Erosion côtière en Alaska : causes et conséquences // Coastal erosion in Alaska : causes and consequences

Au cours de ma conférence « Glaciers en péril, les effets du réchauffement climatique », j’insiste sur les conséquences de la fonte de la glace de mer en Alaska. À mesure que la banquise arctique fond, les côtes déjà fragiles deviennent vulnérables ; elles se trouvent exposées aux vagues au moment des tempêtes. On assiste alors à une accélération de l’érosion qui affecte les personnes et la faune.
Jusqu’à ces dernières années, la glace de mer empêchait les vagues de l’océan de se fracasser contre la côte. Une épaisse couche de glace de mer absorbait la puissance des grosses vagues et les empêchait de déferler sur les plages et contre les falaises. Aujourd’hui, la glace de mer fond et s’éloigne du rivage. L’océan a donc le champ libre pour venir à sa guise saper les côtes et inonder les villages côtiers.

Crédit photo: Wikipedia

Contrairement aux rivages des latitudes moyennes, ceux de l’Arctique sont constitués de pergélisol. Avec des températures plus élevées en été, ce sol dégèle, rendant les côtes arctiques particulièrement sensibles à l’érosion. Le réchauffement de l’eau et l’élévation du niveau de la mer aggravent encore le problème, avec de plus grosses vagues qui viennent frapper les côtes.

Dégel du permafrost dans la toundra (Photo: C. Grandpey)

Deux événements se combinent souvent à l’automne dans l’Arctique : les tempêtes les plus fortes et la plus faible étendue de glace de mer. Après un été de fonte de la glace de mer qui ouvre de vastes étendues d’eau libre, les grosses tempêtes peuvent causer des dégâts considérables, contribuer à l’érosion du littoral et à la perte d’habitat terrestre.
Par exemple, en septembre 2022, le reliquat du typhon Merbok a frappé la côte ouest de l’Alaska avec des vents de force ouragan qui ont obligé à des évacuations, arraché des bâtiments de leurs fondations, sculpté de nouveaux rivages et envoyé entre un et deux mètres d’eau le long de 1 600 kilomètres de côtes. Pour de nombreuses communautés, les dégâts aux infrastructures ont été immédiats. Comme ces communautés dépendent également d’une économie de subsistance, la perte des ressources de la terre a laissé certains habitants dépourvus de réserves pour l’hiver.
Le sol de l’Arctique, autrefois gelé toute l’année, fait maintenant face à plusieurs mois de dégel. Certaines régions dégèlent plus rapidement et plus substantiellement que d’autres. Depuis les années 1990, les températures dans l’Arctique ont augmenté d’environ 0,6 °C par décennie, soit le double de la moyenne mondiale. Les données des services météorologiques de l’Alaska indiquent que de 1971 à 2019, le réchauffement de l’Arctique a été trois fois plus rapide que la moyenne mondiale. Une étude fait même état d’un réchauffement quatre fois plus rapide. Certaines estimations montrent un été sans glace de mer dès 2035. Avec moins de glace de mer pour empêcher les grosses vagues de s’écraser contre les côtes, l’érosion côtière va certainement s’amplifier.
Les températures plus chaudes de l’Arctique font également dégeler le pergélisol. La terre autrefois rigide et solide sous l’effet du gel devient un sol mou et humide qui s’effrite plus facilement sous les assauts des vagues. Le dégel du pergélisol libère également dans les eaux voisines et dans l’atmosphère des gaz à effet de serre autrefois emprisonnés, ce qui accélère le réchauffement climatique. Certaines estimations indiquent que les zones de pergélisol stockent environ 1 700 milliards de tonnes de gaz à effet de serre sous forme de méthane et de dioxyde de carbone ; c’est environ le double du total actuel dans l’atmosphère. Un autre sous-produit du dégel du permafrost est le mercure. Autrefois congelé, il s’échappe désormais dans le sol et les eaux avoisinantes, avec un effet désastreux sur la chaîne alimentaire.

En Alaska, des villages entiers sont déjà confrontés à la nécessité de se déplacer à cause de l’érosion côtière. Le dégel du pergélisol et les vagues érodent le littoral arctique à raison de 50 centimètres par an en moyenne. Dans le nord de l’Alaska, le chiffre atteint 1,40 mètre par an. Sur certains zones littorales comme à Drew Point, en Alaska, l’érosion atteint 20 mètres par an.
Une étude de février 2022 explique que l’érosion pourrait doubler dans l’Arctique d’ici la fin du 21ème siècle. Au fur et à mesure que les scientifiques en sauront davantage sur le moment et l’ampleur de l’érosion côtière dans l’Arctique, les collectivités pourront prendre les mesures nécessaires pour essayer d’y faire face.
Source : National Snow and Ice Data Center (NSIDC).

——————————————–

During my conference « Glaciers at risk », I insist on the consequences of the melting of the sea ice in Alaska. As Arctic sea ice melts, fragile coastlines become vulnerable to bigger waves from storms, leading to accelerated erosion that impacts people and wildlife.

Up to recent years, sea ice keeps the churning ocean from splashing up against the coast. A thick layer of sea ice absorbs the power of big waves, preventing them from slamming into beaches and sea cliffs. But as sea ice melts and recedes away from shore, the ocean can wear away coastlines and flood seaside villages.

Unlike shorelines in the mid-latitudes, Arctic shorelines have permafrost. With higher temperatures in the summer, these soils are thawing, making Arctic coasts especially sensitive to erosion. Warming water and sea level rise compound the issue further as bigger waves pound the coasts.

Two events often collide in the autumn in the Arctic: the strongest storms and lowest sea ice extent. After a summer of sea ice melt, with large areas of open water, large storms can do considerable damage and contribute to shoreline erosion and terrestrial habitat loss.

For example, in September 2022, remnants of Typhoon Merbok battered Alaska’s western coast with hurricane-force winds, forcing evacuations, uprooting buildings, carving out new shores, and surging one ti two meters of water along 1,600 kilometers of coastline. For many communities, the impact from damage to infrastructures was immediate. However, as these communities also rely on subsistence living, the loss of resources from the land left several residents vulnerable without stocks for the winter.

The Arctic’s soil, once frozen all year round, now faces several months of thaw, with some regions thawing faster and more substantially than others. Since the 1990s, temperatures in the Arctic have been increasing at roughly 0.6°C per decade, twice the rate of the global average. Data from Alaskan weather services indicaate that from 1971 to 2019, the rate of Arctic warming was three times as fast as the global average. Another study suggests a four-fold warming. Some estimates showi a summer free of sea ice as early as 2035. With less sea ice preventing big waves from crashing against the shores, coastal erosion is sure to increase.

Warmer Arctic temperatures are also thawing permafrost, turning once frozen-solid land into soft, wet soil that crumbles more easily with wave attacks. Permafrost thaw also releases once-frozen greenhouse gases into nearby waters and the atmosphere, feeding further warming. Some estimates state that permafrost zones store about 1,700 billion metric tons of carbon, both in methane and carbon dioxide form ; this is about twice the current total within the atmosphere. Another byproduct is the release of once-frozen mercury into soil and nearby waters, polluting the food chain.

In Alaska, entire villages are already facing the need for relocation from coastal erosion. Together, thawing permafrost and waves erode the Arctic coastline at an average rate of 50 centimeters per year. In northern Alaska, the rates are 1.4 meters per year, with some sections, like Drew Point, Alaska, eroding much as 20 meters per year.

A study from February 2022 suggests that erosion may double in the Arctic by the end of the 21st century. As scientists learn more about the timing and magnitude of coastal erosion in the Arctic, communities can develop necessary mitigation and adaptation resources.

Source : National Snow and Ice Data Center (NSIDC).

Retour sur la mission MOSAIC à bord du « Polarstern »

Dans la soirée du 1er juin 2023, dans le cadre de ‘Science grand format’, France 5 diffusait un documentaire intitulé « Expédition Arctique : au cœur du réchauffement climatique ». Le film est disponible jusqu’au 02 novembre 2023.

J’ai écrit plusieurs notes à propos de la mission MOSAIC à bord du Polarstern, un brise-glace de recherche allemand qui s’est immobilisé en 2020 au cœur de la banquise arctique pendant tout un hiver. Des chercheurs de 20 pays se sont relayés pour effectuer des mesures dans cet univers très mal connu. Au total, ce sont 300 personnes qui ont cherché à comprendre l’impact de l’homme sur la planète.

Je vous invite à lire les différentes notes que j’ai écrites à propos de cette expédition scientifique du plus grand intérêt :

12 mai 2020

4 juin 2020

22 août 2020

14 octobre 2020

19 mars 2021

2 novembre 2022

Feux de forêt boréale et réchauffement climatique // Wildfires in boreal forests and global warming

Avec le réchauffement climatique et les températures de plus en plus chaudes, les incendies de forêt se multiplient dans certaines régions du monde. Il suffit de voir les incendies qui ravagent la province canadienne de l’Alberta. Une nouvelle étude confirme qu’en brûlant les forêts les plus septentrionales de la planète pourraient être une « bombe à retardement » car elles libèrent des niveaux record de gaz à effet de serre dans l’atmosphère.
À l’aide de nouvelles techniques d’analyse de données satellitaires, les chercheurs ont découvert que depuis l’an 2000 les incendies de forêt en été sont de plus en plus fréquents dans les forêts boréales. Ils représentaient jusqu’à présent 10 % de la pollution mondiale par le carbone liée aux incendies de forêt. En 2021, leur contribution a grimpé à 23 %, car la sécheresse extrême et les vagues de chaleur en Sibérie et au Canada ont contribué à provoquer des incendies de grande ampleur. On peut lire dans l’étude que « les forêts boréales pourraient être une bombe à retardement en matière de carbone. Les augmentations d’émissions lors des récents feux de forêt font craindre que la mèche soit très courte ».
Les forêts boréales, qui couvrent de vastes étendues du Canada, de la Russie et de l’Alaska, représentent le plus grand biome terrestre. Elles sont également riches en carbone et causent 10 à 20 fois plus de pollution par le carbone – et donc de gaz à effet de serre – que les autres écosystèmes. Les forêts boréales sont l’un des biomes qui se réchauffent le plus rapidement sur Terre, et la hausse des températures contribue à l’expansion des incendies.
La région sibérienne de la Russie a connu des incendies de forêt particulièrement graves en 2021 ; ils ont brûlé près de 18,16 millions d’hectares de végétation. En juillet de cette année-là, un pilote a déclaré qu’il ne pouvait pas survoler la Yakoutie (république de Sakha) parce que la fumée des incendies était trop épaisse. Il a ajouté que de nouveaux incendies sont apparus dans le nord de la Yakoutie, dans des endroits où il n’y en avait pas auparavant.
Les auteurs de l’étude expliquent que les incendies de forêt deviennent de plus en plus importants et intenses et ils se produisent également dans des endroits qui ne sont pas habitués à voir des événements aussi extrêmes. La situation risque de s’aggraver avec la hausse des températures. Les températures plus élevées favorisent la croissance de la végétation, qui devient alors exceptionnellement sèche pendant les vagues de chaleur, ce qui augmente le risque d’incendies de forêt. Il existe une dangereuse rétroaction positive entre le climat et les incendies dans les forêts boréales. Les vagues de chaleur et les sécheresses sont susceptibles de se produire plus fréquemment dans cette région, et la fréquence et l’intensité des incendies de forêt extrêmes comme ceux de 2021 sont susceptibles de favoriser les émissions de CO2, entraînant à leur tour une intensification du réchauffement climatique.
Source : CNN.

——————————————-

With global warming and higher temperatures, more and more wildfires a ravaging some areas of the world. The latest evidence was the wildfires in the Canadian province of Alberta. A new study confirms that the world’s most northerly forests could be a “time bomb” as they release record high levels of planet-heating pollution into the atmosphere.

Using new satellite data analysis techniques, researchers found that, since 2000, summer wildfires have expanded in boreal forests. Boreal forest fires usually make up 10% of global wildfire-related carbon pollution. But in 2021, their contribution soared to 23%, as extreme drought and heatwaves in Siberia and Canada helped drive intense fires. One can read in the study that “boreal forests could be a time bomb of carbon, and the recent increases in wildfire emissions we see make us worry the clock is ticking.”

Boreal forests, which cover huge swaths of Canada, Russia and Alaska, are the world’s largest land biome. They are also carbon dense, releasing 10 to 20 times more planet-heating carbon pollution for each unit of area burned by wildfires than other ecosystems. Boreal forests are one of the fastest warming biomes on Earth, and warmer and drier fire seasons are contributing to expanding wildfires.

Russia’s Siberian region experienced particularly bad wildfires in 2021 which burned nearly 18.16 million hectares of Russian forest. In July that year, a reconnaissance pilot said he couldn’t fly his plane in the far eastern Russian region of Yukutia because smoke from the fires was so thick. He added that new fires have appeared in the north of Yakutia, in places where there were no fires before.

The authors of the study explain that wildfires are becoming larger and more intense and they are also happening in places that are not used to such extreme fires. The situation is likely to worsen as temperatures rise. Higher temperatures encourage the growth of vegetation, which then becomes exceptionally dry during heatwaves, increasing the risk of wildfires. As aconsequence, there is a dangerous positive feedback between climate and boreal fires. Heatwaves and droughts are likely to occur more frequently over the boreal region, and the frequency and intensity of extreme wildfires like those in 2021 are likely to increase, with the release of CO2 emissions in turn leading to further global warming.

Source : CNN.

Image satellite des nuages de fumée générés par les incendies de forêt en Sibérie en 2022 (Source : NASA)

Réchauffement climatique et glaciers : un cycle infernal // Global warming and glaciers : an infernal cycle

Comme je l’ai écrit dans ma note précédente, l’interaction du glacier Petermann (Groenland) avec les eaux océaniques de plus en plus chaudes le fait reculer de plus en plus vite. De 2017 à 2022, la ligne d’échouage – aussi appelée ligne d’ancrage – du glacier a reculé de 1,6 km dans la partie ouest du glacier et de 3,7 kilomètres en son centre. Une immense cavité de 204 mètres de haut a été creusée par l’eau de mer plus chaude sous le glacier.
Si cette interaction océanique se poursuit, l’élévation du niveau de la mer due à la fonte des glaciers interviendra plus rapidement que les scientifiques ne le pensaient auparavant. C’est particulièrement inquiétant car les modèles actuels de réchauffement climatique devront peut-être être ajustés et inclure la contribution de la fonte des zones d’échouage glaciaire à l’élévation du niveau de la mer. Le processus va générer un cycle infernal et inarrêtable dans lequel le réchauffement des océans fait fondre les glaciers, ce qui entraîne une élévation du niveau de la mer, ce qui signifie aussi plus de contact entre les glaciers et l’océan, et ce qui signifie plus de fonte glaciaire.
Cette interaction glace-océan rend les glaciers plus sensibles au réchauffement des océans. A l’heure actuelle, ces dynamiques ne sont pas incluses dans les modèles ; si elles l’étaient, cela augmenterait les projections d’élévation du niveau de la mer jusqu’à 200%, non seulement pour le glacier Petermann mais pour tous les glaciers qui terminent leur course dans l’océan, comme c’est le cas dans la majeure partie du nord du Groenland et dans tout l’Antarctique.
La situation est particulièrement inquiétante car la calotte glaciaire du Groenland a perdu des milliards de tonnes de glace au cours des dernières décennies, avec une hausse du niveau de la mer de 14 millimètres depuis le début des années 1970. De plus, avec la hausse de la température des océans au fil du temps, les conditions seront réunies pour que les eaux plus chaudes viennent saper les glaciers encore davantage. L’élévation du niveau de la mer déjà observée menace les villes côtières du monde entier.
Dans plusieurs régions des États-Unis, l’élévation rapide du niveau de la mer a conduit des États comme le Texas et la Louisiane à lutter contre l’érosion. L’élévation du niveau de la mer signifiera également plus d’inondations lors des grandes marées en Floride dans un proche avenir. L’augmentation du nombre d’inondations va perturber le marché immobilier de cet État, car les propriétaires vont probablement voir la valeur des propriétés chuter au fil du temps.
Source : Yahoo Actualités.

——————————————-

As I put it in my previous post, the Petermann Glacier’s interactions with increasingly warming ocean tides are causing that glacier to retreat faster than previously observed. From 2017 to 2022, the glacier’s grounding line retreated 1.6 kmon the western side of the glacier, and 3.7 kilometers at the glacier’s center. A huge cavity, 204 meters tall, was carved by the warmer ocean water in the underside of the glacier.

If those ocean interactions continue, it will mean that sea level rise from melting glaciers will happen faster than scientists previously thought. This is especially alarming because current global warming models may have to be adjusted to include how melting observed at glacial grounding zones will contribute to sea level rise. The process could create a cycle: warming oceans melt glaciers, which causes sea levels to rise, which means more contact between glaciers and the ocean, which means more glacial melting.

These ice-ocean interactions make the glaciers more sensitive to ocean warming. These dynamics are not included in models ; should they be included, it would increase projections of sea level rise by up to 200 percent, not just for Petermann but for all glaciers ending in the ocean, which is most of northern Greenland and all of Antarctica.

The findings are also worrying because the Greenland Ice Sheet has lost billions of tons of ice to the oceans in the last few decades, which has increased sea levels by 14 millimeters since the early 1970s. Moreover, ocean temperatures have increased over time, creating even more conditions where warming waters will deplete glaciers even faster. Already rapidly observed sea level rise is threatening coastal cities all over the world.

In several parts of the U.S., rapid sea level rise has led to states like Texas and Louisiana struggling with erosion. Sea level rise will also mean more flooding and king tides for Florida in the near future. In more personal terms—increased flooding has also messed with the state’s real estate market, as homeowners could see property values plunge over time.

Source : Yahoo News.

Comportement de la plate-forme glaciaire au Groenland et en Antarctique