Inquiétudes pour le puits de carbone de l’Amazonie // Concerns for the Amazon carbon sink

Alors que la mise de côté – au moins momentanée – de l’exploration pétrolière au Groenland était une bonne nouvelle, il est une autre information qui est beaucoup plus inquiétante. D’après une étude publiée dans la revue Nature, les échantillons prélevés en altitude au cours de la dernière décennie montrent que le sud-est de l’Amazonie a été une source de dioxyde de carbone (CO2) sur la période 2010-2018, une évolution qui semble liée au changement climatique et à la déforestation. Le rôle de puits de carbone de la forêt amazonienne, la plus grande forêt tropicale de la planète, est donc sérieusement menacé. Il y a certes beaucoup de carbone stocké dans les forêts de l’Amazonie mais dans certaines régions, le CO2 libéré dans l’atmosphère excède maintenant ce qui est absorbé.

Les puits de carbone océanique et terrestre absorbent environ la moitié des émissions anthropiques de CO2. Les écosystèmes terrestres ont permis sur les 50 dernières années de pomper un quart du dioxyde de carbone lié aux activités humaines. Ils le doivent en grande partie à la forêt tropicale amazonienne où le CO2 absorbé pour la photosynthèse excède la quantité émise par la décomposition de la matière organique.

Si l’Amazonie, avec les 123 milliards de tonnes de carbone contenus dans ses arbres et son sol en arrivait à devenir une source plutôt qu’un puits de CO2, l’équation du changement climatique prendrait un tour plus complexe.

Depuis 1970, les forêts tropicales de la région ont diminué de plus de 17%, principalement pour permettre l’élevage du bétail et les cultures qui le nourrissent. Les forêts sont généralement défrichées par le feu, ce qui à la fois libère de grandes quantités de CO2 et réduit le nombre d’arbres disponibles pour absorber le dioxyde de carbone.

Le changement climatique est également un facteur clé. Annuellement, l’Amazonie se réchauffe dans son ensemble à peine plus que le reste de la planète. Mais il y a de grandes différences selon les régions et les saisons. Il est important de noter que le sud-est de l’Amazonie est, avec l’Arctique, un « point chaud » du réchauffement climatique.

La capacité du bassin amazonien à absorber le CO2 est un point clé mais les données satellitaires, en partie à cause de la couverture nuageuse persistante, ne sont pas en mesure de fournir une réponse complète. Pour contourner ce problème, les chercheurs ont utilisé des avions pour collecter près de 600 échantillons de CO2 et de monoxyde de carbone (CO) de 2010 à 2018, à des altitudes allant jusqu’à 4,5 kilomètres au-dessus de la canopée. Les relevés leurs ont permis de faire un bilan du CO2 absorbé par les forêts pour la photosynthèse par rapport à la quantité de CO2 produite par la décomposition de la matière organique.

Les relevés reflètent clairement les dégâts engendrés par l’activité humaine. Les changements les plus importants sont relevés dans les zones qui ont subi une déforestation à grande échelle et ont été fortement brûlées. L’étude montre que l’ouest de l’Amazonie absorbe encore légèrement plus de CO2 qu’il n’en dégage. Mais le sud-est, surtout pendant la saison sèche, émet plus de dioxyde de carbone qu’il n’en absorbe. On y observe une hausse des températures et une baisse des précipitations.

La forêt tropicale reçoit des précipitations, à l’échelle du bassin, d’environ 2 200 mm par an en moyenne. L’évapotranspiration a été estimée par plusieurs études comme étant responsable de 25 % à 35 % des précipitations totales. Mais les activités humaines risquent de perturber les interactions écosystème-climat. En effet, l’élimination des forêts provoque une augmentation de la température et réduit l’évapotranspiration.

L’Amazonie a perdu plus de 17% de sa surface forestière depuis 1970, notamment pour la conversion en terres agricoles. La déforestation s’est fortement accélérée entre 1991 et 2004. Le taux de déforestation a commencé à ralentir à partir de 2004, mais on.observe une reprise depuis 2015. La situation s’est encore aggravée avec l’élection de Jair Bolsonaro à la présidence du Brésil en 2019. En 2020, la déforestation a atteint son plus haut niveau depuis 2008.

Passés certains seuils, il est à craindre que des puits de carbone deviennent des sources importantes de libération gaz à effet de serre dans l’atmosphère. L’Amazonie est l’un des exemples de rétroactions susceptibles d’amplifier le réchauffement climatique. D’autres phénomènes pourraient entrer en jeu, comme le dégel du pergélisol, qui contient de grandes quantités de carbone organique.

Le dégel du pergélisol, les hydrates de méthane océaniques, l’affaiblissement des puits de carbone terrestres et océaniques, la croissance de la respiration bactérienne, le dépérissement des forêts amazonienne et boréale, la réduction de la couverture de neige, la réduction de la glace de mer et des calottes polaires sont autant de processus qui pourraient amplifier l’élévation de température globale liée à la hausse de concentration de CO2. Une étude publiée dans Proceedings of the National Academy of Sciences explique que l’ensemble de ces facteurs pourrait faire passer le réchauffement de la planète de 2°C à environ 2,47°C, avec une fourchette probable entre +2,24°C et +2,66°C.

Source : global-climat.

———————————–

While the shelving – at least momentarily – of oil exploration in Greenland was good news, there is another piece of news that is far more disturbing. According to a study published in the journal Nature, samples taken at altitude over the last decade show that the south-eastern Amazon was a source of carbon dioxide (CO2) over the period 2010-2018, an evolution which seems to be linked to climate change and deforestation. The role of the Amazon rainforest, the largest tropical forest on Earth as a carbon sink is therefore seriously threatened. While there is a lot of carbon stored in the forests of the Amazon, in some areas the CO2 released into the atmosphere now exceeds what is absorbed.

Oceanic and terrestrial carbon sinks absorb about half of anthropogenic CO2 emissions. Terrestrial ecosystems have made it possible over the past 50 years to pump out a quarter of the carbon dioxide linked to human activities. They owe much to the Amazon rainforest where the CO2 absorbed for photosynthesis exceeds the amount emitted by the decomposition of organic matter.

If the Amazon, with the 123 billion tonnes of carbon in its trees and soil were to become a source rather than a sink of CO2, the climate change equation would take a more complex turn. Since 1970, the region’s tropical forests have shrunk by more than 17%, mainly to support the rearing of livestock and the crops that feed them. Forests are usually cleared by fire, which both releases large amounts of CO2 and reduces the number of trees available to absorb carbon dioxide.

Climate change is also a key factor. Annually, the Amazon as a whole warms up slightly more than the rest of the planet. But there are big differences between regions and seasons. It is important to note that the southeastern Amazon, along with the Arctic, is a global warming « hot spot ».

The capacity of the Amazon basin to absorb CO2 is a key point but satellite data, mostly because of persistent cloud cover, is unable to provide a complete answer. To get around this problem, researchers used planes to collect nearly 600 samples of CO2 and carbon monoxide (CO) from 2010 to 2018, at altitudes up to 4.5 kilometers above the canopy. The readings enabled them to assess the CO2 absorbed by forests for photosynthesis in relation to the quantity of CO2 produced by the decomposition of organic matter.

The readings clearly reflect the damage caused by human activity. The most significant changes are found in areas that have suffered large-scale deforestation and have been heavily burned. The study shows that the western Amazon absorbs slightly more CO2 than it emits. But the southeast, especially during the dry season, emits more carbon dioxide than it absorbs. There is an increase in temperatures and a decrease in precipitation.

The rainforest receives basin-wide precipitation of about 2,200 mm per year on average. Evapotranspiration has been estimated by several studies to be responsible for 25% to 35% of total precipitation. But human activities risk disrupting ecosystem-climate interactions. Indeed, the elimination of forests causes an increase in temperature and reduces evapotranspiration.

The Amazon has lost more than 17% of its forest area since 1970, especially for conversion to agricultural land. Deforestation accelerated sharply between 1991 and 2004. The rate of deforestation began to slow from 2004, but there has been a recovery since 2015. The situation worsened further with the election of Jair Bolsonaro as president. Presidency of Brazil in 2019. In 2020, deforestation reached its highest level since 2008.

Beyond certain thresholds, it is to be feared that carbon sinks will become major sources of greenhouse gas release into the atmosphere. The Amazon is one example of feedback that may amplify global warming. Other phenomena could come into play, such as the thawing of permafrost, which contains large amounts of organic carbon.

Thawing of permafrost, oceanic methane hydrates, weakening of terrestrial and oceanic carbon sinks, growth of bacterial respiration, dieback of Amazonian and boreal forests, reduction of snow cover, reduction of ice sea and polar ice caps are all processes that could amplify the rise in global temperature linked to the rise in CO2 concentration. A study published in Proceedings of the National Academy of Sciences explains that all of these factors could increase global warming from 2°C to around 2.47°C, with a probable range between + 2.24°C. and + 2.66°C.

Source: global-climat.

Le recul du glacier Blomstrandbreen (Svalbard / Norvège) // The retreat of Blomstrandbreen (Svalbard / Norway)

Depuis quelques jours, on peut voir sur les réseaux sociaux des images du glacier norvégien Blomstrandbreen, dans la partie occidentale du Spitzberg. Elles illustrent, si besoin était, le recul tragique des glaciers sur Terre. Comme souvent sur les réseaux sociaux, il faut se méfier des erreurs qui accompagnent la diffusion de certains documents. Les photos présentées ont été prises en 1918 (cliché noir et blanc) et 2002 (cliché couleur), et non 1960 et 2020 comme indiqué sur Facebook.

La photo en noir et blanc provient des collections de l’Institut polaire norvégien. La photo en couleur, a été prise en 2002 par le photographe suédois Christian Åslund, dans le cadre d’une campagne de Greenpeace visant à sensibiliser au recul des glaciers.

Même si leurs dates doivent être corrigées, les deux photos sont la parfaite illustration du recul des glaciers lié au réchauffement climatique.

Avec le Kronebreen, un autre glacier situé au fond du fjord, Blomstrandbreen est l’un des glaciers qui reculent le plus rapidement au Svalbard. Comme ailleurs dans l’Arctique, cette région se réchauffe deux à trois fois plus vite que la moyenne mondiale. Comme je l’ai déjà indiqué, la température y a augmenté de trois degrés en un siècle.

Source : Yahoo News.

———————————–

In recent days, we have seenon social networks images of the Norwegian glacier Blomstrandbreen, in the western part of Spitsbergen. They illustrate, if need be, the tragic retreat of glaciers on Earth. As is often the case on social networks, one should beware of the errors that accompany the release of certain documents. The photos shown were taken in 1918 (black and white shot) and 2002 (colour shot), not 1960 and 2020 as posted on social media.

The black and white photo is from the collections of the Norwegian Polar Institute. The colour photo was taken in 2002 by Swedish photographer Christian Åslund, as part of a Greenpeace campaign to raise awareness of retreating glaciers. Even though their dates must be corrected, the two photos are the perfect illustration of the retreat of glaciers linked to global warming.

Along with Kronebreen, another glacier at the bottom of the fjord, Blomstrandbreen is one of the fastest receding glaciers in Svalbard. Like elsewhere in the Arctic, this region is warming two to three times faster than the global average. As I have already indicated, the temperature has risen there by three degrees in a century.

Source: Yahoo News.

Le document avec dates erronées diffusé sur Facebook

La fonte inquiétante des glaciers islandais // The disturbing melting of Icelandic glaciers

En Islande, plus de la moitié des calottes glaciaires et des glaciers se trouvent à proximité ou directement au-dessus des volcans. Le Mýrdalsjökull, la quatrième calotte glaciaire d’Islande par sa superficie, en est un bon exemple car elle recouvre le Katla qui entre généralement en éruption environ deux fois par siècle. La dernière colère du volcan a eu lieu en 1918.

Le Katla est calme depuis un certain temps. On a enregistré des épisodes d’activité sismique, mais pas d’éruptions dignes de ce nom. Cependant, de petites crues glaciaires – jokulhlaup en islandais – sont observées de temps à autre, ce qui indique que des montées en chaleur peuvent se produire sous la calotte glaciaire.

Malgré la période de calme actuelle de Katla, la calotte glaciaire du Mýrdalsjökull a subi des changements au cours des dernières années. L’Operational Land Imager du satellite Landsat 8 a acquis une image le 20 septembre 2014.

 

Source : NASA

Une autre image avait été acquise par le satellite Landsat 5 le 16 septembre 1986. On peut parfaitement voir les changements subis par le glacier.

 

Les changements sont encore plus frappants lorsqu’on visite le glacier. J’étais en Islande en juillet 2001. Une route en terre battue menait directement au Solheimajökull, une branche sud-ouest de Mýrdalsjökull. La route s’arrêtait juste devant le glacier. La rivière de fonte coulait juste devant la glace et une forte odeur de soufre imprégnait le site.

J’ai de nouveau visité le Solheimajökull en juillet 2021 et je n’en croyais pas mes yeux. Une nouvelle route asphaltée a été construite et j’ai dû marcher une quinzaine de minutes avant d’atteindre le point de vue sur le glacier qui recule de 50 mètres par an. En conséquence, le parking doit être déplacé presque chaque année.

La vue sur le glacier est très intéressante. On peut voir les strates sombres de cendres qui ont été déposées par des éruptions du passé. Quelques-uns de ces strates proviennent probablement de l’Hekla, un autre volcan explosif au nord de la ville de Hella. Au milieu de la calotte glaciaire, la couche noire peut probablement être attribuée à des épisodes volcaniques plus récents.

 

Aujourd’hui, seuls quelques morceaux de glace occupent le couloir laissé par le Solheimajökull. La montagne au centre de la photo est celle que l’on peut voir sur la deuxième photo de 2001. En 20 ans, le glacier a reculé de plusieurs centaines de mètres.  

Photos : C. Grandpey

++++++++++

More than half of Iceland’s numerous ice caps and glaciers sit near or directly over volcanoes. Mýrdalsjökull—Iceland’s fourth largest ice cap— is a good example as it covers the Katla volcano which usually erupts about twice per century, with the last confirmed eruption in 1918.

Katla has been quiet for some time. There have been episodes of seismic activity, but still no big eruptions. However, occasional small glacial outburst floods – jokulhlaups in Icelandic – have been observed, an indication that small events may be occurring below the ice cap.

Despite Katla’s current quiet period, the Mýrdalsjökull ice cap has undergone changes over the past years. The Operational Land Imager on the Landsat 8 satellite acquired an image on September 20th, 2014. (see image above)

Another image had been acquired by the Landsat 5 satellite on September 16th, 1986. One can perfectly see the changes undergone by the glacier. (see image above)

The changes are still more striking when one visits the glacier. I was in Iceland in 2001. A gravel road led directly to Solheimajökull, a southwest branch of Mýrdalsjökull. The road stopped right in front of the glacier, with the melt river flowing right in front of the ice and a strong smell of sulphur on the site. (see photo above)

I visited Solheimajökull again in July 2021 and I could not believe my eyes. A new road had been built and I had to walk about 15 minutes to reach the viewing point on the glacier which has been retreating as much as 50 metres per year. As a consequence, the parking lot has to be moved almost annually. (see photo above)

The view of the glacier is very interesting. One can see brown bands of ash that were deposited by past eruptions. A few of the bands are likely from Hekla, another explosive volcano to the north of the city of Hella. Across the middle of the ice cap, the dark surface can likely be attributed to more recent volcanic episodes. (see photos above).

Today, a few pieces of ice can be seen in the passage left by the melting glacier. The mountain at the centre of the last photo is the one that can be seen in the second photo of 2001. The glacier has retreated by several hundred metres.

Réchauffement climatique : de plus en plus d’orages dans l’Arctique // Global warming : more and more thunderstorms in the Arctic

Avec le changement et le réchauffement climatiques, les orages sont de plus en plus fréquents dans l’Arctique. Les météorologues ont signalé trois épisodes orageux successifs, avec des éclairs impressionnants, au cours d’une seule semaine entre la Sibérie et le nord de l’Alaska. Ils n’avaient jamais rien vu de tel auparavant.

En règle générale, l’air au-dessus de l’Océan Arctique, en particulier lorsque l’eau est recouverte de glace, n’a pas la chaleur convective nécessaire pour générer des orages. Comme je l’ai indiqué à plusieurs reprises, l’Arctique se réchauffe plus rapidement que le reste du monde, de sorte que les conditions changent. Les épisodes orageux accompagnés d’éclairs pendant l’été au delà du Cercle Polaire arctique ont triplé depuis 2010, une tendance directement liée au changement climatique et à la perte de glace de mer de plus en plus rapide dans le Grand Nord. À mesure que la glace de mer disparaît, une plus grande quantité d’eau peut s’évaporer ; cela ajoute de l’humidité à l’atmosphère qui se réchauffe.

Les orages accompagnés d’éclairs menacent les forêts boréales de l’Arctique car ils déclenchent des incendies dans des régions reculées qui sont exposées au soleil de l’été 24 heures sur 24. Les éclairs sont également plus fréquents au-dessus des régions de toundra dépourvues d’arbres, ainsi qu’au-dessus de l’Océan Arctique et de la banquise. En août 2019, la foudre a même frappé à moins de 100 kilomètres du Pôle Nord.

Selon deux études menées par des scientifiques du National Center for Atmospheric Research à Boulder, Colorado, rien qu’en Alaska, l’activité orageuse va probablement tripler d’ici la fin du siècle si les tendances climatiques actuelles se confirment.

Avec la forte augmentation des éclairs, la Sibérie a connu des incendies de forêt de plus en plus violents ces dernières années (voir mes notes à ce sujet). Début juillet 2021, l’armée russe a procédé à des largages d’eau pour éteindre les flammes qui brûlaient près de 800 000 hectares de forêt. La Yakoutie, qui est la région la plus durement touchée, est en état d’urgence depuis des semaines.

De l’autre côté du détroit de Béring, la foudre à la mi-juin a déclenché l’un des plus gros incendies de l’été en Alaska en brûlant une immense étendue de toundra à environ 200 km au nord du Cercle Polaire.

Le réchauffement de l’Arctique favorise la croissance de la végétation dans la toundra du nord de l’Alaska, ce qui alimente encore davantage les incendies. Selon des chercheurs du Centre International de Recherche sur l’Arctique à Fairbanks, à la fin du siècle, une superficie deux fois plus importante de toundra se consumera en Alaska, avec des incendies de végétation qui se produiront quatre fois plus fréquemment.

Source : Yahoo Actualités.

——————————-

With climate change and global warming, thunderstorms are becoming more and more frequent in the Arctic. Meteorologists have reported three successive thunderstorms with impressive lightning bolts in a single week from Siberia to the north of Alaska. Forecasters had not seen anything like that before.

Typically, the air over the Arctic Ocean, especially when the water is covered with ice, lacks the convective heat needed to generate lightning storms. But as climate change warms the Arctic faster than the rest of the world, the conditions are changing. Episodes of summer lightning within the Arctic Circle have tripled since 2010, a trend directly tied to climate change and increasing loss of sea ice in the far north. As sea ice vanishes, more water is able to evaporate, adding moisture to the warming atmosphere.

These electrical storms threaten boreal forests fringing the Arctic, as they spark fires in remote regions already baking under the round-the-clock summer sun. There is also more frequent lightning over the Arctic’s treeless tundra regions, as well as above the Arctic Ocean and pack ice. In August 2019, lightning even struck within 100 kilometres of the North Pole.

According to two studies by scientists at the National Center for Atmospheric Research in Boulder, Colorado, in Alaska alone, thunderstorm activity is on track to increase three-fold by the end of the century if current climate trends continue.

With the sharp uptick in lightning, Siberia has seen increasingly violent forest fires in recent years. In early July 2021, the Russian army deployed water-dropping aircraft to douse flames burning nearly 800,000 hectares of forest, while the hardest-hit region of Yakutia has been in a state of emergency for weeks.

On the other side of the Bering Strait, mid-June lightning sparked one of the biggest fires this summer in Alaska, scorching a huge expanse of tundra about 200 km north of the Arctic Circle.

Warming in the Arctic is also encouraging the growth of vegetation on northern Alaska’s tundra, adding further fuel for fires. According to researchers at the International Arctic Research Center in Fairbanks, by the end of the century, twice as much Alaska tundra could burn on a regular basis than was the norm in the past, with fires occurring four times more frequently.

Source : Yahoo News.

Incendies de végétation en Sibérie (Source : The Siberian Times)