plusieurs applications potentielles dans l’industrie pétrolière et gazière en mer et pourra être utilisée pour la surveillance de certains volcans. Toutefois, la principale application concerne l’amélioration de la prévision des séismes et des tsunamis dans les zones de subduction. Les puissants séismes et tsunamis qui ont frappé Sumatra en 2004 et le Japon en 2011 sont des événements que les scientifiques souhaiteraient mieux comprendre et prévoir.
Le système mis au point par l’Université de Floride est conçu pour les applications de zones de subduction de la Ceinture de Feu du Pacifique, où les processus d’accumulation et de libération de contraintes de l’écorce terrestre en mer sont actuellement mal connus. Les scientifiques espèrent pouvoir installer le nouveau système dans les eaux côtières peu profondes de l’Amérique Centrale, où se produisent souvent des tremblements de terre.
Le site d’Egmont Key où le système a été testé présente une profondeur de 23 mètres. Bien que la Floride ne soit pas sujette aux séismes, les eaux au large d’Egmont Key se sont avérées un excellent site de test. Ce lieu est exposé à de forts courants de marée qui ont permis de tester le système de correction de la stabilité et de l’orientation de la balise. La prochaine étape consistera à installer un système semblable dans les eaux plus profondes du Golfe du Mexique, au large de la côte ouest de la Floride.
Source: Université de Floride du Sud.

—————————————

University of South Florida (USF) geoscientists have successfully developed and tested a new high-tech shallow water buoy that can detect the small movements and changes in the Earth’s seafloor that are often a precursor to deadly natural hazards, like earthquakes, volcanoes and tsunamis.

The buoy, created with the assistance of an $822,000 grant from the National Science Foundation, was installed off Egmont Key in the Gulf of Mexico in 2018 and has been producing data on the three-dimensional motion of the sea floor.  Ultimately the system will be able to detect small changes in the stress and strain the Earth’s crust.

The patent-pending seafloor geodesy system is an anchored spar buoy topped by high precision Global Positioning System (GPS). The buoy’ orientation is measured using a digital compass that provides heading, pitch, and roll information – helping to capture the crucial side-to-side motion of the Earth that can be diagnostic of major tsunami-producing earthquakes.

While there are several techniques for seafloor monitoring currently available, that technology typically works best in the deeper ocean where there is less noise interference. Shallow coastal waters (less than a few hundred metres deep) are a more challenging environment but also an important one for many applications, including certain types of devastating earthquakes. Offshore strain accumulation and release processes are critical for understanding powerful earthquakes and tsunamis.

The experimental buoy rests on the sea bottom using a heavy concrete ballast and has been able to withstand several storms, including Hurricane Michael up the Gulf of Mexico. The system is capable of detecting movements as small as one to two centimetres.

The technology has several potential applications in the offshore oil and gas industry and volcano monitoring in some places, but the big one is for improved forecasting of earthquakes and tsunamis in subduction zones. The giant earthquakes and tsunamis in Sumatra in 2004 and in Japan in 2011 are examples of the kind of events scientists would like to better understand and forecast in the future.

The system is designed for subduction zone applications in the Pacific Ocean’s “Ring of Fire” where offshore strain accumulation and release processes are currently poorly monitored. One example where the group hopes to deploy the new system is the shallow coastal waters of earthquake prone Central America.

The Egmont Key test location sits in just 23 metres depth.  While Florida is not prone to earthquakes, the waters off Egmont Key proved an excellent test location for the system. It experiences strong tidal currents that tested the buoy’s stability and orientation correction system. The next step in the testing is to deploy a similar system in deeper water of the Gulf of Mexico off Florida’s west coast.

Source: University of South Florida.

Vue de la balise haute technologie mise au point par l’Université de Floride (Source : USF)

Vue du site d’Egmont Key, sur la côte ouest de la Floride, où la balise a été testée (Source : Google maps)

Les volcans à Noisy-le-Grand (93160) !

Le samedi 30 novembre 2019 à 14h40, je présenterai à Noisy-le-Grand une conférence intitulée « Muons et Volcans. »

J’ai toujours rêvé de pouvoir disposer d’un tomographe géant pour ausculter l’intérieur d’un édifice volcanique. L’utilisation des particules cosmiques constitue peut-être une ouverture dans ce domaine. Les dernières expériences sont encourageantes.

La conférence aura lieu dans le cadre des animations de la délégation L.A.V.E . Ile-de-France à la Maison des Associations, 111 Piazza Mont d’Est.

Parking gratuit à proximité. Accès par RER A, direction Marne-la-Vallée, sortie à la station « Noisy-Monts d’Est ».

D’autres animations sur l’Islande, l’Erta Ale et l’Ol Doinyo Lengai ponctueront l’après-midi entre 14heures et 18 heures.

Entrée libre.

Le lent refroidissement de la lave du Kilauea (Hawaii) // The slow cooling of the Kilauea lava (Hawaii)

Le HVO a publié un article très intéressant qui explique pourquoi et comment la lave émise lors de l’éruption du Kilauea en 2018 se refroidit très lentement. La réponse est facile : c’est parce que la lave bénéficie de son propre pouvoir isolant. .
Depuis la fin de l’éruption de 2018, des mesures précises ont été effectuées sur l’épaisseur des coulées, leur temps de refroidissement et la relation entre le cœur encore très chaud et visqueux des coulées et la croûte solide en surface.
Les travaux effectués par des scientifiques du HVO et publiés en 1994 ont révélé la vitesse de refroidissement des coulées pahoehoe à Kalapana. Les volcanologues ont alors découvert que la croûte qui surmonte une coulée de lave basaltique s’épaissit en fonction de la racine carrée du temps. En d’autres termes, la croûte se développe plus lentement avec le temps. En conséquence, les coulées de lave plus épaisses prendront plus de temps à se solidifier.
La lave émise par le  Kilauea a une température d’environ 1150°C. En 1917, Thomas Jaggar a publié les résultats des mesures de température du lac de lave actif dans le cratère de l’Halema’uma ’u. On y apprend que le basalte pouvait rester encore visqueux à des températures entre 750 et 850°C. Ces chiffres servent aujourd’hui de référence. Ainsi, pour les derniers calculs relatifs à la lave de 2018, la croûte a été considérée comme solide quand elle présentait une température inférieure à 850°C. Cette même croûte montrait encore de l’élasticité (état semi-solide ou malléable) entre 850 et 1070°C.
Des études antérieures effectuées par le HVO sur les lacs de lave actifs dans le cratère du Kilauea Iki fournissent des informations supplémentaires. En forant la croûte refroidie à l’intérieur du cratère, les scientifiques ont constaté que la solidification prenait des décennies. En particulier, le lac de lave qui occupait le Kilauea Iki en 1959 avec une épaisseur de 44 mètres a mis environ 35 ans à se solidifier complètement. La température en profondeur est encore supérieure à 540°C.
En utilisant des drones, le HVO a pu élaborer une carte de l’épaisseur des coulées de lave de l’éruption de 2018. Cette carte indique qu’au carrefour connu sous le nom de «Four Corners», la lave présente une épaisseur d’une quinzaine de mètres. En utilisant cette valeur et les équations relatives à l’éruption de Kalapana en 1994, on peut calculer comment se sont solidifiées les coulées de 2018.  Ainsi, au cours des 14 mois qui ont suivi la fin de l’éruption, la partie supérieure de la coulée de « Four Corners » s’est solidifiée sur 7,80 mètres, tout comme les 5,50 mètres de sa partie inférieure. En revanche, une épaisseur de 1,70 mètre au cœur de la coulée est restée encore visqueuse. On estime qu’il faudra encore environ 3 ans pour que la température de ce cœur de coulée descende à 850°C et que la lave se solidifie complètement. Cela correspond aux dernières observations faites par les services de l’équipement qui ont remarqué des roches encore très chaudes lorsque les bulldozers ont effectué une tranchée le long de la Highway 132. Les géologues du HVO ont confirmé ces observations en août, lorsque une température de 425° C a été mesurée sur le site. Des températures élevées persisteront à plusieurs dizaines de centimètres sous la surface et généreront probablement de la vapeur lorsqu’il pleuvra.
Bien que l’éruption de 2018 du Kilauea se soit achevée il y a 14 mois, il faudra des années avant que les coulées de lave se solidifient complètement avec une température inférieure à 850°C, et il faudra attendre plus d’un siècle avant que la zone de 250 mètres d’épaisseur, là où la lave est entrée dans l’océan,  se solidifie complètement.
Source: USGS, HVO.

Cet article m’intéresse particulièrement car j’ai moi-même effectué un travail d’observation sur le processus de refroidissement de la lave sur le Kilauea, pour le compte du HVO et du Parc National des volcans d’Hawaii. Vous trouverez un résumé de mes travaux sous l’entête de ce blog.

————————————————-

HVO has released a very interesting article which explains why and how lava from the Kilauea 2018 eruption is cooling very slowly. The short and simple answer is that lava insulates itself very well.

Since the end of the 2018 eruption, accurate measurements have been made on the flow field of lava thickness, cooling times, and the relative proportions of the internal molten core to the exterior solid crust.

Previous work by HVO scientists published in 1994 measured the cooling rate of pahoehoe lava at Kalapana. They found that the upper crust of a basalt lava flow grows thicker as a function of the square root of time. In other words, the lava flow crust grows more slowly with time. Therefore, thicker lava flows will take longer to become completely solid.

Lava erupts from Kilauea at a temperature of 1150°C. In 1917, Thomas Jaggar published results from the then-active Halema‘uma‘u lava lake that indicated basalt can remain molten at temperatures as low as 750–850°C. These figures are now the reference. For the current calculations, the crust has been considered solid when it is below 850°C and this crust is viscoelastic (semi-solid or malleable) at 850–1070°C.

Additional insight comes from previous HVO studies of active lava lakes in Kilauea Iki craters. By drilling into the cooled upper crusts of lava lakes within these craters, scientists documented that solidification takes decades. More specifically, the 44-metre-thick 1959 Kilauea Iki lava lake took about 35 years to fully solidify. Today, its core is still hotter than 540°C.

Using drones, HVO was able to create a lava flow thickness map of the 2018 eruption. This map indicates that at the intersection known as “Four Corners” there is a thickness of approximately 15 metres of lava. Using this value and the equations from the 1994 study of the Kalapana lava flows, one can calculate how much of the 2018 flows have solidified. Over the 14 months since the end of the eruption last year, the upper 7.8 metres and lower 5.5 metres at “Four Corners” should already be solidified crust, and the middle 1.7 metres should still be malleable.

It will take about 3 more years for the remaining 1.7 metres of malleable lava over the “Four Corners” intersection to reach 850°C and be completely solid. This matches recent observations by road-construction crews, who noticed hot rocks being exposed at a road cut along Highway 132. HVO geologists confirmed this in August, when temperatures of 425°C were measured at the newly-cut road site. Hot temperatures will remain several tens of centimetres below the surface for now and will likely generate steam when it rains.

Although Kilauea’s 2018 eruption ended 14 months ago, it will be years before the lava flows emplaced on land are entirely solidified below 850°C, and over a century before the 250-metre-thick area offshore fully solidifies.

Source: USGS, HVO.

This article is of particular interest to me because I performed an observation work on the cooling process of lava on Kilauea, on behalf of HVO and the Hawaii Volcanoes National Park. You will find an abstract of my work beneath the heading of this blog.

Refroidie et durcie en surface, une coulée de lave conserve pendant longtemps une température élevée à l’intérieur (Photo: C. Grandpey)

Halema’uma’u (Hawaii): Résultats de l’analyse de l’eau // Results of water analysis

Comme prévu, le HVO a récemment échantillonné l’eau du lac qui est apparu au fond du cratère de l’Halema’uma’u, au sommet de Kilauea. Le niveau de cette eau a augmenté d’environ 90 centimètres par semaine depuis sa première apparition le 25 juillet 2019. Jusqu’à présent, le HVO ne pouvait qu’évaluer à distance la taille du lac, observer sa couleur et estimer sa température. En voyant la lac s’agrandir, le HVO a décidé d’élaborer une stratégie pour échantillonner son eau. En effet, la chimie du lac est une bonne indication de la provenance de l’eau, de son influence possible sur le dégazage et donc des risques potentiels au sommet du Kilauea.
Il a été décidé qu’un drone serait la meilleure solution pour l’échantillonnage. Le 26 octobre, un engin a prélevé avec succès 0,73 litre d’eau du lac. L’échantillon a ensuite été envoyé à des laboratoires sur le continent pour des analyses exhaustives.
Les résultats obtenus jusqu’à maintenant indiquent que l’eau est acide, avec un pH de 4,2 (le pH neutre est de 7). Il est intéressant de noter que la plupart des lacs de cratères ont un pH inférieur à 3,5 (plus acide) ou supérieur à 5 (moins acide), ce qui place le lac de l’Halema’uma’u dans la moyenne.
Une modélisation mathématique effectuée avant l’apparition du lac indiquait que l’eau de la nappe phréatique était susceptible de pénétrer dans le cratère de l’Halema’uma’u une fois que l’environnement se serait suffisamment refroidi, après la disparition du lac de lave qui avait séjourné dans le cratère entre 2008 et 2018. Il n’est donc pas surprenant de voir de l’eau appraître dans le cratère.
Cependant, il est important de noter que l’Halema’uma’u est l’endroit où les émissions sommitales de dioxyde de soufre (SO2) sont les plus importantes, et que le SO2 se dissout facilement dans l’eau.
Lorsque l’eau souterraine s’écoule en direction du cratère en cours de refroidissement, elle dissout le SO2 provenant du magma situé en dessous. Cela conduit à des concentrations élevées d’ions sulfate dans le lac (53 000 milligrammes par litre) et à un pH plus acide.
A côté de cela, cette eau acide réagit chimiquement avec le basalte du Kilauea, ce qui diminue son acidité et augmente donc son pH. On observe aussi des concentrations élevées de magnésium dans l’eau. Les rapports magnésium / sodium et sodium / potassium dans l’eau du lac sont semblables à ceux du basalte du Kilauea, confirmation des réactions chimiques entre l’eau et la roche.
Les concentrations de calcium ne sont pas très élevées dans l’échantillon d’eau prélevé. Cela s’explique par le fait que le calcium se combine avec des ions sulfate pour former des minéraux solides qui précipitent dans l’eau. Le fer est également susceptible de former divers minéraux, ce qui explique les teintes jaunâtres du lac.
Les réactions complexes entre les gaz et les roches environnantes expliquent pourquoi l’eau du lac dans l’Halema’uma’u est chimiquement différente de la nappe phréatique au fond d’un puits de recherche situé au sud de Halema’uma’u et aussi de l’eau de pluie. Les tests effectués sur l’oxygène et l’hydrogène qui forment les molécules d’eau révèlent que l’eau du lac était à l’origine une eau de pluie qui a percolé dans le sous-sol où sa chimie a évolué.
Le niveau du lac au fond de l’Halema’uma’u continue à s’élever. Le pH actuel reflète un équilibre entre les eaux souterraines qui y pénètrent et le niveau des émissions de SO2 en provenance du sous-sol. Si le niveau du lac se stabilise ou si la quantité de SO2 change, le pH est susceptible de se modifier. Sur le Pinatubo aux Philippines, après l’éruption de 1991, un lac de cratère s’est formé avec un pH presque neutre, mais l’eau est devenue plus acide quand le dégazage de SO2 s’est intensifié, avec l’apparition d’une activité volcanique ultérieure.
Les analyses chimiques confirment que le lac au fond du cratère de l’Halema’uma’u dissout le SO2 d’origine magmatique. Cela signifie que les niveaux d’émission de SO2 mesurés par le HVO (environ 30 tonnes par jour) sous-estiment le SO2 émis globalement par le Kilauea. Sans le lac, les émissions de SO2 au sommet du volcan seraient probablement plus élevées. Cette découverte est importante car un niveau d’émission de SO2 en hausse peut indiquer la présence de magma à faible profondeur.  .
Source: HVO.

———————————————

As expected, HVO recently sampled the Halema‘uma‘u water lake at the bottom of Kilauea’s summit crater. The water has risen about 90 centimetres per week since first spotted on July 25th, 2019. Initially, HVO was limited to remote observations of lake size, colour, and surface temperature. As the lake grew, HVO began formulating a plan to sample the water. Indeed, the lake’s chemistry could reveal where the water was coming from and what it might mean for degassing and potential hazards at Kilauea’s summit.

It was decided that a UAS was the best option for sampling. On October 26th, a drone successfully collected about 0.73 litres of water from the lake. The sample was then shipped to mainland USGS laboratories for sophisticated analyses.

Results thus far indicate an acidic lake, with a pH of 4.2 (neutral is pH 7). Interestingly, most volcanic crater lakes have a pH of less than 3.5 (more acidic) or higher than 5 (less acidic), which places the Halema’uma’u lake in the midddle range.

Mathematical modelling performed prior to the lake’s appearance predicted that groundwater could flow into Halema‘uma‘u once the area had cooled enough after the 2008-18 lava lake drained away. So, it was not entirely a surprise when water began to pond in the crater.

But, it’s important to note that Halema‘uma‘u is where most summit sulfur dioxide (SO2) degassing takes place, and that SO2 dissolves readily in water.

As water flows underground toward the now-cooling crater, it dissolves SO2 rising from magma below. This leads to high concentrations of sulfate ions in the lake (53,000 milligrams per liter) and a tendency towards a more acidic pH.

However, that acidic water reacts chemically with Kilauea’s basaltic rock, which makes the lake less acidic (raises the pH) and results in high concentrations of magnesium in the water. The ratios of magnesium to sodium and of sodium to potassium in the lake water are similar to those ratios in Kilauea’s basalt, which is further evidence of chemical reactions between the water and rocks.

Calcium concentrations are not very high in the water sample; calcium is instead combining with sulfate ions to form solid minerals that precipitate from the water. Iron is also likely forming various minerals, contributing to the lake’s yellowish colours.

Complex gas/rock reactions result in Kilauea’s lake water being chemically different from groundwater in a research well south of Halema‘uma‘u and from rainwater. Testing of oxygen and hydrogen that form the water molecules indicate that the lake water was originally rain that percolated into the subsurface where it became groundwater and the chemistry changed.

The Halema’uma’u lake is still rising. The current pH reflects the balance between incoming groundwater and the degree of SO2 degassing from below. If the lake level stabilizes, or the amount of SO2 changes, the pH may also change. At Mount Pinatubo (Philippines), after the 1991 eruption, a crater lake formed with a nearly-neutral pH but became more acidic with increased SO2 degassing and later volcanic activity.

Chemical analyses confirm that the Halema’uma’u crater lake dissolves magmatic SO2. This implies that HVO’s measured SO2 emission rates (about 30 tonnes per day) underestimate the total outgassed SO2 at Kilauea. Without the lake, SO2 emissions from the summit would likely be higher. This finding is important given that an increasing SO2 emission rate can indicate shallowing magma.

Source : HVO.

Le lac acide au fond du cratère de l’Halema’uma’u (Crédit photo: HVO)

Le secret des éruptions du Merapi (Indonésie) // The secret of Mount Merapi’s eruptions (Indonesia)

Les populations qui vivent à proximité du Merapi peuvent dormir sur leurs deux oreilles. Une équipe scientifique vient de découvrir les causes du comportement explosif du volcan ! Une étude intitulée « L’altération hydrothermale des dômes de lave andésitiques peut conduire au comportement explosif d’un volcan », publiée dans la revue Nature Communications, nous apprend que des chercheurs ont percé le secret du volcanisme explosif. Après avoir analysé des échantillons de lave prélevés sur le Merapi, ils ont conclu que l’explosivité des stratovolcans augmentait lorsque des gaz riches en minéraux scellaient les pores et les microfissures dans les couches supérieures de la roche.

Jusqu’à présent, les scientifiques utilisaient principalement les mesures sismiques pour avertir le public d’une éruption imminente. Les auteurs de l’étude, avec parmi eux des scientifiques de l’Université Technique de Munich, ont découvert un autre indicateur d’une éruption imminente dans la lave prélevée sur la partie sommitale du Merapi. La couche supérieure de la roche, par l’intermédiaire de laquelle le dôme joue le rôle de bouchon, devient imperméable aux gaz avant l’explosion. Les analyses ont révélé que les propriétés physiques de ce bouchon évoluent dans le temps.

Après une éruption, la lave garde sa perméabilité, mais cette dernière diminue ensuite avec le temps. Les gaz sont piégés, la pression augmente et finalement le bouchon explose violemment. Pour arriver à cette conclusion, les chercheurs ont prélevé six échantillons de lave: l’un issu d’une éruption de 2006 et les autres en provenance de l’éruption de 1902. L’analyse des volumes des pores, de la densité, de la composition minérale et de la structure de la roche a révélé que cette perméabilité devenait quatre fois moins importante à mesure que l’altération de la roche augmentait. L’étude explique que les minéraux nouvellement formés en sont la cause, en particulier les sulfates d’aluminium de potassium et de sodium qui obturent les fines fissures et les pores de la lave. Des simulations sur ordinateur ont confirmé que la faible perméabilité du dôme était responsable de l’éruption suivante.

Selon les modèles réalisés par les scientifiques, un stratovolcan comme le Merapi connaît une évolution en trois phases: 1) lorsque la lave est encore perméable après une explosion, un dégazage peut encore se produire. 2) le dôme devient imperméable aux gaz, ce qui, dans le même temps, entraîne une augmentation de la pression à l’intérieur de l’édifice. 3) le dôme explose sous l’effet de la pression. Les images du Merapi datant de la période antérieure et postérieure à l’éruption du 11 mai 2018 confirment ce modèle en trois phases. Tout d’abord, le volcan a émis un panache de gaz. Ensuite, il est resté silencieux pendant un moment jusqu’à ce que les gaz trouvent une issue. Enfin, il a projeté un panache de cendre dans le ciel.

Les chercheurs pensent que leurs résultats pourraient être utilisés pour une prévision plus fiable des éruptions. Une réduction mesurable du dégazage est donc susceptible d’indiquer d’une éruption imminente. Le Merapi n’est pas le seul volcan pour lequel les mesures du dégazage pourraient permettre de prévoir une éruption en temps voulu. De tels stratovolcans sont souvent destructeurs dans tout le Pacifique. Les plus connus sont le  Pinatubo aux Philippines, le St. Helens dans l’ouest des États-Unis et le Mont Fuji au Japon.

Source: Nature Communications, par l’intermédiaire du site web The Watchers.

—————————————-

The populations living close to Mt Merapi can sleep with no fear. A scientific team has just discovered the causes of the volcano’s explosive behaviour! A study entitled « Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour », published in Nature Communications, suggests the researchers have unlocked the secret of explosive volcanism. After studying samples at Mount Merapi, the researchers concluded that the explosivity of stratovolcanoes rises when mineral-rich gases seal the pores and micro cracks in the uppermost layers of stone.

Up to now, geoscientists mostly used seismic measurements to warn the public of an upcoming eruption. The authors of the study, which included scientists from the Technical University of Munich (TUM), have discovered another indicator for an impending eruption in the lava from Merapi’s peak. The uppermost layer of the stone, the « plug dome », becomes impassable for underground gasses prior to the explosion. The scientific investigations showed that the physical properties of the plug dome change over time.

Following an eruption, the lava is still easily permeable, but this permeability then sinks over time. Gases are trapped, pressure rises and finally the plug dome bursts in a violent explosion. To get to this conclusion, the researchers collected six lava samples: one from an eruption in 2006, and the others from the 1902 explosion. Analysis of pore volumes, densities, mineral composition, and structure unveiled that permeability pummelled by four orders of magnitude as stone alteration increased. The study explains that newly formed minerals are the cause, particularly potassium and sodium aluminum sulfates which seal the fine cracks and pores in the lava. Computer simulations confirmed that the weakened permeability of the plug dome was responsible for the next eruption.

According to the models, a stratovolcano like Mount Merapi undergoes three phases: First, when the lava is still permeable after an explosion, outgassing may occur. Second, the plug dome becomes impermeable for gases, while the internal pressure continuously increases at the same time. Third, the plug dome bursts due to pressure. Images of Merapi from the period before and during the eruption of May 11th, 2018, confirm the three-phase model. First, the volcano emitted smoke. Second, it stayed quiet for a while until the gas found an escape, and lastly, it blew a fountain of ashes up into the sky.

The researchers think their results can now be used to more reliably predict eruptions, A measurable reduction in outgassing is thus an indication of an imminent eruption. Mount Merapi is not the only volcano whose outgassing measurements can help in the timely forecasting of an upcoming eruption. Stratovolcanoes are a common source of destruction throughout the Pacific. The best known are Mount Pinatubo in the Philippines, Mount St. Helens in western USA, and Mount Fuji in Japan.

Source: Nature Communications, through the website The Watchers.

 

Dôme de lave au sommet du Merapi (Photo: C. Grandpey)

Découverte de la plus grande caldeira sur Terre? // Discovery of the largest caldera on Earth ?

Selon un article publié dans la revue Marine Geology, une équipe de chercheurs parmi lesquels des membres de GNS Science (Nouvelle-Zélande) a identifié un ancien volcan de très grande taille, avec ce qui pourrait bien être la plus grande caldeira connue sur Terre. Elle se trouve sur la crête de Benham Rise, un plateau océanique au large de la côte des Philippines. En raison de sa taille impressionnante, on lui a donné le nom du dieu philippin du soleil et de la guerre, Apolaki, qui peut se traduire par « seigneur géant ».
La découverte d’une si grande caldeira soulève des questions sur le volcanisme de Benham Rise il y a environ 48 à 41 millions d’années et sur les conditions particulières qui ont entouré la formation de la caldeira d’Apolaki. Si la découverte est confirmée par d’autres recherches, Apolaki deviendra officiellement la plus grande caldeira connue sur Terre.
La caldeira de Benham Rise, d’environ 150 km de diamètre, peut être comparée aux plus grands cratères d’impact sur Terre. Parmi les plus grands figure le Chicxulub, large de 200 km environ, produit par l’impact de l’astéroïde qui a probablement fait disparaître les dinosaures il y a 66 millions d’années. Toutefois, l’étude publiée dans la revue Marine Geology montre que la caldeira d’Apolaki a plus de points communs avec les caldeiras qu’avec les cratères d’impact. Le sommet en forme de cratère de Benham Rise est semblable en taille aux caldeiras observées sur Mars, comme Olympus Mons. Il est également comparable à celles de Vénus, comme Colette et Sacajawea. Les scientifiques pensent que la caldera d’Apolaki a connu plusieurs effondrements et une phase de résurgence.
Il ne faudrait pas oublier que 80% des fonds océaniques de notre planète ne sont pas cartographiés. La découverte de l’immense caldeira d’Apolaki pourrait être une incitation à davantage d’études sur les fonds marins et pourrait conduire à des découvertes inattendues.
Source: The Watchers.

——————————————–

According to an article published in the journal Marine Geology, a team of researchers including members from New Zealand GNS Science have identified an ancient mega-volcano with what could be the largest known caldera on Earth. The feature is on the crest of Benham Rise, an oceanic plateau off the Philippines coast. Due to its massive size, it was named after Filipino mythical god of the sun and war, Apolaki, whose name also translates to « giant lord ».

The discovery of such a large caldera raises questions about volcanism in the Benham Rise around 48-41 million years ago and what special conditions were present for the Apolaki caldera to form. If the team’s conclusions are confirmed by further research, it will officially become the largest known caldera on Earth.

The caldera on Benham Rise, about 150 km in diameter, can be compared to the biggest impact craters on Earth. The largest known identified craters on Earth include Chicxulub, about 200 km wide, produced by the impact of the asteroid that probably made dinosaurs extinct 66 million years ago. However, the study published in the journal Marine Geology shows it has more in common with calderas than impact craters. The crater-like summit of Benham Rise could be compared in size to calderas on Mars, such as Olympus Mons. It is also comparable to that of Venus, such as Colette and Sacajawea. Scientists believe that the Apolaki caldera went through multiple collapse events and a resurgence phase.

One should bear in mind that 80% of the world’s ocean floor is unmapped. The discovery of the huge Apolaki caldera might be a push for more study about the depth of the seafloor  and could lead to more rare discoveries.

Source : The Watchers.

Source: NAMRIA

Source:  GNS Science

Et si Yellowstone entrait de nouveau en éruption? // What if Yellowstone erupted again?

 À la fin de ma conférence «Volcans et risques volcaniques», j’explique que l’un des événements que je redoute le plus est l’éruption d’un super volcan. Yellowstone est l’un d’eux. L’USGS a expliqué qu’il était «des milliers de fois plus puissant qu’un volcan de taille normale».
Si le super volcan qui se cache sous le Parc National de Yellowstone devait entrer en éruption, ce serait une catastrophe pour une grande partie des États-Unis. Des nuages de cendre répandraient la mort et la désolation sur des milliers de kilomètres à travers le pays, détruisant des bâtiments, anéantissant les récoltes et affectant des infrastructures vitales. Cependant, selon les scientifiques de l’USGS, le risque que cela se produise est très faible.
Le super volcan de Yellowstone a connu trois éruptions majeures au cours de sa longue histoire. L’une d’elles s’est produite il y a 2,1 millions d’années, une autre il y a 1,3 million d’années et une autre il y a 664 000 ans. Rien n’indique actuellement qu’une autre super éruption va se produire dans un avenir proche ; il est même possible que Yellowstone ne connaisse plus jamais d’éruption d’une telle ampleur.
Les chercheurs de l’USGS ont calculé l’impact à court terme – sur des années, voire des décennies – d’une telle éruption sur les régions proches. Des coulées pyroclastiques pourraient affecter des parties des États environnants du Montana, de l’Idaho et du Wyoming qui sont les plus proches de Yellowstone, tandis que d’autres régions des États-Unis seraient touchées par les retombées de cendre. L’Europe devrait aussi supporter les conséquences d’une telle éruption. L’USGS se veut rassurante et explique que le risque de voir un tel événement se produire à Yellowstone est extrêmement faible pour les prochains millénaires.

Le Parc National de Yellowstone se trouve au-dessus d’un réservoir magmatique situé à environ 8 km de profondeur. Il est alimenté par un énorme panache de roches en fusion dont la source se trouve à des centaines de kilomètres à l’intérieur de la Terre. C’est cette chaleur qui permet l’existence des célèbres geysers et sources chaudes. Des scientifiques américains ont découvert il y a quelques mois qu’il y avait en fait deux chambres magmatiques sous le volcan.
Le sol se soulève et s’abaisse parfois à Yellowstone. En ce moment, on n’observe aucun mouvement significatif de ce type. À de rares occasions au cours de l’histoire, la chambre magmatique du super volcan a donné naissance à des éruptions. La grande majorité ont consisté en de petites coulées de lave ; la dernière s’est produite sur le Pitchstone Plateau il y a environ 70 000 ans.
Bien que le risque d’une super éruption à Yellowstone semble faible, il ne faut pas oublier qu’un tel événement atteint le niveau 8 sur l’indice d’explosivité volcanique (VEI). Au moins 1 000 kilomètres cubes de matériaux sont vomis par le volcan, ce qui suffirait pour enfouir l’ensemble du Texas sous 1,50 mètres de cendre. Dans le passé, des super éruptions ont secoué des volcans comme le Taupo en Nouvelle-Zélande ou le Toba en Indonésie. On ne peut pas affirmer que cela ne se reproduira plus jamais ailleurs sur Terre..

————————————————–

At the end of my conference « Volcanoes and volcanic hazards », I explain that one of the events I fear most is the eruption of a super volcano. Yellowstone is one of them. USGS has explained that it was “thousands of times more powerful than a normal-sized volcano.”.

Should the supervolcano lurking beneath Yellowstone National Park ever erupt, it could spell calamity for much of the USA. Deadly ash would spew for thousands of kilometres across the country, destroying buildings, killing crops, and affecting key infrastructure. However, according to USGS scientists, the chance of this occurring is very low.

This supervolcano has had three truly enormous eruptions in its long history. One occurred 2.1 million years ago, one 1.3 million years ago, and one 664,000 years ago. There is currently little indication another super-eruption is due anytime soon; it is even possible Yellowstone might never have an eruption on a similar scale again.

USGS researchers have calculated how such an enormous eruption would affect nearby regions in the short-term, meaning years to decades. Parts of the surrounding states of Montana, Idaho, and Wyoming that are closest to Yellowstone would be affected by pyroclastic flows, while other places in the United States would be impacted by falling ash. Europe would also have to bear the consequences of such a huge eruption. USGS says that, fortunately, the chances of this sort of eruption at Yellowstone are exceedingly small in the next few thousands of years.

Yellowstone National Park sits on top of a reservoir of hot magma about 8 kilometres deep.

It is fed by a huge plume of molten rock welling up from hundreds of kilometres below. This heat fuels Yellowstone’s famed geysers and hot springs. US scientists a few months ago discovered that there were actually two magma chambers beneath the volcano.

Yellowstone occasionally rises and falls. At the moment, no real ground movements are being observed. On rare occasions throughout history, the supervolcano’s magma chamber has erupted. The overwhelming majority of those eruptions in Yellowstone have been smaller lava flows, with the last occurring at Pitchstone Plateau some 70,000 years ago.

Although the risk of a super eruption at Yellowstone looks low, one should bera in mind that such an event measures 8 or more on the volcano explosivity index (VEI) in which at least 1,000 cubic kilometres of material get ejected – enough to bury the state of Texas 1.50 metres deep. In the past, super eruptions shook volcanoes like Taupo in New Zealand or Toba in Indonesia. One can never be sure it will never happen again in some other place on Earth.

°°°°°°°°°°

La double chambre magmatique de Yellowstone (Source: USGS):

Des vestiges d’éruptions…

Des geysers…

 Des sources chaudes aux mille couleurs…

Photos: C. Grandpey