Les éruptions du 6ème siècle // The sixth-century eruptions

On sait depuis longtemps que les éruptions volcaniques peuvent avoir un effet sur le climat. L’exemple le plus récent est l’éruption du Pinatubo en 1991 aux Philippines qui a fait baisser en moyenne de 0,6°C la température de notre planète pendant 2 ou 3 ans.
En 1815, l’éruption du Tambora en Indonésie, a provoqué, entre autres, des gelées en plein été dans l’État de New York et des chutes de neige en juin en Nouvelle-Angleterre. 1816 a été baptisée « l’Année sans été ».
L’été de 1783 a été exceptionnellement froid à cause de l’éruption du Laki en Islande. Le volcan a émis d’énormes quantités de dioxyde de soufre, ce qui a provoqué la mort d’une grande partie du bétail de l’île, ainsi qu’une famine catastrophique qui a tué un quart de la population islandaise. Les températures de l’hémisphère nord ont chuté d’environ 1°C dans l’année qui a suivi l’éruption du Laki.
Au cours de l’été 536, un mystérieux nuage a recouvert le bassin méditerranéen. Le climat local s’est refroidi pendant plus d’une décennie. Les récoltes ont été anéanties, ce qui a entraîné une famine de grande ampleur. De 541 à 542, une pandémie connue sous le nom de Peste de Justinien a affecté l’Empire Romain d’Orient.
Les scientifiques ont longtemps pensé que la cause des problèmes dont fut victime l’Empire Romain pouvait être une éruption volcanique majeure, probablement celle du volcan Ilopango au Salvador, dont la cendre aurait envahi l’atmosphère. Aujourd’hui, les chercheurs sont convaincus qu’il y a eu en fait deux éruptions – une sur 535 ou 536 dans l’hémisphère nord et une autre en 539 ou 540 sous les tropiques – qui ont refroidi les températures de l’hémisphère nord jusqu’en 550.
Cette nouvelle hypothèse fait suite à une analyse récente qui associe des carottes de glace prélevées en Antarctique et au Groenland et des données provenant de cernes (ou anneaux de croissance) d’arbres. Selon ces données, presque tous les événements de refroidissement survenus dans l’hémisphère nord au cours des 2 500 dernières années peuvent être attribués à des volcans.
Quand un volcan entre en éruption, il envoie des aérosols soufrés dans l’atmosphère où ils peuvent persister pendant deux à trois ans. Ces aérosols bloquent une partie du rayonnement solaire et provoquent un refroidissement.
Les arbres enregistrent les impacts climatiques d’une éruption et cela se traduit par la taille de leurs cernes; Quand un événement lié au climat se produit, les anneaux de croissance peuvent être plus larges ou plus minces que la moyenne, selon que la région est humide ou sèche, et en fonction de la durée normale de la période de croissance. Dans le même temps, les aérosols soufrés finissent par retomber sur Terre et s’infiltrent dans la glace de la banquise et des glaciers, fournissant un enregistrement des éruptions.
L’association des carottes glaciaires et des cernes des arbres s’est avérée difficile dans le passé. C’est pourquoi les chercheurs du Desert Research Institute de Las Vegas ont utilisé un plus grand nombre de carottes de glace que les  études précédentes. Ils ont également employé une nouvelle méthode pour améliorer la résolution des données obtenues à partir des carottes. Elle consiste à faire fondre la carotte à une extrémité et à analyser en continu l’eau de fonte. L’équipe scientifique a ensuite utilisé un algorithme pour faire correspondre les données obtenues à partir des carottes de glace et celles fournies par les cernes des arbres.
Dans un article publié dans la revue Nature, les chercheurs disent avoir détecté 238 éruptions au cours des 2500 dernières années. Environ la moitié d’entre elles se situaient dans les hautes et moyennes latitudes de l’hémisphère nord, tandis que 81 se trouvaient dans les zones tropicales. En raison de la rotation de la Terre, les matériaux émis par des volcans tropicaux se retrouvent au Groenland et en Antarctique, tandis que les matériaux émis par des volcans de l’hémisphère nord tendent à y rester. Les sources exactes de la plupart des éruptions restent inconnues, mais l’équipe de chercheurs a pu faire correspondre leurs effets sur le climat aux enregistrements fournis par les cernes des arbres.
En ce qui concerne l’Empire Romain, la première éruption, à la fin de l’année 535 ou au début de 536, a injecté de grandes quantités de sulfates et de cendres dans l’atmosphère. Selon les récits historiques, l’atmosphère s’est assombrie en mars 536, et est restée ainsi pendant 18 mois. Les cernes ont enregistré des températures froides en Amérique du Nord, en Asie et en Europe où les températures estivales ont chuté de 1,1 à 2,2 degrés Celsius par rapport à la moyenne des 30 années précédentes. Puis, en 539 ou 540, un autre volcan est entré en éruption. Il a émis 10 pour cent de plus d’aérosols dans l’atmosphère que l’éruption du Tambora en 1815. De nouvelles calamités sont apparues, avec des famines et des pandémies. Selon les auteurs de l’article, ces éruptions ont probablement contribué au déclin de l’empire maya.
Tous ces exemples montrent clairement l’impact des éruptions volcaniques sur notre climat et, dans certains cas, sur la santé humaine, l’économie et l’histoire.
Source: Smithsonian Magazine.

——————————————-

It is well known that volcanic eruptions can have an effect on the climate. The most recent example is the 1991 eruption of Mount Pinatubo in the Philippines which cooled global temperatures for about 2–3 years.

The 1815 eruption of Mount Tambora in Indonesia, occasioned – among others – mid-summer frosts in New York State and June snowfalls in New England. 1816 came to be known as the « Year Without a Summer. »

The summer of 1783 was unusually cold because of the volcanic dust produced by the eruption of Laki volcano in Iceland. It released enormous amounts of sulfur dioxide, resulting in the death of much of the island’s livestock and a catastrophic famine which killed a quarter of the Icelandic population. Northern hemisphere temperatures dropped by about 1°C in the year following the Laki eruption.

In the summer of 536, a mysterious cloud appeared over the Mediterranean basin. The local climate cooled for more than a decade. Crops failed, and there was widespread famine. From 541 to 542, a pandemic known as the Plague of Justinian swept through the Eastern Roman Empire.

Scientists had long suspected that the cause of all this misery might be a volcanic eruption, probably from Ilopango in El Salvador, which filled Earth’s atmosphere with ash. But now researchers say there were actually two eruptions – one in 535 or 536 in the northern hemisphere and another in 539 or 540 in the tropics – that kept temperatures in the north cool until 550.

The revelation comes from a new analysis that combines ice cores collected in Antarctica and Greenland with data from tree rings. According to the data, nearly all extreme summer cooling events in the northern hemisphere in the past 2,500 years can be traced to volcanoes.

When a volcano erupts, it spews sulfur aerosols into the air, where they can persist for two to three years. These aerosols block out some of the sun’s incoming radiation, causing cooling.

Trees record the climate impacts of an eruption in the size of their rings ; when a climate-related event occurs, the rings may appear wider or thinner than average, depending on whether the region is typically wet or dry and the normal length of the growing season. Meanwhile, the sulfur particles eventually fall to Earth and get incorporated into polar and glacial ice, providing a record of the eruptions.

Combining the two types of records had proven difficult in the past. So, researchers at the Desert Research Institute in Las Vegas used more ice cores than any previous study. They also employed a method to enhance the resolution in the data obtained from the cores. It consisted in melting the core from one end and continuously analyzing the meltwater. The team then used a sophisticated algorithm to match up their ice core data with existing tree ring datasets.

In an article published in the journal Nature, the researchers say they detected 238 eruptions from the past 2,500 years. About half were in the mid- to high-latitudes in the northern hemisphere, while 81 were in the tropics. Because of the rotation of the Earth, material from tropical volcanoes ends up in both Greenland and Antarctica, while material from northern volcanoes tends to stay in the north. The exact sources of most of the eruptions are as yet unknown, but the team was able to match their effects on climate to the tree ring records.

As far as the Roman Empire is concerned, the first eruption, in late 535 or early 536, injected large amounts of sulfate and ash into the atmosphere. According to historical accounts, the atmosphere had dimmed by March 536, and it stayed that way for another 18 months. Tree rings recorded cold temperatures in North America, Asia and Europe, where summer temperatures dropped by 1.1 to 2.2 degrees Celsius below the average of the previous 30 years. Then, in 539 or 540, another volcano erupted. It spewed 10 percent more aerosols into the atmosphere than the huge eruption of Tambora in Indonesia in 1815. More misery ensued, including the famines and pandemics. According to the authors of the article, the same eruptions may have even contributed to a decline in the Maya empire.

All these examples clearly show the marked impact that volcanic eruptions have on our climate and, in some cases, on human health, economics and so history.

Source: Smithsonian Magazine.

Vue du lac et de la caldeira de l’Ilopango au Salvador (Crédit photo : Wikipedia)

Publicités

Changement climatique et circulation océanique // Climate change and ocean circulation

Avec le changement climatique et le réchauffement de la planète, une crainte majeure des scientifiques est que la hausse des températures puisse modifier la circulation mondiale des océans, avec des conséquences sur des courants comme le Gulf Stream.
Des scientifiques qui étudient un secteur de l’Atlantique Nord ont découvert de nouvelles preuves que l’eau douce produite par la fonte du Groenland et de la banquise arctique modifie déjà un processus clé qui contribue à la circulation mondiale des océans.
Dans les eaux froides qui se trouvent de part et d’autre du Groenland, la circulation océanique «se renverse» : les eaux de surface se déplacent vers le nord, deviennent plus froides et plus denses et finissent par s’enfoncer vers l’Antarctique à des profondeurs extrêmes. Toutefois, une trop grande quantité d’eau douce à la surface pourrait interférer avec cette convection car, étant moins salée, l’eau perd de sa densité et ne s’enfonce pas aussi facilement.
Dans une nouvelle étude, des scientifiques du Centre GEOMAR Helmholtz pour la Recherche Océanique à Kiel (Allemagne) ont découvert qu’après des étés particulièrement chauds dans la Mer d’Irminger, au sud-est du Groenland, la convection avait tendance à être perturbée en hiver. Dans certains cas, une couche d’eau de fonte reste à la surface de l’océan l’année suivante, au lieu de disparaître dans ses profondeurs dans le cadre de la circulation méridienne de retournement. Les dernières observations montrent que cette eau douce retarde considérablement la convection depuis plusieurs années.
La dernière étude repose sur un travail d’observation ; il ne s’agit pas d’une prévision, et personne ne sait vraiment quelle quantité d’eau douce serait suffisante pour ralentir ou arrêter de façon significative la Circulation Méridienne de Retournement – Atlantic Meridional Overturning (AMOC) – aussi appelée circulation thermohaline. Néanmoins, cela montre que des processus clés qui inquiètent le monde scientifique depuis longtemps sont maintenant en cours.
Pour rassembler toutes les données, les chercheurs ont parcouru en bateau la Mer d’Irminger. Là, ils ont récolté les données fournies par des balises qui effectuent des mesures des eaux dans les régions clés de la convection océanique. Les chercheurs possèdent maintenant des données qui s’étalent sur 13 années de mesures. Ils ont constaté qu’en hiver, l’air froid refroidit suffisamment l’eau de surface qui s’écoule vers le nord pour la rendre plus dense et la faire s’enfoncer. Toutefois, l’eau de fonte interfère avec ce processus et le retarde, faute d’une salinité suffisante. Dans les années où se déversent de grandes quantités d’eau de fonte, l’océan devient également plus chaud. Cela contribue à retarder le début de la convection car la couche superficielle de l’océan éprouve des difficultés à perdre suffisamment de chaleur pour s’enfoncer dans les profondeurs. L’étude a révélé que 40% des eaux de fonte se sont attardées dans la Mer d’Irminger pendant l’hiver 2010-2011.
L’étude n’est pas en mesure de prévoir le moment où ces processus atteindront un seuil critique et provoqueront un changement majeur vers un nouveau régime de circulation océanique. Les simulations du changement climatique montrent généralement que si la hausse globale des températures devait effectivement affaiblir la circulation méridienne de retournement dans l’Atlantique, le processus se ferait progressivement, mais les scientifiques reconnaissent que ces simulations ne sont pas nécessairement exhaustives. C’est pourquoi l’étude actuelle est très importante et représente une pièce maîtresse du puzzle.
Source: The Washington Post.

—————————————–

With climate change and global warming, a major fear of scientists is that the rising temperatures may alter the global circulation of the oceans, with consequences on currents like the Gulf Stream.

Scientists studying a stretch of the North Atlantic have found new evidence that fresh water, likely melted from Greenland or Arctic sea ice, may already be altering a key process that helps drives the global circulation of the oceans.

In cold waters on either side of Greenland, the ocean circulation « overturns, » as surface waters travelling northward become colder and more dense and eventually sink, travelling back southward toward Antarctica at extreme depths. But too much fresh water at the surface could interfere with the convection because with less salt, the water loses density and does not sink as easily.

In a new research, scientists at the GEOMAR Helmholtz Center for Ocean Research in Kiel, Germany, found that following particularly warm summers in the remote Irminger Sea, convection tended to be more impaired in winter. In some cases, a layer of meltwater stayed atop the ocean into the next year, rather than vanishing into its depths as part of the overturning circulation. The latest observations show that there is actually freshwater and that it is already affecting the convection and it delays this convection quite a lot in some years.

However, this is an observational study, not a prediction for the future, and nobody really knows how much freshwater is enough to significantly slow or shut down the AMOC, an acronym for Atlantic Meridional Overturning Circulation.  Still, it suggests that key processes that have raised long-standing concern are already happening.

To collect the data, the researchers travelled by ship out into the Irminger Sea to the southeast of Greenland. There, they read data from ocean moorings that take measurements of the character of the waters in key regions of ocean convection. The researchers now have a 13-year record to draw upon from this area.

In winter, cold air chills the northward-flowing surface water in this region enough to cause it to become denser and sink. But meltwater interferes with and delays this process because, lacking salinity, it is less dense and so less prone to sink. In the high meltwater years, the ocean is also just warmer overall. That also delays the onset of convection because it is harder for the ocean surface layer to lose enough heat to sink. The study found that in the single year 2010, 40 percent of fresh meltwater managed to linger in the Irminger Sea over winter and into the next year.

There are no predictions in this study about when these processes would actually reach such a threshold or cause a major switch to a new regime. Climate change simulations have generally found that while global warming should indeed weaken the Atlantic overturning circulation, that should play out gradually, but scientists acknowledge that these simulations are not necessarily complete. That’s why the current study, also matters a great deal and represents an important piece in the puzzle.

Source : The Washington Post.

Circulation des courants de surface (courbes entières) et des courants profonds (courbes en pointillés) qui forment une partie de la circulation méridienne de retournement dans l’Atlantique (Source: Woods Hole Oceanographic Institution)

Conférences…

Ma saison de conférences 2017-2018 vient de se terminer à Tonneins (Lot-et-Garonne) avec des images de la fonte des glaciers dans le monde et des images de l’Alaska. Je remercie très sincèrement toutes les personnes qui m’ont fait confiance et ont eu la patience d’écouter mes propos sur les volcans et les risques volcaniques, ainsi que sur la fonte inquiétante de la glace dans le monde. Avec le printemps et l’été, l’heure est aux sorties à la campagne, au jardinage et aux vacances. Ce n’est pas la meilleure époque de l’année pour aller s’enfermer dans une salle.

J’aurai le plaisir de faire de nouvelles conférences à partir du mois de septembre. Je vous tiendrai au courant des dates et lieux de mes prochaines interventions.

Si votre municipalité, notre association ou votre comité d’entreprise sont intéressés par les sujets proposés, leurs responsables peuvent me contacter par mail : grandpeyc@club-internet.fr

Risques volcaniques….

Glaciers en péril….

Photos: C. Grandpey

La chaleur interne de la Terre accélère le glissement de la calotte glaciaire du Groenland // Heat from Earth’s interior accelerates the sliding of ice sheets in Greenland

Jusqu’à présent, l’amincissement de la calotte glaciaire du Groenland était attribué à la seule hausse des températures qui accompagne le réchauffement climatique actuel sur notre planète. De nouvelles recherches laissent supposer que la dissipation de la chaleur interne de la Terre est également responsable de l’accélération du glissement de la calotte glaciaire du Groenland vers la mer. La dernière étude, publiée dans la revue Scientific Reports, est la première à établir un lien entre cette perte de glace et la chaleur en provenance de l’intérieur de la Terre.
La recherche est le fruit d’un travail de dix ans sur le fjord Young Sund au Groenland. Pendant ces dix années, des scientifiques du Centre de Recherche Arctique, de l’Université d’Aarhus et de l’Institut des Ressources Naturelles du Groenland ont mesuré les températures et les niveaux de salinité dans le fjord. Leur étude a montré que l’eau du fjord, entre 200 et 330 mètres de profondeur, s’est graduellement réchauffée au cours de la dernière décennie.
Une analyse plus poussée a montré qu’une quantité importante de chaleur émanait de l’intérieur de la Terre et réchauffait lentement l’eau du fjord. Les scientifiques estiment à environ 100 milliwatts (mW) par mètre carré l’énergie transférée de l’intérieur de la Terre vers le fjord.
Les résultats montrent que des quantités similaires de chaleur ont atteint la base des glaciers de la région. Ce nouveau mécanisme de réchauffement crée une lubrification qui accélère la progression des glaciers vers la mer.
Selon les chercheurs, c’est l’action combinée de la température plus élevée de l’air et de la mer, les précipitations venues du ciel, la dynamique locale de la calotte glaciaire et la perte de chaleur de l’intérieur de la Terre qui entraîne la perte de masse de la calotte glaciaire du Groenland. Ils sont persuadés que la chaleur de l’intérieur de la Terre affecte le mouvement de la glace, et ils pensent qu’une infiltration de chaleur identique se produit en dessous d’une grande partie de la calotte glaciaire dans la partie nord-est du Groenland.
Il est difficile de mesurer le flux de chaleur sous les glaciers, mais les scientifiques espèrent que leurs dernières découvertes permettront une modélisation plus précise du mécanisme de réchauffement. Avec des mesures plus précises du flux de chaleur, les scientifiques pourront prédire avec plus de précision le devenir des calottes glaciaires du Groenland.
Vous trouverez plus de détails sur l’étude en cliquant sur ce lien:

https://www.nature.com/articles/s41598-018-19244-x

Source: Nature.com.

—————————————

Up to now, the thinning of Greenland’s icecap was attributed to rising temperatures that accompany the current global warming n Earth. New research suggests the dissipation of heat from Earth’s interior is also responsible for the acceleration of the seaward slide of Greenland’s ice sheets. The latest research, published in the journal Scientific Reports, is the first to link the ice loss with escaped heat from Earth’s interior.

The research was made possible by a decade-long survey of Greenland’s Young Sund fjord. For ten years, scientists with the Arctic Research Centre, Aarhus University and the Greenland Institute of Natural Resources measured temperatures and salinity levels in the fjord. Their survey showed deep-lying water in the fjord, between 200 and 330 metres deep, has gradually warmed over the last decade.

Further analysis showed a significant amount of heat is emanating from Earth’s interior, slowly warming the fjord’s water. Scientists estimated 100 milliwatts (mW) per square metre of energy was transferred from the Earth’s interior to the fjord.

The findings suggest similar amounts of heat were transferred to the bottoms of surrounding glaciers. This newly detailed warming mechanism creates lubrication, accelerating glacial descent.

According to the researchers, it is the combination of higher temperatures in the air and the sea, precipitation from above, local dynamics of the ice sheet and heat loss from the Earth’s interior that determines the mass loss from the Greenland ice sheet. They are persuaded that the heat from the Earth’s interior affects the movement of the ice, and they expect that a similar heat seepage takes place below a major part of the ice cap in the north-eastern corner of Greenland.

Measuring heat flux beneath glaciers is difficult, but scientists hope their latest findings will lead to more accurate modeling of the warming mechanism. With more accurate measurements of heat flux, scientists can more accurately predict the fate of Greenland’s ice sheets.

More details about the study can be found at this address: https://www.nature.com/articles/s41598-018-19244-x

Source : Nature.com.

Young Sund Fjord (Source : Arctic Science Partnership)

Impact de la fonte des glaciers sur les systèmes situés en aval // Impact of glaciers melting on downstream systems

Les glaciers couvrent près de 10 % de la surface terrestre de la Terre, mais reculent rapidement dans la plupart des régions du monde. Comme je l’ai répété à plusieurs reprises, c’est dans les régions du Golfe de l’Alaska, de l’Arctique canadien, du Groenland et de l’Antarctique que ce recul glaciaire est le plus évident. En conséquence, l’attention des scientifiques s’est focalisée jusque-là sur la hausse du niveau des mers qui résulte de la fonte de ces glaciers. Un nouveau document publié par des chercheurs des universités de Birmingham (Angleterre) et de Fairbanks (Alaska / Etats-Unis) décrit d’autres effets en aval qui auront des implications sociétales importantes dans les prochaines années. Les auteurs demandent que l’on mette davantage l’accent sur la planification des mesures d’adaptation et d’atténuation dans toutes les régions touchées. Les régions les plus concernées par ces remarques sont les Alpes en Europe, et les Andes sud-américaines. Comme le soulignent les chercheurs, l’espace alpin s’est particulièrement réchauffé durant les trente dernières années et en particulier pendant les mois d’été. Combiné à une diminution des chutes de neige, les surfaces de glace ont reculé de plus de moitié (54 %) depuis 1850. Selon les calculs actuels, les glaciers pourraient atteindre à la fin du 21ème siècle entre 4 et 13 % de la surface qu’ils avaient en 2003. Les effets de ce rétrécissement à l’échelle mondiale pourraient avoir de grosses conséquences.

Les chercheurs indiquent que des changements dans l’hydrologie et la morphologie des rivières sont à prévoir. Le débit des rivières deviendra plus imprévisible puisqu’il dépendra moins des eaux de fonte et davantage des précipitations. Le rétrécissement des glaciers permettra également le transport des polluants, y compris les produits d’émission issus de l’activité industrielle, tels que le carbone noir et les composés associés comme le mercure, les pesticides et d’autres polluants organiques persistants contaminant les océans et nappes phréatiques. Le recul des glaciers aura aussi un impact direct sur les populations dépendantes des rivières alimentées par les glaciers. Cela couvre l’approvisionnement en eau, l’agriculture, la pêche, mais aussi des aspects culturels ou même religieux.

Comme le fait remarquer l’un des auteurs de l’étude, « nous pensons que l’impact du retrait glaciaire sur nos écosystèmes en aval n’a pas été entièrement intégré à ce jour. Cela va de la diversité des espèces au tourisme, des centrales hydrauliques à la fourniture d’eau potable… les risques sont très vastes. La première étape consiste à repenser la façon dont nous considérons le rétrécissement glaciaire et mettre en place un programme de recherche qui reconnaît le risque pour les régions susceptibles d’être les plus touchées ».

Les chercheurs insistent sur le fait que des stratégies de gestion appropriées devront être développées et adoptées pour atténuer les impacts sociétaux des changements profonds dans le ruissellement glaciaire. Ils proposent quelques recommandations essentielles qui devraient soutenir un programme de recherche mondial impliquant une recherche interdisciplinaire. Cela implique notamment une cartographie détaillée du changement de masse des glaciers à partir de nouvelles technologies d’imagerie et de traitement, ou encore un effort de recensement des principales variables biogéochimiques, des charges de contaminants et de la biodiversité dans les rivières alimentées par les glaciers via des réseaux de surveillance largement répandus avec des méthodes d’échantillonnage standardisées.

———————————–

Glaciers cover nearly 10% of Earth’s land surface, but are rapidly retreating in most parts of the world. As I have written it many times, it is in the Gulf of Alaska, the Canadian Arctic, Greenland and Antarctic regions that this glacial retreat is most evident. As a result, the attention of scientists has hitherto focused on the rise in sea levels that results from the melting of these glaciers. A new paper published by researchers from the Universities of Birmingham (England) and Fairbanks (Alaska / USA) describes other downstream effects that will have significant societal implications in the coming years. The authors call for greater emphasis on adaptation and mitigation planning in all affected regions. The regions most affected by these remarks are the Alps in Europe and the South American Andes. As the researchers point out, the Alps have warmed up particularly during the last thirty years and especially during the summer months. Combined with a decrease in snowfall, ice surfaces have decreased by more than half (54%) since 1850. According to current calculations, glaciers could reach at the end of the 21st century between 4 and 13% of the surface area. they had in 2003. The effects of glacial retreat on a global scale could have major consequences.
Researchers say changes in river hydrology and morphology are expected. River flow will become more unpredictable as it will depend less on meltwater and more on rainand snowfall. The shrinking of glaciers will also allow the transport of pollutants, including emission products from industrial activity, such as black carbon and associated compounds such as mercury, pesticides and other persistent organic pollutants contaminating the oceans and groundwater. The retreat of glaciers will also have a direct impact on populations dependent on glacier-fed rivers. This includes water supply, agriculture, fishing, but also cultural or even religious aspects.
As one of the authors of the study notes, « We believe that the impact of glacier retreat on our downstream ecosystems has not been fully integrated to date. It ranges from species diversity to tourism, from hydroelectric plants to the supply of drinking water … The risks are very vast. The first step is to rethink the way we look at glacial shrinkage and implement a research program that recognizes the risk to the areas that may be most affected.  »
The researchers emphasize that appropriate management strategies will need to be developed and adopted to mitigate the societal impacts of deep changes in glacial runoff. They propose some key recommendations that should support a global research agenda involving interdisciplinary research. This includes a detailed mapping of glacier mass change from new imaging and treatment technologies, or an effort to identify key biogeochemical variables, contaminant loads, and biodiversity in glacier-fed rivers. via widely used surveillance networks with standardized sampling methods.

Photos: C. Grandpey

 

La fonte de la glace arctique : Des défis économiques énormes // The melting of Arctic ice : Enormous economic challenges

Au mois de juin dernier, au cours de la formation de son gouvernement, le Président  Macron a nommé Ségolène Royal Ambassadrice chargée de la négociation internationale pour les Pôles. Cette information s’est répandue comme une traînée de poudre sur les réseaux sociaux avec le lot de moqueries qui accompagnent habituellement l’ancienne ministre de l’environnement.

Pourtant, la situation est loin d’être drôle et cette fonction est beaucoup plus importante qu’on pourrait le croire. Comme je l’ai indiqué à plusieurs reprises, la fonte de la calotte glaciaire et de la glace de mer dans l’Arctique est devenue le nouveau centre d’attention, non pas à cause de la catastrophe environnementale qu’elle représente, mais bien pour les enjeux économiques colossaux qu’elle va permettre. Tous les pays se préparent actuellement à l’exploitation des ressources qui seront bientôt libérées par la fonte des glaces et aux nouvelles voies maritimes qu’il sera possible d’emprunter. Beaucoup de pays lorgnent sur les ressources minières du Groenland, tandis que d’autres s’apprêtent à naviguer dans les passages du nord-est et du nord-ouest libérés de leurs glaces.

Mis à part quelques négationnistes du réchauffement climatique, les climatologues sont unanimes : la fonte des glaces est de plus en plus inquiétante. Pour nombre d’observateurs, les jeux sont faits ! Notre incapacité à remettre en question notre modèle économique a déjà scellé le sort de la planète pour les décennies à venir. Les chiffres parlent d’eux-mêmes. La glace de mer dans l’Arctique couvrait 10 millions de km2 en 1950. Aujourd’hui, cette surface s’est réduite à 4 millions de km2 et un Océan Arctique libre de glace en été à l’horizon 2040 est une perspective très probable.

Un article du journal Le Monde paru en mai 2017 informait les lecteurs que dans cette nouvelle course au profit, la France semblait occuper une bonne place. L’archipel Saint-Pierre et Miquelon représenterait le meilleur atout de la France pour profiter des retombées de cette future économie, à l’horizon 2025. Cet archipel serait un atout pour l’économie arctique de la France, et pour s’assurer une place géopolitique stratégique. Situé à seulement 1600 kilomètres de New York au sud, tout comme des mines d’uranium groenlandaises au nord,  Saint-Pierre et Miquelon se situe à la croisée des routes maritimes arctiques et atlantique Nord, et dans une zone riche en hydrocarbures. Géographiquement, l’archipel est idéalement placé au départ du Passage du Nord-Ouest, et à l’arrivée sud de l’Arctic Bridge.

L’ouverture de nouvelles voies maritimes et l’accès à de nouveaux gisements pétroliers et miniers annonce de nouveaux rapports de force entre les États et une modification des influences politiques dans la région et, par voie de conséquence, dans le monde. La France aura-t-elle des atouts suffisants à Saint-Pierre et Miquelon pour lutter avec les Etats-Unis et la Russie qui ont déjà planté de sérieux jalons dans l’Arctique ? Rien n’est moins sûr !

Il ne faut pas trop se faire d’illusions. Malgré une bonne volonté apparente pour développer les énergies renouvelables, les Etats signataires de l’accord climatique de Paris ne feront guère d’efforts pour rester sous la barre des 2°C de réchauffement, alors qu’ils sont déjà en marche vers ce nouvel eldorado économique tant convoité. La transition écologique et énergétique n’est pourtant pas si inintéressante en termes de considérations économiques et les solutions existent bel et bien pour limiter les dégâts environnementaux. Comme l’a fait remarquer le climatologue Jean Jouzel, « pour être à la hauteur des enjeux climatiques, il faudrait investir dans l’efficacité énergétique 600 milliards de dollars par an à l’échelle mondiale. Selon l’OCDE, les Etats dépensent 550 milliards de dollars par an en subventions à la consommation et à la production d’énergies fossiles. » Tout est donc affaire de volonté politique car ces ordres de grandeur nous disent bien que le changement est possible.

————————————

Last June, during the formation of his government, President Macron appointed Ségolène Royal as Ambassador in charge of international negotiations for the Poles. This piece of news spread like wildfire on social networks with the usual mockery that accompanies the former Minister of the Environment.
Yet the situation is far from being funny and this appointment is much more important than one might think. As I have explained on several occasions, the melting of the ice sheet and sea ice in the Arctic has become the new centre of attention, not because of the environmental catastrophe it involves, but because of the colossal economic stakes it will allow. All countries are now preparing to exploit the resources that will soon be freed by the melting of the ice and the new shipping lanes that will be open. Many countries are eyeing the mineral resources of Greenland, while others are preparing to navigate along  the northeast and north-west passages that will be free of ice.
Apart from a few negationists of global warming, climate scientists are unanimous: the melting of the ice is more and more worrying. For many observers, the game is lost! Our inability to challenge our economic model has already sealed the fate of the planet for decades to come. The numbers speak for themselves. Sea ice in the Arctic covered 10 million square kilometres in 1950. Today, this area has been reduced to 4 million square kilometres and an Arctic Ocean free of ice in the summer 2040 is a very likely prospect .
An article in the newspaper Le Monde published in May 2017 informed readers that in this new race for profit, France seemed to occupy a good place. The archipelago of Saint Pierre and Miquelon would represent France’s best asset to take advantage of the benefits of this future economy by 2025. This archipelago would be an asset for the Arctic economy of France and a strategic geopolitical location. Located just 1600 kilometres from New York to the south, and from Greenland uranium mines to the north, Saint Pierre and Miquelon is located at the crossroads of the Arctic and North Atlantic shipping routes, and in an area rich in hydrocarbons. Geographically, the archipelago is ideally located at the start of the Northwest Passage, and at the southern entrance to the Arctic Bridge.
The opening up of new shipping routes and the access to new oil and mineral deposits announces a new balance of power between the states and a change in political influences in the region and consequently in the world. Will France have sufficient assets in Saint-Pierre and Miquelon to rival with the United States and Russia which have already planted serious milestones in the Arctic? Nothing is less sure !
One must not be too illusory. Despite an apparent willingness to develop renewable energies, the signatories to the Paris climate agreement will hardly make any effort to stay below 2°C of global warming, as they are already moving towards the new economic Eldorado. The environmental and energy transition is not so uninteresting in terms of economic considerations and the solutions do exist to limit the environmental damage. As French climate scientist Jean Jouzel has remarked, « to be up to the climatic challenges, we would have to invest in energy efficiency $ 600 billion a year on a global scale. According to the OECD, states spend $ 550 billion per year on consumer and fossil fuel subsidies. Everything is therefore a matter of political will. These orders of greatness tell us that change is possible.

Photo: C. Grandpey

La fonte de la glace de mer ouvrira très bientôt des couloirs de navigation da,s les passages du nord-est et du nord-ouest… (Source: Wikipedia)

 

Les feux de forêts au Canada font fondre la banquise // Wildfires in Canada are melting the ice sheet

Les forêts canadiennes sont en feu, avec 9000 km2 ravagés par les flammes depuis le début de l’année 2017 en Colombie-Britannique. Ces incendies, ainsi que d’autres au Yukon et dans les Territoires du Nord-Ouest ont envoyé de la fumée dans l’atmosphère, parfois jusqu’à 13 kilomètres de hauteur.
Une fois dans l’atmosphère, cette fumée forme une couverture si épaisse qu’elle fait disparaître le soleil dans le nord du Canada. Elle se dirige ensuite vers l’Arctique où elle est susceptible d’accélérer la fonte de la glace en mer et sur terre.
Selon la NASA, la fumée a établi un record d’épaisseur cette année et a été particulièrement dense dans les provinces des Territoires du Nord-Ouest, du Yukon et du Nunavut.
Selon l’Observatoire Terrestre de la NASA, il y a en ce moment une énorme quantité d’aérosols dans l’air. Les aérosols sont de petites particules, telles que la suie ou la cendre volcanique, qui renvoient la lumière du soleil. Le 15 août 2017, l’Ozone Mapping and Profiler Suite (OMPS) à bord du satellite Suomi NPP a enregistré des valeurs d’indice aérosol jusqu’à 49,7. C’est plus de 15 points au-dessus du record précédent établi en 2006 par des incendies en Australie. D’autres records d’indice aérosol ont également été enregistrés les 13 et 14 août. Bien que le satellite Suomi NPP soit relativement récent, l’indice aérosol par satellite remonte au satellite Nimbus-7 en 1978, ce qui permet aux scientifiques de comparer les données sur une longue période.
Selon la NASA, le Visible Infrared Imaging Radiometer Suite (VIIRS), radiomètre infrarouge à bord du satellite Suomi NPP, a détecté une fumée particulièrement dense qui obscurcissait une vaste zone du nord du Canada à partir du 15 août 2017.
Une autre image satellite, en provenance du satellite Aqua, montre un nuage de fumée au nord des zones situées près du lac Athabasca. Les feux de forêts en Colombie-Britannique ont été suffisamment intenses pour produire de nombreux pyrocumulus semblables aux cumulonimbus qui se développent pendant les orages. De tels nuages ​​peuvent propulser la fumée très haut dans l’atmosphère, jusque dans la stratosphère où elle peut rester pendant des jours ou plus.
Les incendies canadiens sont inquiétants pour plusieurs raisons. Tout d’abord, ils signalent la transition vers un avenir où il y aura de plus en plus de feux de forêts dans le Grand Nord, car le changement climatique rend les conditions plus propices à de tels phénomènes. Ensuite, ils sont idéalement situés pour envoyer directement la fumée vers la glace de mer arctique et la calotte glaciaire du Groenland, particulièrement vulnérables en ce moment. En plus de perturber l’équilibre thermique de l’atmosphère, la fumée dépose des particules de suie de couleur sombre sur la glace, ce qui accélère sa fonte en abaissant le pouvoir réfléchissant de la glace et en lui faisant absorber davantage les rayons du soleil.
Des études ont lié le nombre croissant d’incendies de forêts dans certaines régions du Canada et des États-Unis au réchauffement climatique. En fait, selon une étude publiée en 2013, le nombre d’incendies dans les forêts boréales, entre l’Alaska et le Canada d’une part, et entre la Scandinavie et la Russie d’autre part, est le plus important jamais enregistré au cours des 10 derniers millénaires.
Source: Mashable.com.

————————————-

Forests in Canada are ablaze, with 2.2 million acres going up in flames so far this year in British Columbia alone. These fires, and others in the Yukon and Northwest Territories, have been belching smoke into the air, in some cases up to 13 kilometres high.

Once in the atmosphere, weather patterns are causing the wildfire smoke to converge into a blanket so thick it’s blotting out the sun across northern Canada. This smoke is working its way to the high Arctic, where it could speed up the melting of sea and land ice.

According to NASA, the smoke has set a record for its thickness, and has been especially dense across the Northwest Territories, Yukon, and Nunavut provinces.

According to NASA’s Earth Observatory, there is a huge quantity of aerosols in the air. Aerosols are small particles, such as soot or volcanic ash,  that reflect incoming sunlight. On August 15th 2017, the Ozone Mapping and Profiler Suite (OMPS) on the Suomi NPP satellite recorded aerosol index values as high as 49.7. This was more than 15 points higher than the previous record, which was set in 2006 by fires in Australia. Aerosol index records were also set on August 13th and 14th. Although the Suomi NPP satellite is quite new, the satellite aerosol index dates back to the Nimbus-7 satellite in 1978, giving scientists a longer data set.

According to NASA, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured particularly heavy smoke obscuring a wide swath of northern Canada as of August 15th, 2017.

Another satellite image, from the Aqua satellite, shows smoke billowing north from areas near Lake Athabasca. The fires in British Columbia were intense enough to produce numerous pyrocumulus clouds that tower into the sky, resembling thunderstorms. Such clouds can vault smoke high into the atmosphere, all the way to the stratosphere, where it can linger for days or longer.

The Canadian fires are important for several reasons. First, they signal the transition to a more combustible future in the Far North, as climate change makes conditions more conducive to large wildfires. Second, they are ideally located to directly feed smoke toward vulnerable Arctic sea ice and the Greenland Ice Sheet. In addition to altering the heat balance of the atmosphere, the smoke can deposit dark soot particles on the ice, which hastens melting by lowering the reflectivity of the ice and causing it to absorb more incoming sunlight.

Studies have tied the increasing number of large fires in parts of Canada and the U.S. to global warming. In fact, the level of fire activity across the boreal forests, which stretch from Alaska to Canada and around the top of the world to Scandinavia and Russia, is unprecedented in the past 10,000 years, according to a study published in 2013.

Source: Mashable.com.

Concentrations d’aérosols au Canada entre le 10 et le 15 août 2017

(Source : NASA)