L’Islande continue d’enterrer le gaz carbonique ! // Iceland keeps burying carbon dioxide !

Dans des notes publiées le 16 juin 2016 et le 15 novembre 2017, j’ai expliqué que l’Islande était probablement un bon endroit pour stocker dans le sol l’excès de dioxyde de carbone (CO2) contenu dans l’atmosphère.
https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

À l’époque, l’objectif du projet CarbFix était de capter le gaz et de le réinjecter dans le sous-sol. Le processus était réalisé avec un puits d’injection foré dans le soubassement basaltique. Si elle était opérationnelle, cette technologie aurait l’avantage de débarrasser l’atmosphère d’une partie de son CO2, l’un des principaux gaz à effet de serre qui contribuent au réchauffement de la planète.
La technologie imite, dans un format accéléré, un processus naturel qui peut prendre des milliers d’années, et qui consiste à injecter du dioxyde de carbone dans les pores du basalte où il se minéralise et reste stocké pour l’éternité.
En Islande, le projet CarbFix inclut des chercheurs et des ingénieurs du distributeur d’électricité Reykjavik Energy, de l’Université d’Islande, du CNRS et de la Columbia University aux États-Unis.
En Islande, au moins la moitié de l’énergie qui est produite provient de sources géothermiques. C’est une aubaine pour les chercheurs de CarbFix, qui ont transformé en laboratoire la centrale géothermique de Hellisheidi, l’une des plus grandes au monde.
La centrale, située sur le volcan Hengill dans le sud-ouest de l’Islande, repose sur une couche de roche basaltique et dispose de quantités d’eau pratiquement illimitées. L’usine pompe l’eau qui se trouve sous le volcan pour faire fonctionner six turbines qui fournissent de l’électricité et de la chaleur à la capitale, Reykjavik, située à une trentaine de kilomètres.

Le dioxyde de carbone de l’usine est capté par la vapeur, liquéfié par condensation, puis dissous dans de grandes quantités d’eau. Cette eau gazeuse est canalisée sur plusieurs kilomètres jusqu’à une zone où trônent des dômes gris en forme d’igloo. C’est ici que l’eau gazeuse est injectée sous haute pression dans la roche à 1 000 mètres de profondeur. La solution remplit les cavités de la roche basaltique et c’est alors que commence le processus de solidification. On a affaire à une réaction chimique qui se produit lorsque le gaz entre en contact avec le calcium, le magnésium et le fer dans le basalte.
Presque tout le dioxyde de carbone injecté s’est retrouvé minéralisé en deux ans au cours de l’opération pilote il y a trois ans; c’était beaucoup plus rapide que lors des expériences effectuées en laboratoire. Une fois que le CO2 est transformé en roche, il reste définitivement dans cet état.
Le projet CarbFix réduit d’un tiers les émissions de dioxyde de carbone de la centrale de Hellisheidi, ce qui représente le stockage et l’entreposage de 12 000 tonnes de dioxyde de carbone à un coût d’environ 25 dollars la tonne. En comparaison, les volcans islandais rejettent chaque année entre un et deux millions de tonnes de dioxyde de carbone.
Le principal inconvénient de cette méthode est qu’elle nécessite de gros volumes d’eau dessalée qui est abondante en Islande mais rare dans de nombreuses autres parties de la planète. Il faut 25 tonnes d’eau pour injecter chaque tonne de dioxyde de carbone. Des expériences sont en cours pour adapter la méthode à l’eau salée.
Dans le cadre de l’accord de Paris sur le climat, l’Islande a accepté de réduire ses émissions de gaz à effet de serre de 40% d’ici 2030, mais ses émissions ont augmenté de 2,2% entre 2016 et 2017 ; elles ont augmenté de 85% depuis 1990, selon un rapport de l’Agence islandaise de l’environnement. Un tiers de ces émissions provient du transport aérien qui est essentiel pour le tourisme de l’île. Les usines d’aluminium et de silicium représentent un autre tiers. Le ministère islandais de l’Environnement et des Ressources naturelles a encouragé ces usines à développer elles aussi des mécanismes de captage et de stockage du carbone.
Source: Philippine Daily Inquirer.

—————————————————-

In posts released on 16 June 2016 and 15 November 2017, I explained that Iceland could also be the right place to store in its ground the excess of carbon dioxide (CO2) in the atmosphere.

https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

By that time, the goal of the CarbFix project was to capture that gas and stick it back underground. This was done with an injection well drilled down into basalt bedrock. If it worked, the technology would have the advantage of getting the atmosphere rid of some of its CO2, one of the main greenhouse gases that contribute to global warming.

The technology mimics, in an accelerated format, a natural process that can take thousands of years, injecting carbon dioxide into porous basalt rock where it mineralizes, capturing it forever.

Iceland’s CarbFix project includes researchers and engineers from utility company Reykjavik Energy, the University of Iceland, France’s National Centre for Scientific Research (CNRS) and Columbia University in the United States.

In Iceland, at least half of the energy produced comes from geothermal sources. That is a bonanza for CarbFix researchers, who have turned the Hellisheidi geothermal power plant, one of the world’s biggest, into their own laboratory.

The plant, located on the Hengill volcano in southwestern Iceland, sits on a layer of basalt rock formed from cooled lava, and has access to virtually unlimited amounts of water. The plant pumps up the water underneath the volcano to run six turbines providing electricity and heat to the capital, Reykjavik, about 30 kilometres away.

The carbon dioxide from the plant is captured from the steam, liquified into condensate, then dissolved in large amounts of water. The fizzy water is piped several kilometres to an area where grey, igloo-shaped domes dot the landscape. Here the fizzy water is injected under high pressure into the rock 1,000 metres under the ground. The solution fills the rock’s cavities and begins the solidification process — a chemical reaction that occurs when the gas comes in contact with the calcium, magnesium and iron in the basalt.

Almost all of the injected carbon dioxide was mineralized within two years in the pilot injection three years ago, which was much faster than during the experiments in a laboratory. Once the CO2 is turned to rock, it is captured there for good.

The CarbFix project reduces the plant’s carbon dioxide emissions by a third, which amounts to 12,000 tons of carbon dioxide captured and stored at a cost of about 25 dollars a ton. By comparison, Iceland’s volcanoes spew out between one and two million tons of carbon dioxide each year.

The main drawback of the method is that it requires large volumes of desalinated water, which, while abundant in Iceland, is rare in many other parts of the planet. Around 25 tons of water is needed for each tonne of carbon dioxide injected. Experiments are currently underway to adapt the method to saltwater.

Under the Paris climate agreement, Iceland has agreed to slash its greenhouse gas emissions by 40% by 2030, yet its emissions rose by 2.2% from 2016 to 2017, and have risen by 85% since 1990, according to a report by Iceland’s Environment Agency. A third of its emissions come from air transport, which is vital to the island for its tourism sector. Its aluminum and silicon plants account for another third. The Icelandic Environment and Natural Resources Ministry has encouraged those plants to also develop carbon capture and storage mechanisms.

Source : Philippine Daily Inquirer.

Image de la calcite formée dans le basalte par interaction entre la roche et l’eau chargée en CO2 (Source : CarbFix).

Les coccinelles du Stromboli et de l’Etna (Sicile) // The ladybirds of Stromboli and Mount Etna (Sicily)

Il y a quelques jours, en remettant de l’ordre dans mes diapositives, j’ai retrouvé une photo prise il y a quelques années sur le Stromboli et sur laquelle on peut voir des grappes de coccinelles accrochées à un morceau de basalte. De la même façon que les abeilles sont inattendues sur le Masaya, une rencontre avec des coccinelles constitue une réelle surprise sur l’Etna ou le Stromboli en Sicile. Les biologistes ont remarqué que la population de coccinelles est spectaculaire entre juin et février de l’année suivante. Les insectes se concentrent sur ou sous les pierres et à l’intérieur des fractures ouvertes dans la lave. Les scientifiques en ont repéré deux espèces qui se différencient par le nombre de points noirs sur leurs élytres rouges.
Les jardiniers vous diront que les coccinelles – aussi appelées bêtes à bon dieu  – sont très utiles pour la nature car elles se nourrissent de pucerons. Ce sont aussi de redoutables prédateurs qui peuvent parfois manger leur propre progéniture. Les volcans ne sont pas le seul territoire où elles élisent domicile. On les trouve aussi sur des montagnes de zones tempérées. Quand leur nombre est très élevé dans certaines régions du monde, on les recueille pour les utiliser dans la protection des arbres fruitiers.
Lorsque l’on regarde les coccinelles qui se cachent à l’intérieur des fractures volcaniques, on pourrait penser qu’elles y ont été apportées par le vent et qu’elles attendent une mort certaine en raison du manque de nourriture. Cependant, la réalité est très différente. Dirigées par une sorte d’instinct, les coccinelles effectuent un vol migratoire vers les zones élevées de leur habitat lorsque l’air chaud des plaines provoque un manque de pucerons qui représentent leur principale source de nourriture. Après avoir pondu leurs œufs dans les vergers d’agrumes de la Sicile, les coccinelles, repues, migrent vers les pentes supérieures de l’Etna ou du Stromboli qui sont dépourvues de prédateurs tels que les araignées, les oiseaux ou les rongeurs. Au début du printemps suivant, lorsque la population de pucerons réapparaît, les coccinelles sortent de leurs cachettes et migrent dans l’autre sens ; elles envahissent alors les lieux où elles peuvent trouver une nourriture abondante.
Les adhérents de l’Association Volcanologique Européenne pourront feuilleter la revue LAVE n°146 (septembre 2010) dans laquelle un article a été consacré à ce sujet.

A noter dans la littérature un ouvrage de Jean-Marie Gourio intitulé Les Coccinelles de l’Etna (Collection L’Arpenteur, Gallimard – Février 1994). L’éditeur explique qu’ « un groupe de touristes est venu en Sicile assister à une éruption de l’Etna. Parmi eux, un Japonais, dès le premier dîner pris en commun, fait part de sa décision de se jeter dans le volcan. Leur hôtesse encourage ce projet, reliant la démarche d’Oshiba à celle, exemplaire, d’Empédocle.
C’est à une sorte de passion, aux noces de l’homme et du magma originel que le lecteur est convié, à la célébration d’un sacrifice dont la dame qui l’accompagne serait l’étrange servante. » En cliquant sur ce lien, vous pourrez voir la présentation de l’ouvrage par Olivier Barrot le 5 avril 1994…

https://www.ina.fr/video/CPC94003008

————————————————-

A few days ago, while putting some order among my slides, I found a photo taken a few years ago on Stromboli on which one can see clusters of ladybugs clinging to a piece of basalt. In the same way that bees are unexpected on the Masaya, an encounter with ladybirds is a real surprise on Mt Etna or Stromboli in Sicily. Biologists have noticed that the ladybird population is spectacular between June and February of the following year. Insects gather on or under stones and inside open fractures in the lava. Scientists have identified two species that are differentiated by the number of black dots on their red elytra.
Gardeners will tell you that ladyirds are very useful for nature because they feed on aphids. They are also formidable predators that can sometimes eat their own offspring. Volcanoes are not the only territory where they choose to live. They are also found on mountains of temperate zones. When their numbers are very high in some parts of the world, they are collected for use in the protection of fruit trees.
When we look at the ladybirds hiding inside the volcanic fractures, we might think that they were brought by the wind and that they are waiting for a certain death because of the lack of food. However, the reality is very different. Driven by a sort of instinct, ladybirds migrate to high areas of their habitat when the warm air of the plains causes a shortage of aphids that are their main source of food. After laying their eggs in the citrus orchards of Sicily, the ladybirds, sated, migrate to the upper slopes of Mt Etna or Stromboli which are devoid of predators such as spiders, birds or rodents. At the beginning of the next spring, when the aphid population reappears, ladybirds emerge from their hiding places and migrate in the other direction; they then invade the places where they can find abundant food.
The members of the European Volcanological Association can consult the journal LAVE n° 146 (September 2010) in which an article was devoted to this topic.

In the literature, there exists a book by Jean-Marie Gourio entitled Les Coccinelles de l’Etna (Collection L’Arpenteur, Gallimard – February 1994). The editor explains that « a group of tourists came to Sicily to watch an eruption of Mt Etna. Among them, a Japanese, from the first dinner taken together, shares his decision to jump into the volcano. Their hostess encourages this project, linking Oshiba’s approach to that, exemplary, of Empedocles.
The reader is invited to a kind of passion, to the marriage of man and the original magma, as well as the celebration of a sacrifice of which the lady who accompanies it would be the strange servant. By clicking on this link, you will see the presentation of the book by Olivier Barrot on April 5th, 1994 …
https://www.ina.fr/video/CPC94003008

Les coccinelles du Stromboli (Photo: C. Grandpey)

Sibérie : Accélération de la fonte du permafrost // Siberia : Permafrost melting is accelerating

Pendant les cours de géographie de mon adolescence, les professeurs m’ont toujours appris que la Sibérie est la région du monde où le sol est gelé en permanence. Aujourd’hui, les informations en provenance de Russie nous indiquent que ce permafrost – ou pergélisol – est en train de fondre à une vitesse incroyable, avec des conséquences désastreuses pour l’environnement.

En République de Sakha, également appelée Yakoutie, dans le nord-est de la Sibérie, le réchauffement climatique provoque la fonte de sols jusqu’ici gelés toute l’année. La totalité de cette république grande comme 72 fois la Suisse, repose sur un permafrost d’une épaisseur dépassant parfois 1000 mètres. Où que l’on creuse le sol, même pendant le bref été sibérien, on atteint – ou plutôt on atteignait – une terre dure comme du béton. Aujourd’hui, la couche active, autrement dit celle qui est dégelée, descend jusqu’à 3 mètres de profondeur.

Les conséquences de ce dégel accéléré sont très spectaculaires: déformation du sol, érosion ultra rapide des berges de l’Océan Arctique, inondations, apparition de marais et de lacs engloutissant les pâturages, «forêts ivres» où les arbres s’inclinent de manière chaotique, réveil de microbes et bactéries centenaires capables de déclencher des épidémies .

La fonte du permafrost est visible jusqu’en milieu urbain. A Yakoutsk, la capitale de la région, le pergélisol offrait une fondation parfaite aux bâtiments. Toutes les constructions sont édifiées sur des pilotis plantés dans le pergélisol. Un espace de 1 à 2 mètres est laissé vide entre le rez-de-chaussée et le sol pour que la chaleur des habitations ne fasse pas fondre le sol qui les supporte, et afin que l’air glacial refroidisse la couche active. Jusqu’en 2000, la norme obligeait les constructeurs à planter des pilotis de 8 mètres pour les immeubles. Cela signifie qu’aujourd’hui, pendant plusieurs mois, ces constructions ne sont plus maintenues que sur les 5 derniers mètres. Les conséquences sont faciles à imaginer: des fissures lézardent des dizaines de bâtiments construits à l’époque soviétique et certains bâtiments se sont déjà effondrés. Officiellement, 331 constructions ont été déclarées «inutilisables» par les autorités. Seules 165 seront effectivement détruites, faute de financement. La presse locale a également signalé des affaissements de terrain durant l’été dernier.

Pour pallier le plus urgent, un système de thermosiphons en forme de Y a été installé le long des immeubles les plus menacés. Un thermosiphon est un dispositif de refroidissement qui abaisse la température du sol en faisant circuler un fluide caloporteur contenu dans une canalisation insérée dans le sol. Les thermosiphons ressemblent à des radiateurs inversés dont le pied est planté dans le sol.

Les maisons et les immeubles ne sont pas les seuls à souffrir de la fonte du permafrost. En devenant instable et mouvante, la couche active fait aussi se gondoler les voies de chemin de fer et les routes, phénomène que j’ai signalé à propos de la ville de Bethel, dans le nord de l’Alaska. Plus grave, les déformations subies par les gazoducs et les oléoducs occasionnent des fuites et donc une pollution  Cette situation a été observée dans la Péninsule de Yamal où des techniques innovantes sont constamment mises en oeuvre pour faire face à ce problème.

Le réchauffement climatique est très marqué dans le Grand Nord où la température actuelle dépasse de 3°C celle d’il y a trente ans. Cette hausse du mercure engendre des cercles vicieux dans un milieu très fragile. Le climat n’est plus aussi sec qu’autrefois. Au lieu de 40 mm de précipitations par an, on enregistre de nos jours une pluviométrie pouvant atteindre 80 mm en une seule journée. En conséquence, l’intensité des inondations est décuplée. Celles qui accompagnent habituellement la fonte des neiges à la fin du mois de mai, accélèrent l’érosion des bords de rivière. Une seconde vague d’inondations survient fin juillet à cause des pluies anormales. Le troisième épisode à la fin août est le plus sévère. Il est provoqué par les lacs qui débordent, avec des eaux noires résultant de la fonte du pergélisol, juste avant le retour de l’hiver. Les habitations n’ont pas le temps de sécher que le gel survient et tout doit être abandonné. Il n’y a pas de budget pour aider la population et le gouvernement de la République de Sakha n’est pas préparé pour ce genre de catastrophe.

Comme je l’ai indiqué à propos de l’Alaska, la fonte du permafrost affecte particulièrement la toundra qui couvre le nord de la Yakoutie. Dans le sud, la taïga résiste mieux au changement climatique mais, comme dans le Yukon canadien, on rencontre des « forêts ivres », avec des arbres qui s’inclinent dans tous les sens car leurs racines ne sont plus maintenues en place par le sol gelé. La taïga est également menacée par les incendies et par les coupes de bois excessives à des fins commerciales.

Avec la fonte du permafrost, on redoute le retour de microbes et de bactéries centenaires, voire millénaires. Toutefois, à part une épidémie d’anthrax signalée dans le nord de la Sibérie, le phénomène ne s’est pas vérifié.

Source : The Siberian Times.

—————————————————–

During the geography classes of my adolescence, teachers always taught me that Siberia was the region of the world where the ground was frozen permanently. Today, news reports from Russia tell us that the is melting at an incredible rate, with disastrous consequences for the environment.
In the Sakha Republic, also known as Yakutia, in north-eastern Siberia, global warming is causing the melting of soils that used to be frozen all year round. The totality of this republic, which is 72 times as large as Switzerland, rests on a permafrost of a thickness sometimes exceeding 1000 metres. Wherever one digs the ground, even during the brief Siberian summer, one reaches – or rather used to reach – a ground as hard as concrete. Today, the active layer, the one that is thawed, goes down to 3 metres deep.
The consequences of this accelerated thaw are very dramatic: deformation of the soil, ultra rapid erosion of the shores of the Arctic Ocean, floods, appearance of marshes and lakes engulfing pastures, « drunken forests » where the trees are bowing in a chaotic manner, awakening of century-old microbes and bacteria capable of triggering epidemics.
The melting of permafrost can be seen in urban areas. In Yakutsk, the capital of the region, the permafrost provided a perfect foundation for the buildings. All constructions are built on stilts planted in permafrost. A space of 1 to 2 metres is left empty between the groundfloor and the ground so that the heat of the houses does not melt the soil which supports them, and so that the icy air may cool the active layer. Until 2000, builders were required to plant 8-metre piles for the buildings. This means that today, for several months, these constructions are only maintained on the last 5 metres. The consequences are easy to imagine: fissures crack dozens of buildings built during the Soviet era and some buildings have already collapsed. Officially, 331 buildings were declared « unusable » by the authorities. Only 165 will actually be destroyed, for lack of funding. The local press also reported land subsidence last summer.
To overcome the most urgent situations, a Y-shaped thermosyphon system has been installed along the most endangered buildings. A thermosyphon is a cooling device that lowers the temperature of the soil by circulating a heat transfer fluid contained in a pipeline inserted in the ground. Thermosyphons look like inverted radiators whose feet are planted in the ground.
Houses and buildings are not the only ones to suffer from the melting of permafrost. As it is becoming unstable, the active layer is also distorting railroads and roads, a phenomenon I reported about the city of Bethel in northern Alaska. More serious, the deformations suffered by pipelines cause leaks and therefore pollution This situation was observed in the Yamal Peninsula where innovative techniques are constantly implemented to deal with this problem.
Global warming is very pronounced in the Far North, where the current temperature is 3 ° C higher than thirty years ago. This rise in temperatures creates vicious circles in a very fragile environment. The climate is not as dry as before. Instead of 40 mm of rainfall per year, rainfall today can reach up to 80 mm in one day. As a result, flood intensity is increased tenfold. The floods that usually accompany the melting of snow at the end of May, accelerate the erosion of river banks. A second wave of flooding occurs at the end of July due to abnormal rains. The third episode in late August is the most severe. It is caused by lakes that overflow, with black water resulting from melting permafrost, just before the return of winter. Houses did not have time to dry when the frost occurs and everything has to be abandoned. There is no budget to help the people and the government of the Republic of Sakha is not prepared for this kind of disaster.

As I put it about Alaska, permafrost melting affects the tundra that covers northern Yakutia. In the south, the taiga is more resilient to climate change but, as in the Canadian Yukon, there are « drunken forests », with trees bowing in all directions because their roots are no longer held in place by the frozen soil. The taiga is also threatened by fires and excessive logging for commercial purposes.
With the melting of permafrost, scientists fear the return of century-, or even millennium-old microbes and bacteria. However, apart from an outbreak of anthrax reported in northern Siberia, the phenomenon has not been confirmed.
Source: The Siberian Times.

Exemple d’immeuble construit sur pilotis à cause du permafrost (Crédit photo: Wikipedia)

Impacts des éruptions volcaniques sur la formation des ouragans // Impact of volcanic eruptions on the formation of hurricanes

On peut lire sur le site web de The Weather Network un article très intéressant sur l’impact des éruptions volcaniques sur la formation des ouragans. Jusqu’à une étude récente, les scientifiques ne savaient pas exactement comment les deux phénomènes naturels interagissaient.
L’étude, dirigée par des chercheurs de l’Université du Québec à Montréal et de l’Université Columbia, montre pour la première fois dans quelle mesure les grandes éruptions volcaniques ont non seulement un impact immédiat sur la saison des cyclones tropicaux, mais également sur les années suivantes.
Il a fallu pas mal de temps aux chercheurs pour établir le lien entre les deux phénomènes naturels. En effet, la plupart des éruptions majeures de l’histoire récente se sont produites simultanément avec des événements El Niño ou La Niña (l’oscillation australe El Niño ou ENSO) qui ont eux-mêmes un impact sur les saisons cycloniques tropicales à travers le monde.
Cette étude, basée sur des simulations de dernière génération, s’est efforcée d’étudier les événements éruptifs majeurs indépendamment de tout impact ENSO, et les chercheurs ont réussi a obtenir un schéma très révélateur. Ils ont découvert que des éruptions importantes dans les hémisphères nord et sud avaient pour effet d’éloigner la zone de convergence intertropicale (ZCIT) de sa position habituelle – plus loin dans l’hémisphère sud en cas d’éruption de l’hémisphère nord et inversement, lors d’une éruption. au sud de l’équateur.
La ZCIT est la bande proche de l’équateur où convergent les alizés. Elle a été baptisée «pot au noir» par les marins parce que les vents à la surface de l’océan sont calmes à ce point de convergence. Cette région joue un rôle clé dans la formation de cyclones tropicaux lorsque la frontière se déplace vers le nord ou vers le sud au niveau du « pot au noir », et se dirige vers des régions plus propices au développement de cyclones, qu’il s’agisse d’ouragans pour l’Atlantique ou de typhons pour le Pacifique.
Une puissante éruption dans les régions tropicales de l’hémisphère nord entraîne un déplacement de la zone de convergence intertropicale vers le sud. Cela se traduit par une augmentation de l’activité des ouragans entre l’équateur et la latitude 10º N et une diminution plus au nord. Le déplacement de la zone vers le sud a d’autres effets dans l’hémisphère sud, car cela entraîne une baisse de l’activité sur les côtes australiennes, indonésiennes et tanzaniennes, tandis que Madagascar et le Mozambique connaissent une augmentation. En bref, une éruption majeure dans l’hémisphère nord pousse la ZCIT vers le sud et les ouragans font de même. L’inverse est également vrai. Les chercheurs ont remarqué que les effets ont persisté pendant quatre ans après l’éruption, ce qui signifie que même après que le volcan se soit calmé, la saison cyclonique tropicale reste perturbée.
Si l’on considère que les cyclones tropicaux provoquent des dizaines de milliards de dollars de dégâts chaque année, l’amélioration des prévisions est essentielle pour atténuer les conséquences des prochaines catastrophes. Si les chercheurs parviennent à mieux comprendre les différents paramètres qui déterminent l’évolution des tempêtes – qu’il s’agisse des éruptions volcaniques ou des événements El Niño – les prévisions s’en trouveront forcément améliorées. .
Source: The Weather Network, PNAS.

————————————————–

One can read on the website of The Weather Network a very intersting article about the impact of volcanic eruptions on the formation of hurricanes. Until a recent study, scientists were not sure how the two interacted.

The study, led by researchers at The University of Quebec in Montreal and Columbia University, shows for the first time how large volcanic eruptions have impacts that echo through not just the tropical cyclone season following the eruption, but for years afterward.

It took quite a lot of time to find the link between the two natural phenomena because most of the major eruptions in recent history have occurred during El Niño or La Niña events (the El Niño Southern Oscillation, or ENSO), which themselves impact tropical cyclone seasons around the globe.

This study, based on sophisticated simulations, seeks to isolate major eruption events from any ENSO impact, and a distinct pattern emerged. The researchers found that large eruptions in either the northern or southern hemispheres served to push the Intertropical Convergence Zone (ITCZ) away from its usual position — further into the southern hemisphere in the case of a northern hemisphere eruption, and the opposite for an eruption south of the Equator.

The ITCZ is the band near the Equator where the trade winds converge, known as the ‘doldrums’ — so named by sailors because the surface winds are calm at this convergence point. This region plays a key role in the formation of tropical cyclones when the boundary drifts north or south out of the doldrums and into regions more favourable for cyclone development, be they Atlantic hurricanes or Pacific typhoons.

A large eruption in the tropical regions of the Northern Hemisphere leads to a southward shift of the Intertropical Convergence Zone. This results in an increase in hurricane activity between the Equator and the 10ºN line, and a decrease further north. The zone’s southward shift has further effects in the Southern Hemisphere, causing a decrease in activity on the coasts of Australia, Indonesia, and Tanzania, while Madagascar and Mozambique experience an increase. To put it briefly, a major eruption in the northern hemisphere pushes the ITCZ south, and the hurricanes go with it. The reverse is also true. More than that, the effects lingered for four years following the eruption, meaning even after the volcano has quieted, the tropical cyclone season was still altered.

With tropical cyclones generating tens of billions of dollars in damages every year, improved forecasting is one key to lessening the blow from future disasters. The more researchers can understand about the ingredients that go into determining the evolution of the storms – whether they are volcanic eruptions or strong El Niño events – the better future forecasts will be.

Source: The Weather Network, PNAS.

L’image ci-dessus montre l’évolution possible de l’intensité cyclonique, ou la force des tempêtes qui se développent, suite à des éruptions dans l’hémisphère Nord (en haut) et dans l’hémisphère Sud (en bas). [Source: Proceedings of the National Academy of Sciences ].

La sécheresse en Limousin et la centrale nucléaire de Civaux (Vienne) // Drought in Limousin and the nuclear plant of Civaux (Vienne)

Il y a quelque temps, j’avais lancé une alerte sur ce blog. Au vu des relevés pluviométriques de la station météorologique de Limoges-Bellegarde, j’expliquais que le lac de Vassivière sur le Plateau de Millevaches risquait fort de connaître des difficultés pendant l’été 2019, surtout si la sécheresse actuelle devait continuer. Je précisais que des lâchers d’eau se font régulièrement en période de sécheresse pour permettre d’augmenter le débit de la Vienne qui, à son tour, refroidit les réacteurs de la centrale nucléaire de Civaux dans le département voisin de la Vienne.
Un article paru dans Le Populaire du Centre le 1er juin 2019 semble me donner raison. En effet, des scientifiques et des responsables politiques au sein de l’agglomération de Limoges envisagent très sérieusement un ralentissement, voire une mise à l’arrêt, de la production d’électricité à la centrale de Civaux dans un futur proche avec toutes les conséquences que cela implique. Le journaliste auteur de l’article écrit que le scénario semble relever de la science-fiction, mais ce n’est pas forcément le cas. Cette éventualité sensible a été débattue en mars 2019 lors d’une réunion du conseil d’administration de l’établissement public territorial du bassin de la Vienne. La réunion se tenait à Lussac-les-Châteaux (Vienne), à quelques kilomètres de la centrale. L’un des intervenants a déclaré::« S’il ne pleut pas plus, nous allons être confrontés à une problématique importante. Nous pouvons dire que c’est la première fois que nous sommes placés face à une situation de cette gravité. »
Le 3 juillet prochain, le conseil syndical de l’établissement public territorial du bassin de la Vienne se réunira et devra prendre la décision.
Si besoin était, ce type d’événement nous confirme chaque jour un peu plus que le réchauffement climatique n’est pas une vue de l’esprit.
Source: Le Populaire du Centre.

——————————————-

Some time ago, I launched an alert on this blog. In view of the rainfall records of the weather station at Limoges-Bellegarde, I explained that Lake Vassivière on the Plateau de Millevaches was likely to experience difficulties during the summer of 2019, especially if the current drought was to continue. I specified that water releases are done regularly in times of drought to allow to increase the flow of the Vienna which, in turn, cools the reactors of the Civaux nuclear plant in the neighboring department of Vienne.
An article published in Le Populaire du Centre on 1 June 2019 seems to prove me right. Indeed, scientists and politicians in the agglomeration of Limoges are seriously considering a slowdown, or even a shutdown, of electricity production at the Civaux plant in the near future with all the consequences. that implies. The author of the article writes that the situation looks like science fiction, but that is not necessarily the case. This sensitive event was debated in March 2019 at a meeting of the board of directors of the territorial public body of the Vienne basin. The meeting was held in Lussac-les-Châteaux (Vienne), a few kilometres from the plant. One of the speakers said: « If it does not rain anymore, we will be confronted with an important problem. We can say that this is the first time that we are facing a situation of this gravity.  »
On July 3rd, the board of directors will meet again and make the decision.
If needs be, this type of event confirms a little more every day that global warming is not a view of the mind.
Source: Le Populaire du Centre.

Source: Wikipedia

 

L’Arctique toujours plus chaud // A warmer and warmer Arctic

Selon un rapport de l’ONU intitulé “Global Linkages – a graphic look at the changing Arctic” publié le 13 mars 2019, même si l’accord de Paris est respecté, les températures en Arctique augmenteront entre 3 et 5 degrés par rapport à celles enregistrées entre 1986 et 2005, avec des conséquences désastreuses pour la planète. Elles devraient même atteindre 5 à 9 degrés de plus dans cette région du globe d’ici 2080.

La hausse aura lieu même si l’accord de Paris, qui prévoit de limiter le réchauffement climatique à deux degrés d’ici 2100, est respecté. Si toutes les émissions de gaz à effet de serre étaient stoppées du jour au lendemain, cela ne suffirait pas: les températures en hiver augmenteraient de 4 à 5 degrés par rapport au niveau enregistré à la fin du 20ème siècle. Cette augmentation sera causée par les gaz à effet de serre déjà émis dans l’atmosphère et la chaleur stockée dans les océans. Cette prévision de l’ONU rejoint les propos du docteur Jean-Louis Etienne avec lequel j’avais bordé ce sujet il y a quelque temps.

L’Arctique et ses habitants subissent déjà les conséquences du réchauffement climatique. On sait que d’ici trente ans, quatre millions de personnes et 70% des infrastructures de la région pourraient être menacées par la fonte du permafrost, qui devrait diminuer d’au moins 45% par rapport à aujourd’hui. (voir mes notes concernant la fonte du permafrost et ses effets sur les régions arctiques)

À l’échelle mondiale, le permafrost – aussi appelé pergélisol – contient environ 1672 milliards de tonnes de carbone. Un dégel accru favorisera de manière significative la libération des émissions de dioxyde de carbone et de méthane. Le réchauffement ainsi induit entraînera à son tour davantage de dégel dans une sorte de spirale infernale. Le rapport de l’ONU indique que ce changement climatique accéléré pourrait irrémédiablement éloigner l’objectif de 2 degrés de l’Accord de Paris..

Une autre conséquence de la hausse de la température en Arctique concerne la montée des mers et des océans. On pense que la fonte des glaces du Groenland et des glaciers de l’Arctique contribuera à un tiers de l’augmentation du niveau des océans.

Par ailleurs, en imaginant que le taux de CO2 émis reste le même qu’actuellement, il est facile de conclure que l’Océan Arctique sera probablement libéré des glaces en été dès 2030. Ses eaux seront également plus acides, avec un impact significatif sur la biodiversité. En effet, plus l’eau est acide, plus les coraux, les mollusques et le plancton doivent utiliser de l’énergie pour construire leurs coquilles et leurs squelettes.

Le rapport préconise une réduction significative et à court terme des émissions de gaz à effet de serre, de carbone noir et d’autres soi-disant polluants climatiques de courte durée dans le monde entier.

Source : ONU.

—————————————————

According to a UN report entitled « Global Linkages – a graphic look at the changing Arctic » published on March 13th, 2019, even if the Paris agreement is respected, temperatures in the Arctic will increase between 3 and 5 degrees compared to those recorded between 1986 and 2005, with disastrous consequences for the planet. They might even reach an increase by 5 to 9 degrees in that region of the globe by 2080.
The rise will take place even if the Paris agreement, which plans to limit global warming to two degrees by 2100, is respected. If all greenhouse gas emissions were halted overnight, that would not be enough: winter temperatures would increase by 4 to 5 degrees from the level recorded at the end of the 20th century. This increase will be caused by greenhouse gases already emitted into the atmosphere and heat stored in the oceans. This prediction of the UN confirms the words of Dr. Jean-Louis Etienne with whom I tackled this topic some time ago.
The Arctic and its inhabitants are already suffering from the consequences of global warming. We know that in the next 30 years, four million people and 70% of the region’s infrastructure could be threatened by the melting of permafrost, which is expected to decrease by at least 45% compared to today. (see my notes about the melting of permafrost and its effects on Arctic regions)
Worldwide, the permafrost contains about 1672 billion tonnes of carbon. An increased thaw will significantly enhance the release of carbon dioxide and methane emissions. The warming thus induced will in turn lead to more thawing in a kind of infernal spiral. The UN report says this accelerated climate change could irremediably move the 2-degree goal away from the Paris Agreement.
Another consequence of the rising temperature in the Arctic is the rise of seas and oceans. Greenland ice melt and Arctic glaciers are thought to contribute one-third of the increase in sea levels.
Moreover, imagining that the emitted CO2 remains the same as it is currently, it is easy to conclude that the Arctic Ocean will probably be free of ice in summer by 2030. Its waters will also be more acidic, with a significant impact on the biodiversity. Indeed, the more acidic the water, the more corals, molluscs and plankton must use energy to build their shells and skeletons.
The report calls for a significant and short-term reduction of greenhouse gas emissions, black carbon and other so-called short-lived climate pollutants worldwide.
Source: United Nations.

Etendue du permafrost dans l’Arctique (Source: NASA)

La vie à Dallol et dans le Danakil ‘Ethiopie) // Life at Dallol and Danakil (Ethiopia)


Au cours des dernières années, plusieurs vidéos ont montré que des bactéries, des vers et des crevettes sont capables de survivre dans l’environnement très hostile des « fumeurs noirs » au fond des océans. Ces évents sous-marins émettent de l’eau très chaude et des gaz acides qui ne sont pas censés favoriser la vie.
De la même manière, des échantillons de liquide ont été prélevés à Dallol et sur le Danakil dans le nord de l’Éthiopie et les chercheurs ont pu constater que eux aussi hébergeaint de la vie, malgré un contexte très défavorable. Dallol est un volcan dans la dépression du Danakil, au nord-est de la chaîne de montagnes où se trouve l’Erta Ale. Il a été formé par une intrusion magmatique basaltique dans des dépôts de sel du Miocène et par une activité hydrothermale ultérieure. Des éruptions phréatiques ont eu lieu en 1926, donnant naissance au volcan Dallol. De nombreux autres cratères parsèment le désert de sel à proximité. Dallol est alimenté par de l’eau portée à haute température par la chambre magmatique peu profonde sous le volcan. C’est l’un des endroits les plus beaux, mais aussi des plus inhospitaliers de la planète.
L’analyse des échantillons prélevés par une équipe scientifique internationale a révélé la présence de microbes de très petite taille qui montrent comment la vie aurait pu se développer sur la planète Mars. Les résultats de l’étude ont été publiés dans les Scientific Reports.
Les chercheurs ont découvert une souche de bactéries capables de vivre à une température de 89°C et une acidité extrême avec un pH de 0,25. Ces conditions sont similaires à celles rencontrées sur la Planète Rouge lors de sa formation.
La région de Dallol et du Danakil est saturée en différents sels, parmi lesquels le chlorure d’argent, la sphalérite, le sulfure de fer et des sels minéraux, qui forment un paysage fantastique où cohabitent les jaunes, les rouges, les verts et les bleus. L’équipe scientifique a recueilli de fines couches de dépôts de sel et les a transportées en Espagne dans des flacons stériles et scellés. Ils ont été analysés par microscopie électronique, analyse chimique et séquençage de l’ADN. Les chercheurs ont découvert que les minuscules structures sphériques dans les échantillons de sel étaient en fait de minuscules microbes (Nanohaloarchaeles) vivant en colonies compactes. Chaque microbe est 20 fois plus petit que la moyenne des bactéries.
Une étude approfondie des sites de Dallol et du Danakil permettra de mieux comprendre les limites de la vie sur Terre et apportera des informations sur la recherche de la vie sur Mars et ailleurs dans l’univers. La géochimie inhabituelle du site a beaucoup de points communs avec de possibles environnements hydrothermaux découverts sur la Planète Rouge, y compris le cratère Gusev, où a atterri le Spirit Mars Exploration Rover, module d’exploration de la Nasa. Même si la planète Mars est sèche et désertique aujourd’hui, de plus en plus de recherches démontrent qu’elle était probablement recouverte de vastes étendues d’eau il y a trois ou quatre milliards d’années.
Source: The Independent.

—————————————

In the past few years, several videos have shown that bacteria , worms and shrimps are able to survive in the very hostile environment of the « black smokers » at the bottom of the oceans. These submarine vents emit very hot water and acid gases that are not supposed to favour life.
In the same way, samples of liquid have been collected from the Dallol volcano and Danakil Depression in northern Ethiopia.Researchers were suprised to see that life was present despite unfavorable conditions. Dallol is a cinder cone volcano in the Danakil Depression, northeast of the Erta Ale Range. It has been formed by the intrusion of basaltic magma into Miocene salt deposits and subsequent hydrothermal activity. Phreatic eruptions took place here in 1926, forming Dallol Volcano; numerous other eruption craters dot the salt flats nearby. It is fuelled by water that has been heated by the shallow magma reserve beneath the volcano. It is one of the most beautiful and the most inhospitable places on Earth.
The analysis of the samples by an international scientific team revealed the presence of ultra-small microbes which show how life could have once thrived on Mars. The results of the study have been published in Scientific Reports.
The researchers have found a strain of bacteria living in temperatures of 89°C and an extreme acidity with a pH 0.25. Such conditions are similar to those found on the Red Planet when it first formed.
The Dallol and Danakil area is saturated in various salts, including silver chloride, zinc iron sulphide and rock-salt which produce a landscape of yellows, reds, greens and blues. The team collected thin layers of salt deposits and transported them to Spain in sterile, sealed vials. They were analysed using electron microscopy, chemical analysis and DNA sequencing. The team found tiny, spherical structures within the salt samples were tiny microbes (Nanohaloarchaeles) living in compact colonies. Each microbe was 20 times smaller than the average bacteria.
In-depth study of the characteristics of Dallol and Danakil sites will improve the scientific understanding of the limits of life on Earth and bring information about the search for life on Mars and elsewhere in the universe. The sites’ unusual geochemistry makes it very similar to hydrothermal environments that would have been found on the Red Planet, including the Gusev Crater, where Nasa’s Spirit Mars Exploration Rover landed. While the Mars is mostly dry and desolate today, a growing body of research shows it was probably covered in large bodies of water between three and four billion years ago.
Source: The Independent.

Les couleurs de Dallol (Source: Wikipedia)