Réchauffement climatique, fonte des calottes glaciaires et effets sur les courants océaniques // Global warming, melting ice caps and effects on ocean currents

Avec la fonte des calottes glaciaires arctique et antarctique, on sait d’ores et déjà que des milliards de tonnes d’eau douce vont se déverser dans l’océan. On sait aussi que ce phénomène va avoir un double effet dévastateur. D’une part, on va assister à une rapide hausse du niveau des océans. D’autre part, cette arrivée d’eau douce et très froide risque fort d’entraîner un dérèglement des grands courants océaniques, donc du climat du globe, avec des effets catastrophiques faciles à imaginer.

Une étude internationale qui vient d’être publiée début février 2019 dans la revue Nature prévient que la fonte des calottes glaciaires du Groenland et de l’Antarctique, en plus d’augmenter le niveau des océans, va aussi multiplier les événements météo extrêmes et déstabiliser le climat de certaines régions dans les prochaines décennies. On peut lire que les milliards de tonnes d’eau issues de la fonte des glaces, en particulier au Groenland, vont affaiblir les courants océaniques qui aujourd’hui transportent l’eau froide vers le sud en plongeant vers le fond de l’Atlantique, tout en repoussant les eaux tropicales vers le nord plus près de la surface. Ce phénomène est connu sous l’appellation anglaise Atlantic Meridional Overturning Circulation (AMOC) – circulation méridienne de retournement de l’Atlantique, ou circulation thermohaline. C’est une espèce de grand tapis roulant océanique qui joue un rôle crucial dans le système climatique et aide à maintenir une certaine chaleur sur l’hémisphère nord.

Selon les modèles établis par des chercheurs néo-zélandais dans le cadre de l’étude, la fonte des banquises va provoquer des perturbations importantes dans les courants océaniques et changer les niveaux de réchauffement à travers le globe.

Jusqu’à présent, de nombreuses études sur les calottes glaciaires se sont concentrées sur la vitesse de leur fonte sous l’effet du réchauffement, et sur leur point de basculement (« tipping point ») autrement dit le niveau de hausse de température à partir duquel leur disparition sera inévitable, même si la fonte totale pourrait prendre des siècles.

Les changements à grande échelle observés par les scientifiques dans leurs simulations révèlent que le climat sera plus chaotique dans les prochaines années, avec des événements météo extrêmes plus nombreux, des canicules plus fréquentes et plus intenses.

Selon des chercheurs californiens, d’ici le milieu du 21ème siècle, l’eau de fonte de la calotte du Groenland perturbera sensiblement l’AMOC, qui montre déjà des signes de ralentissement. L’échéance serait beaucoup plus courte que prévu. Les conclusions des chercheurs s’appuient sur des simulations détaillées et des observations satellitaires des changements des calottes depuis 2010. Parmi les conséquences probables de l’affaiblissement de l’AMOC, la température de l’air sera plus élevée dans le haut Arctique, l’est du Canada et l’Amérique centrale, et au contraire plus basse sur l’Europe de l’Ouest.

Source : Presse scientifique.

——————————————————–

With the melting of the Arctic and Antarctic ice sheets, we know that billions of tons of fresh water will flow into the ocean. We also know that this phenomenon will have a double devastating effect. On the one hand, we will witness a rapid rise in the level of the oceans. On the other hand, this arrival of fresh and very cold water is likely to cause a disruption of major ocean currents, and therefore of the global climate, with disastrous effects easy to imagine.
An international study just published early February 2019 in the journal Nature warns that the melting of the icecaps of Greenland and Antarctica, in addition to increasing the level of the oceans, will also multiply extreme weather events and destabilize the climate of certain regions in the coming decades. One can read that the billions of tons of water from melting ice, especially in Greenland, will weaken the ocean currents that today carry cold water to the south by diving towards the bottom of the Atlantic, while pushing tropical waters further north closer to the surface. This phenomenon is known as the Atlantic Meridional Overturning Circulation (AMOC). It is a sort of large oceanic treadmill that plays a crucial role in the climate system and helps maintain some warmth in the northern hemisphere.
According to models developed by New Zealand researchers who took part in the study, melting sea ice will cause major disturbances in ocean currents and change warming levels across the globe.
So far, many studies on ice caps have focused on the speed of their melting under the effect of warming, and on their tipping point, in other words the level of temperature rise from which their disappearance will be inevitable, even if total melting could take centuries.
The large-scale changes observed by scientists in their simulations reveal that the climate will be more chaotic in the coming years, with more extreme weather events, more frequent and more intense heat waves.
According to California researchers, by the middle of the 21st century, meltwater from the Greenland ice cap will significantly disrupt AMOC, which is already showing signs of slowing down. The deadline is thought to be much shorter than expected. The researchers’ conclusions are based on detailed simulations and satellite observations of ice sheet changes since 2010. Among the likely consequences of the weakening of AMOC, the air temperature will be higher in the high Arctic. East of Canada and Central America, and on the contrary lower in Western Europe.
Source: Scientific Press.

Schémas montrant la circulation thermohaline [Source : GIEC]

Groenland : Nouvelle accélération du glacier Petermann // Greenland : The Permann Glacier is again accelerating

Dans une note mise en ligne le 18 avril 2017, j’attirais l’attention sur le comportement du glacier Petermann au Groenland. A cette époque, les scientifiques avaient décelé sur les images satellitaires une nouvelle fracture dans la plateforme glaciaire, avec le risque d’une une rupture spectaculaire dans les années à venir.

Le glacier Petermann, situé à 80 degrés de latitude nord, constitue l’une des principales portes par lesquelles la calotte glaciaire du Groenland s’écoule dans la mer. En 2010 et 2012, la plateforme flottante du glacier a déjà laissé s’échapper des morceaux extrêmement importants. Ainsi, un iceberg produit en 2010 avait une superficie de 251 km2. Un autre en 2012 présentait une surface de 147 km². Cette fracturation à répétition de la plateforme est un gros problème parce que le glacier Petermann  retient une partie de la banquise du Groenland qui, si elle devait prendre le chemin de la mer, ferait monter son niveau d’une trentaine de centimètres.
Une étude récente effectuée par des glaciologues allemands et publiée en janvier 2019 dans le Journal of Geophysical Research révèle que la vitesse d’écoulement du glacier Petermann s’est accrue de 10 % par rapport à l’hiver 2011 et de nouvelles fractures sont apparues 12 km en amont du front glaciaire, indiquant la formation possible d’un nouvel iceberg. Les images satellite montrent que le glacier s’écoulait à une vitesse de 1135 mètres par an en 2016, phénomène que les chercheurs expliquent comme une conséquence du vêlage de 2012. La perte de glace a réduit la longueur de langue et a donc amoindri les frottements de la masse glaciaire contre les parois du fjord qui freinent  son écoulement. Le détachement d’un autre iceberg pourrait accélérer encore la vitesse du glacier.

Les glaciologues ne peuvent pas dire à la seule observation des données satellitaires si l’accélération découlement du glacier Petermann est causée par le réchauffement de l’atmosphère ou de l’eau de mer au Groenland. Néanmoins, les scientifiques expliquent que l’accélération du glacier Petermann est un signal important. Contrairement aux glaciers du sud-est et du sud-ouest du Groenland, ceux du nord de l’île étaient restés relativement stables jusqu’à présent; mais la situation semble avoir changé. Depuis 2002, la banquise et les glaciers du Groenland ont perdu en moyenne 286 milliards de tonnes de glace par an. Cette perte de masse est due avant tout à l’accélération de la fonte de surface en été. Le vêlage des icebergs a également augmenté. Les glaciers du Groenland perdent maintenant un quart de glace de plus sous forme d’événements de vêlage que pendant 1960-1990 qui sert de période de référence. Les causes potentielles incluent des courants océaniques plus chauds qui font fondre les langues glaciaires par en dessous, et les eaux de fonte qui s’infiltrent dans les fissures et les crevasses jusqu’à atteindre le soubassement des glaciers où elles jouent le rôle de lubrifiant et provoquent une accélération de l’écoulement de la glace. L’augmentation globale annuelle du niveau de la mer est d’environ 3,3 millimètres ; la perte de glace au Groenland y contribue actuellement pour environ 0,7 millimètre.

Voici une animation du vêlage du glacier en 2012 : https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b2/Wild_Arctic_Summer.ogv/Wild_Arctic_Summer.ogv.480p.webm

Source : Presse scientifique.

————————————————

In a post released on April 18th, 2017, I drew attention to the behaviour of the Petermann Glacier in Greenland. At that time, scientists had detected on satellite images a new crack in the floating ice shelf with the risk of a spectacular break in the coming years.
The Petermann Glacier, located in the high Arctic at 80 degrees North latitude, is one of the most important outlets through which the Greenland icecap flows into the sea. In 2010 and 2012, the glacier’s floating platform has already released extremely large pieces. For example, an iceberg produced in 2010 had an area of ​​251 km2. Another in 2012 had an area of ​​147 km². This repetitive breaking of the platform is a big problem because the Petermann glacier retains part of the Greenland ice sheet which, if it were to flow into the sea, would raise its level by about thirty centimetres.
A recent study conducted by German glaciologists and published in January 2019 in the Journal of Geophysical Research reveals that the flow rate of the Petermann glacier has increased by 10% compared to winter 2011 and new fractures have appeared. 12 kilometres upstream of the ice front, indicating the possible formation of a new iceberg. Satellite imagery shows that the glacier was flowing at a speed of 1135 metrs per year in 2016, a phenomenon that the researchers explain as a consequence of the calving in 2012. The loss of ice has reduced the length of the ice tongue and thus also reduced the friction of the glacial mass against the walls of the fjord which slow down its flow. The detachment of another iceberg could further accelerate the speed of the glacier.

The question of whether these changes are due to the warming atmosphere over Greenland, or to warmer seawater, is not an aspect that glaciologists could investigate using the satellite data.  Nevertheless, the experts consider the acceleration of Petermann Glacier to be an important signal. Unlike the glaciers in southeast and southwest Greenland, those in the island’s northern reaches had remained largely stable; but the situation now appears to have changed. Since 2002, the Greenland Ice Sheet and the island’s glaciers have lost an average of 286 billion tonnes of ice per year. This loss of mass is above all due to intensified surface melting in the summer. Iceberg calving has also increased: Greenland’s glaciers are now losing a fourth more ice in the form of calving events than in the comparison period (1960 to 1990). Potential causes include warmer ocean currents, which melt the glaciers’ floating tongues from below; and meltwater, which percolate into cracks and crevasses until it reaches the glacier bed, where it acts like a lubricant, causing ice flows to accelerate. The total annual global sea-level rise is about 3.3 millimetres, of which the loss of ice on Greenland is currently contributing about 0.7 millimetres.

Here is a timelapse video of the glacier in 2012 : https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b2/Wild_Arctic_Summer.ogv/Wild_Arctic_Summer.ogv.480p.webm

Source: Scientific press.

Source: NASA

La très inquiétante fonte du Groenland // Greenland’s alarming melting

Selon une nouvelle étude réalisée par des chercheurs de l’Ohio State University et publiée le 21 janvier 2019 dans les Proceedings of the National Academy of Sciences, la glace du Groenland fond plus rapidement que prévu par les scientifiques. Le fait nouveau est que la majeure partie de cette perte de glace provient de la calotte glaciaire et non des glaciers.
La nouvelle étude a révélé que la plus grande perte de glace entre le début de l’année 2003 et le milieu de l’année 2013 provenait de la région sud-ouest du Groenland, largement dépourvue de grands glaciers et dont la perte de glace n’avait jamais été observée avec une telle ampleur. Le Groenland semble avoir atteint un point critique vers 2002-2003, époque où la perte de glace s’est rapidement accélérée. En 2012, la perte annuelle était presque quatre fois plus importante qu’en 2003 !
Les données fournies par les satellites et les stations GPS installées sur les côtes du Groenland par la NASA montrent qu’entre 2002 et 2016, le Groenland a perdu environ 280 milliards de tonnes de glace par an. Cela entraîne inévitablement une montée du niveau de la mer.
La calotte glaciaire du Groenland a une épaisseur de 3 000 mètres par endroits et contient suffisamment de glace pour faire monter le niveau de la mer de 7 mètres. Au 20ème siècle, le Groenland a perdu environ 9 000 milliards de tonnes de glace, ce qui a induit 25 millimètres d’élévation du niveau de la mer. (Il faut environ 360 milliards de tonnes de glace pour produire un millimètre d’élévation globale du niveau de la mer.)
Cependant, le Groenland est devancé par la banquise antarctique qui pourrait faire monter le niveau de la mer de 57 mètres si elle venait à fondre complètement. Le problème est que l’Antarctique subit également une fonte accélérée et perd six fois plus de glace qu’il y a quatre décennies, comme l’a révélé une étude du 14 janvier 2019. La perte de glace de l’Antarctique a atteint en moyenne 252 milliards de tonnes par an au cours de la dernière décennie.
Il en va de même pour les glaciers de l’ouest de l’Amérique du Nord, dont les pertes de glace ont quadruplé depuis le début des années 2000 pour atteindre 12,3 milliards de tonnes par an.
Le réchauffement planétaire actuel, avec une hausse globale de la température de seulement 1°C, est la principale cause de cette fonte massive des glaces. Au Groenland, des chercheurs ont découvert que le réchauffement planétaire associé à une phase négative de l’oscillation nord-atlantique entraînait la fonte rapide de la calotte glaciaire en surface pendant les étés. Rappelons que l’oscillation nord-atlantique (NAO) est un changement naturel et irrégulier de la pression atmosphérique; elle apporte un temps chaud et ensoleillé dans l’ouest du Groenland quand elle se trouve dans sa phase négative. Avant 2000, ce phénomène ne conduisait pas à une fonte importante de la glace, mais depuis cette époque, la phase négative de l’oscillation entraîne une augmentation considérable de la fonte.
Les chercheurs ont averti que, sans des mesures rapides pour réduire considérablement la consommation de combustibles fossiles, la majeure partie de la glace du Groenland fondra et fera monter de 7 mètres le niveau de la mer. Cela se produira sur une échelle de temps de plusieurs siècles. Cependant, il existe un seuil de réchauffement susceptible d’être franchi dans quelques décennies ou moins, et au-delà duquel la fonte du Groenland sera irréversible.
Une autre crainte est que toute cette eau de fonte en provenance du Groenland  ralentisse le Gulf Stream, qui transporte de l’eau chaude de l’équateur vers l’Atlantique Nord et envoie l’eau froide dans les profondeurs de l’océan. C’est grâce au Gulf Stream, aussi connu sous le nom de Circulation méridienne de retournement Atlantique (AMOC), que l’Europe occidentale jouit d’un climat tempéré. L’année dernière, des chercheurs ont indiqué dans la revue Nature que l’AMOC avait perdu 15% de son potentiel depuis le milieu du 20ème siècle. Les météorologues pensent souvent que ce ralentissement est lié aux récentes vagues de chaleur au cours de l’été en Europe, mais d’autres scientifiques l’ont attribué aux énormes quantités d’eau de fonte en provenance du Groenland.
Source: National Geographic et presse scientifique américaine.

—————————————————–

According to a news study performed by researchers at the Ohio State University and published on January 21st, 2019 in the Proceedings of the National Academy of Sciences, Greenland’s ice is melting faster than scientists previously thought. The new fact is that most of this ice loss is from the land-fast ice sheet itself, not Greenland’s glaciers.

The new study has found that the largest ice loss between early 2003 and mid-2013 came from Greenland’s southwest region, which is mostly devoid of large glaciers and that had not been known to be losing ice so rapidly. Greenland appears to have hit a tipping point around 2002-2003 when the ice loss rapidly accelerated. By 2012 the annual ice loss was incredible, at nearly four times the rate in 2003.

Data from NASA’s satellites and GPS stations installed around Greenland’s coast showed that between 2002 and 2016, Greenland lost approximately 280 billion tons of ice per year. This will inevitably cause additional sea-level rise.

The Greenland ice sheet is 3,000 metres thick in places and contains enough ice to raise sea levels by 7 metres. In the 20th century, Greenland has lost around 9,000 billion tons of ice in total, accounting for 25 millimetres of sea-level rise. (It takes about 360 billion tons of ice to produce one millimetre of global sea-level rise.)

However, Greenland is dwarfed by the Antarctic ice sheet, which could raise sea level 57 metres if fully melted. The problem is that the Antarctic is also undergoing an accelerated meltdown, losing six times as much ice as four decades ago, as revealed by a January 14th, 2019 study. Its ice loss averaged 252 billion tons a year over the past decade.

It is the same story for western North America’s glaciers whose ice loss has quadrupled since the early 2000s to 12.3 billion tons annually.

Global warming of just 1°C is the main driver behind this massive meltdown of the world’s ice. In Greenland, researchers discovered that global warming, coupled with a negative phase of the North Atlantic Oscillation led to the rapid surface melt of the ice sheet during summers. Let’s recall that the North Atlantic Oscillation (NAO) is a natural, irregular change in atmospheric pressure; it brings warm, sunny summer weather to the western side of Greenland when it is in its negative phase. Before 2000, this did not lead to significant ice melt, but ever since then the negative phase of the NAO has resulted in huge increases in ice melt.

The researchers warn that without acting soon to dramatically reduce the burning of fossil fuels that is raising global temperatures, most or all of Greenland’s ice could melt, raising sea levels by 7 metres. This would occur on a time scale of centuries. However, there is a warming threshold that could be crossed in a few decades or less. If this threshold is exceeded long enough, the meltdown of Greenland would be irreversible.

Another major concern is that all this meltwater is slowing the Gulf Stream that brings warm water from the equator to the North Atlantic and cold water down into the deep ocean. The Gulf Stream, more properly known as the Atlantic Meridional Overturning Circulation (AMOC), is why Western Europe has temperate weather. Last year, researchers reported in the journal Nature that the AMOC has declined in strength by 15 percent since the mid-20th century. Meteorologists often believe this slow-down is linked to recent summer heat waves in Europe, but other scientists have attributed the slow-down to the huge volumes of meltwater from Greenland.

Source: The National Geographic and U.S. scientific press.

Calotte glaciaire et vêlage de glaciers au Groenland (Photos: C. Grandpey)

La fonte du permafrost (1ère partie) // Permafrost thawing (Part one)

Le permafrost a longtemps été négligé en tant que cause potentielle du changement climatique. Aujourd’hui, avec le réchauffement rapide de l’Arctique, les scientifiques prennent conscience de son impact sur notre environnement.
Voici trois articles qui montreront 1) ce qu’est le permafrost 2) ce qui se passe lorsqu’il est en train de fondre et 3) ses impacts sur les structures, les écosystèmes et la santé humaine.

Le mot « permafrost » (aussi appelé «pergélisol») fait référence au sol qui reste gelé pendant deux années consécutives ou plus. Il est composé de roches, de terre, de sédiments et de quantités variables de glace qui lient les éléments. Une partie du permafrost est restée gelée depuis des dizaines, voire des centaines de milliers d’années.
Le permafrost peut avoir une épaisseur de deux à 1500 mètres. Il stocke les restes de plantes et d’animaux contenant du carbone qui ont gelé avant de se décomposer. Les scientifiques estiment que le permafrost dans le monde contient 1500 milliards de tonnes de carbone, soit près du double de la quantité de carbone actuellement dans l’atmosphère. Malheureusement, lorsque le permafrost se réchauffe et dégèle, il libère du dioxyde de carbone et du méthane dans l’atmosphère. En conséquence, il pourrait largement contribuer au réchauffement de la planète. Le permafrost est déjà en train de fondre dans certaines régions du globe et si le phénomène s’amplifie, les scientifiques craignent qu’il provoque un processus accéléré de réchauffement de la planète.
Le permafrost recouvre environ 24% de la surface continentale de l’hémisphère Nord, ce qui représente plus de 23 millions de kilomètres carrés. On le trouve sous les hautes latitudes et les hautes altitudes, principalement en Sibérie, sur le plateau tibétain, en Alaska, dans le nord du Canada, au Groenland, dans certaines parties de la Scandinavie et en Russie. Les plateaux continentaux situés sous les eaux de l’Océan Arctique, qui étaient exposés au cours de la dernière période glaciaire, contiennent également du permafrost.
Le problème, c’est que l’Arctique se réchauffe deux fois plus vite que le reste de la planète, avec une élévation de la température qui n’a jamais été observée depuis au moins 2 000 ans. En Alaska, la température du pergélisol s’est accrue jusqu’à 2°C au cours des dernières décennies. Une étude récente indique qu’à chaque augmentation de 1°C de la température, 3,8 millions de kilomètres carrés de permafrost disparaissent lors du dégel.

———————————————————-

Permafrost has long been neglected as a potential source of climate change. Today, with the rapid warming of the Arctic, scientists are becoming aware of its impact on our environment.

Here are three posts that will show 1) what permafrost is 2) what happens when it is thawing and 3) its impacts on structures, ecosystems and human health.

The word “permafrost” refers to ground that remains frozen for two or more consecutive years. It is composed of rock, soil, sediments, and varying amounts of ice that bind the elements together. Some permafrost has been frozen for tens or hundreds of thousands of years.

Found under a layer of soil, permafrost can be from two to 1,500 metres thick. It stores the carbon-based remains of plants and animals that froze before they could decompose. Scientists estimate that the world’s permafrost holds 1,500 billion tons of carbon, almost double the amount of carbon that is currently in the atmosphere. Unfortunately, when permafrost warms and thaws, it releases carbon dioxide and methane into the atmosphere. As a consequence, it could become a significant source of planet-heating emissions. Permafrost is already thawing in some places, and if the problem spreads, scientists worry it could initiate a runaway process of global warming.

Permafrost covers about 24 percent of the exposed landmass of the Northern Hemisphere, which means more than 23 million square kilometres. It is found at high latitudes and high altitudes, mainly in Siberia, the Tibetan Plateau, Alaska, Northern Canada, Greenland, parts of Scandinavia and Russia. The continental shelves below the Arctic Ocean, which were exposed during the last ice age, also contain permafrost.

The problem is that the Arctic is warming twice as fast as the rest of the planet, at a rate of temperature change that has not been observed in at least the last 2,000 years. In Alaska, permafrost temperatures have warmed as much as 2˚C in the last few decades. A recent study indicates that with every 1˚C increase in temperature, 3.8 million square kilometres of permafrost could be lost through thawing.

Le sol de la toundra en Alaska et au Canada reste gelé en permanence (Photos: C. Grandpey)

Un cratère géant sous la calotte glaciaire du Groenland // A giant crater beneath Greenland’s ice sheet

Quand on parle de cratères, on pense tout d’abord aux volcans, mais il ne faudrait pas oublier les cratères d’impact laissés par les météorites. L’un des plus célèbres est Meteor Crater dans l’Arizona aux Etats Unis, mais il en existe de nombreux autres dans le monde, comme l’astroblème de Rochechouart-Chassenon dans la Haute Vienne, à une trentaine de kilomètres de mon domicile.

Selon un article publié le 14 novembre 2018 dans la revue Science Advances, des scientifiques ont découvert au Groenland, sous le glacier Hiawatha, un énorme cratère d’impact plus grand que la ville de Paris. C’est probablement l’une des 25 plus grandes structures d’impact sur Terre. Il s’agit d’une dépression circulaire dans le substrat rocheux. Elle mesure 31 km de diamètre, à un kilomètre sous la glace, et a probablement été causée par la chute d’un astéroïde ferreux d’environ un kilomètre de diamètre.
Il ne fait guère de doute que l’impact a eu des conséquences environnementales importantes dans l’hémisphère nord et peut-être même au-delà. Un tel événement a pu affecter le climat et faire fondre une grande partie de la glace. Cela a pu aussi provoquer un afflux soudain d’eau froide dans le détroit de Nares entre le Canada et le Groenland, avec un impact sur les courants océaniques dans la région.
Les chercheurs ne sont pas sûrs de l’âge exact du cratère, mais pensent qu’il est peu probable qu’il soit antérieur à la formation de la calotte glaciaire du Groenland au début du Pléistocène, il y a plus de deux millions d’années. En utilisant des techniques de datation, ils ont constaté que la jeune glace recouvrant le cratère était en bon état, mais que la glace plus profonde et plus ancienne présentait de nombreux débris et était très dégradée.
Ce cratère est le premier du genre à être découvert dans le nord-ouest du Groenland. Il ajoute une pièce importante au puzzle du paysage qui se cache sous la gigantesque calotte glaciaire. Bien que les sondages de la calotte glaciaire du Groenland par radar aéroporté aient commencé dans les années 1970, il n’a pas été possible de procéder à une étude détaillée de la calotte avant les deux dernières décennies.
Après avoir effectué leur découverte initiale, les chercheurs ont collecté trois échantillons de sédiments déposés par une rivière s’écoulant du glacier. Dans l’un des échantillons, des grains de quartz angulaires avec de petites inclusions fluides étaient présents et montraient des signes du choc subi au cours de l’impact. Plusieurs de ces grains sont constitués de matériaux carbonés et de verre, probablement dérivés de la fusion par impact de grains de minéraux dans le substrat rocheux. Des analyses supplémentaires ont révélé que le sédiment contenait des concentrations élevées de nickel, de cobalt, de chrome et d’or, ce qui est la preuve d’une météorite ferreuse relativement rare.
Source: Presse internationale.

—————————————————-

When we talk about craters, we first think of volcanoes, but we should not forget the impact craters left by meteorites. One of the most famous is Meteor Crater in Arizona in the United States, but there are many others in the world, like the “astroblème Rochechouart-Chassenon” in Haute Vienne (France), about thirty kilometers from my home.

According to an article published on November 14th, 2018 in the journal Science Advances, scientists have discovered a huge impact crater larger than the Paris area beneath Greenland’s Hiawatha Glacier. It could be one of the 25 largest impact structures on Earth. It is a 31-kilometre-wide circular bedrock depression up to a kilometre below the ice and was likely caused by a fractionated iron asteroid about a kilometre wide.

Its impact probably had substantial environmental consequences in the Northern Hemisphere and perhaps even more widely. It may have affected the climate and melted much of the ice. This may have caused a sudden influx of cold water in the Nares Strait between Canada and Greenland, which in turn may have affected the ocean currents in the area.

The researchers are unsure of its exact age, but suggest it is unlikely to predate the Pleistocene inception of the Greenland Ice Sheet, more than two million years ago. Using dating techniques, they inferred that the young ice covering the crater is in a good state but that deeper and older ice is debris-rich and heavily disturbed.

The crater is the first of its kind to be discovered in northwest Greenland, and adds another important piece to the jigsaw of the long-hidden landscape lying underneath its giant ice sheet. While airborne radar sounding of the Greenland Ice Sheet began in the 1970s, comprehensive surveying of the ice sheet has only become possible over the past two decades.

After making their initial discovery, the researchers retrieved three sediment samples deposited by a river draining out of the glacier. In one sample, angular quartz grains with small fluid inclusions were present and showed signs of being shocked by an impact. Several of these grains consist of carbonaceous materials and glass that are likely derived from impact melting of mineral grains in the bedrock. Further testing of subsamples found the sediment contained elevated concentrations of nickel, cobalt, chromium and gold, indicative of a relatively rare iron meteorite.

Source: International news media.

Photos: C. Grandpey

L’augmentation de l’humidité dans l’Arctique suscite des inquiétudes // Increasing humidity in the Arctic is causing concern

Comme je l’ai écrit à maintes reprises, l’Arctique se réchauffe plus vite que le reste de la planète et devrait donc devenir plus humide au cours des prochaines décennies. Une nouvelle étude publiée le 1er octobre 2018 dans les Geophysical Research Letters utilise les archives géologiques du Groenland pour expliquer les causes de cette humidité.

Depuis les années 1980, le réchauffement de l’Arctique est deux à trois fois plus important que la moyenne mondiale avec comme conséquence une forte réduction de l’étendue de la glace de mer, pouvant atteindre 40% en septembre depuis les années 1980.

L’augmentation de la température signifie que l’air peut retenir plus d’humidité. Les modèles concernant l’Arctique indiquent que le réchauffement conduira à une intensification du cycle hydrologique, avec une augmentation des précipitations de 50 à 60% en 2100, provoqué en grande partie par les fortes émissions de gaz à effet de serre.

Les auteurs de la dernière étude ont examiné ce qui s’est passé au cours du réchauffement climatique survenu il y a quelques 8 000 ans au Groenland, avec une plus forte humidité due à une augmentation des précipitations.

Deux processus climatiques différents peuvent contribuer à une humidité élevée dans l’Arctique. A mesure que la région se réchauffe, la glace de mer fond, exposant l’eau de mer au soleil. Cela augmente massivement l’évaporation et provoque la formation de plus de nuages ​​et de précipitations.

A mesure que la planète se réchauffe, l’humidité augmente davantage dans les régions plus proches de l’équateur. Cela crée un déséquilibre et finalement, de l’air humide des basses latitudes est aspiré par l’Arctique plus sec.

Pour en savoir plus sur l’histoire climatique de l’ouest du Groenland, les scientifiques ont analysé la boue contenue dans des carottes prélevées au fond d’un lac. Ces sédiments contiennent des matières organiques qui révèlent des informations sur le passé climatique de la région. Les chercheurs ont utilisé ces données géologiques pour déterminer que les deux processus précités avaient probablement contribué à une augmentation de l’humidité dans l’ouest du Groenland lorsque la région s’est réchauffée rapidement il y a 8 000 ans.

Les conditions météorologiques influent sur le contenu chimique des cires de feuilles. Celles-ci contiennent de petites quantités de deutérium, une forme rare d’hydrogène, et la concentration de deutérium peut augmenter ou diminuer en fonction de facteurs tels que l’humidité et les régimes de précipitations. Dans les cires de feuilles arctiques, les concentrations de deutérium fluctuent en fonction des précipitations locales ou des nuages ​qui ont parcouru de longues distances à partir des basses latitudes pour arriver dans la région.

Par ailleurs, des lipides complexes produits par des bactéries, ont également été utilisés comme marqueurs du climat passé. Leur composition varie en fonction de la température ambiante au moment où ils ont été produits. En conséquence, les scientifiques peuvent les utiliser pour reconstruire les tendances de la température préhistorique.

Ces indicateurs chimiques ont permis d’étudier les tendances anciennes en matière d’humidité et de précipitations dans l’ouest du Groenland, alors que la région se réchauffait il y a environ 8 000 ans.

Comme le suggèrent les observations actuelles et les projections des modèles, les deux processus identifiés pourraient à nouveau jouer un rôle et contribuer ainsi à d’éventuelles augmentations futures de l’humidité dans l’Arctique.

A l’échelle mondiale, les précipitations devraient augmenter de 1,6 à 1,9% pour chaque degré de réchauffement de la planète, mais ce chiffre est plus que le double dans l’Arctique. Une étude réalisée en 2014 a conclu qu’en 2091, les précipitations totales dans l’Arctique augmenteront de manière spectaculaire. La majeure partie de ces précipitations ne sera plus sous forme de neige, mais sous forme de pluie. L’auteur de l’étude précisait que l’augmentation des précipitations de 50 à 60% dans l’Arctique devrait être causée par le retrait de la glace de mer. C’est ce qu’il avait conclu au vu des simulations de 37 modèles climatiques utilisés pour prévoir les précipitations dans l’Arctique entre 2091 et 2100.

L’impact de l’augmentation des précipitations est difficile à prévoir. On peut toutefois raisonnablement penser que l’excès d’eau douce est susceptible d’altérer la salinité de l’Océan Arctique et nuire aux espèces marines. Une conséquence plus préoccupante serait une modification des courants océaniques. En effet, une salinité réduite et un écoulement de l’eau douce vers l’Atlantique Nord risque d’affecter la formation d’eau profonde. C’est un élément clé de la force de la circulation thermohaline, également connue sous le nom de circulation océanique méridienne de retournement Atlantique (AMOC).

Source : global-climat.

————————————————-

As I have written many times, the Arctic is warming faster than the rest of the world and is likely to become more humid in the coming decades. A new study published on October 1st, 2018 in Geophysical Research Letters uses Greenland’s geological records to explain the causes of this moisture.
Since the 1980s, Arctic warming has been two to three times higher than the global average, resulting in a sharp reduction in the extent of sea ice, up to 40% in September since the 1980s.
Increasing temperatures mean that the air can retain more moisture. Arctic models indicate that the warming will lead to an intensification of the hydrological cycle, with an increase in rainfall by 50-60% in 2100, caused largely by high greenhouse gas emissions.
The authors of the latest study examined what happened during the global warming of Greenland some 8,000 years ago, with higher humidity due to increased precipitation.
Two different climate processes can contribute to high humidity in the Arctic. As the region gets warmer, sea ice melts, exposing seawater to the sun. This massively increases evaporation and causes more clouds and precipitation.
As the planet keeps warming, humidity increases further in areas closer to the equator. This creates an imbalance and finally, humid air from low latitudes is sucked in by the drier Arctic.
To learn more about the climate history of West Greenland, scientists analyzed the mud contained in samples taken from the bottom of a lake. These sediments contain organic matter that reveals information about the climate of the region. The researchers used these geological data to determine that the two processes mentioned above probably contributed to an increase in humidity in West Greenland when the region warmed up rapidly 8,000 years ago.
Weather conditions affect the chemical content of leaf waxes. These contain small amounts of deuterium, a rare form of hydrogen, and the concentration of deuterium may increase or decrease depending on factors such as humidity and precipitation patterns. In the Arctic leaf waxes, deuterium concentrations fluctuate with local precipitation or clouds that have travelled long distances from low latitudes to this region.
In addition, complex lipids produced by bacteria have also been used as markers of past climate. Their composition varies according to the ambient temperature at the time they were produced. As a result, scientists can use them to reconstruct trends in prehistoric temperature.
These chemical indicators made it possible to study the old trends in humidity and precipitation in West Greenland, as the region warmed around 8,000 years ago.
As suggested by current observations and model projections, the two identified processes could again play a role in contributing to future increases in Arctic moisture.
Globally, precipitation is projected to increase by 1.6 to 1.9 percent for each degree of global warming, but this is more than double in the Arctic. A 2014 study concluded that by 2091, total precipitation in the Arctic will increase dramatically. Most of this precipitation will no longer be in the form of snow, but in the form of rain. The author of the study stated that the 50 to 60% increase in precipitation in the Arctic is expected to be caused by the disappearanceof sea ice. This is what he concluded in the light of simulations of 37 climate models used to predict precipitation in the Arctic between 2091 and 2100.
The impact of increased precipitation is difficult to predict. However, it is reasonable to assume that excess freshwater is likely to alter the salinity of the Arctic Ocean and harm marine species. A more worrying consequence would be a change in ocean currents. In fact, reduced salinity and a flow of fresh water to the North Atlantic may affect the formation of deep water. This is a key element of the strength of the thermohaline circulation, also known as Atlantic Meridional Overturning circulation  (AMOC).
Source: global-climat.

Photos: C. Grandpey

Un projet fou pour l’Antarctique // Crazy project for Antarctica

La banquise fond, que ce soit dans l’Arctique ou l’Antarctique, à cause du réchauffement climatique. On associe inévitablement le phénomène à l’élévation du niveau des océans. Ce qui inquiète les scientifiques, ce ne sont pas les icebergs qui flottent à la surface de l’océan comme les glaçons dans un verre et ne contribuent pas à la hausse du niveau des mers. En revanche, la situation des plateformes glaciaires est plus inquiétante, car elles sont rongées par en dessous par les remontées d’eau chaude.

Afin d’essayer de lutter contre ce phénomène, une équipe de chercheurs a proposé un plan complètement fou visant à limiter la fonte des glaciers de l’Antarctique et du Groenland. L’idée, qui se présente aujourd’hui comme “le plus grand projet de génie civil de l’histoire de l’humanité” serait de construire une structure de soutien directement sous les glaciers pour les empêcher de s’effondrer. Selon l’article paru dans la revue Cryosphere,  ce type «d’intervention sur la calotte glaciaire d’aujourd’hui serait à la limite des capacités humaines. Les chercheurs font toutefois remarquer qu’il y a «suffisamment de glace empilée sur l’Antarctique pour élever les mers du globe de près de 60 mètres».

Pour leur étude, les chercheurs se sont concentrés sur le Glacier Thwaites, l’un des plus imposants de l’Antarctique, mais aussi l’un des plus fragiles. À lui seul, il a le potentiel d’augmenter le niveau de la mer d’environ trois mètres.

Deux méthodes sont proposées. La première consiste à soutenir le glacier avec une série de monticules sur environ 300 mètres, par-dessous. Dans ce cas, les eaux plus chaudes pourraient encore venir se frotter au glacier, mais cette structure aurait au moins la capacité de l’empêcher de s’effondrer. Avec cette méthode, les chercheurs estiment qu’il y a 30% de chance que le glacier ne s’effondre pas au cours des 1000 prochaines années.

La seconde approche est plus compliquée. Elle consiste à construire un mur sous le glacier, ce qui empêcherait l’eau chaude venue des bas-fonds de se frotter à la glace. Les chances de réussite sont ici estimées à 70%, toujours pour les 1000 prochaines années.

Les idées proposées sont en théorie potentiellement faisables sur le plan technique, en sachant que leur mise en oeuvre serait difficile à cause des conditions climatiques et induirait forcément une pollution de l’environnement. De plus, les deux méthodes, aussi bonnes soient les intentions, reviendraient à mettre un pansement sur une jambe de bois. Elles ne régleront pas le problème du réchauffement climatique. La vraie solution ne réside pas de ce genre de projet loufoque. Elle consiste à s’attaquer directement à la source du problème, à la cause du réchauffement climatique en limitant les émissions de gaz à effet de serre, mais nos gouvernements semblent encore bien frileux et de véritables mesures d’envergure n’ont pas été prises. .

Source : SciencePost, The Cryosphere.

———————————————

The sea ice is melting, whether in Arctic or Antarctic, because of global warming. The phenomenon is inevitably associated with rising sea levels. What worries scientists is not the icebergs that float on the ocean’s surface like ice cubes in a glass and do not contribute to rising sea levels. What worries them is the situation of the ice shelves because they are gnawed from below by the upwelling of warm water.
In an attempt to combat this phenomenon, a team of researchers proposed a completely crazy plan to limit the melting of glaciers in Antarctica and Greenland. The idea, which is supposed to be « the greatest civil engineering project in the history of humanity » would be to build a support structure directly under the glaciers to prevent them from collapsing. According to the article in the journal Cryosphere, this type of « intervention on the icecap would be at the limit of today’s human capabilities. The researchers note, however, that there is « enough ice piled up on the Antarctic continent to raise the seas by as much as 60 metres. »
For their study, the researchers focused on the Thwaites Glacier, one of the largest in Antarctica, but also one of the most fragile. On its own, it has the potential to raise the sea level by about three metres.

Two methods are proposed. The first is to support the glacier with a series of mounds about 300 metres below. In this case, the warmer waters could still come to erode the glacier, but this structure would at least have the capacity to prevent it from collapsing. With this method, researchers estimate that there is a 30% chance that the glacier will not collapse over the next 1000 years.
The second approach is more complicated. It consists in building a wall under the glacier, which would prevent the warm water coming from the shallows from rubbing the ice. The chances of success are here estimated at 70%, still for the next 1000 years.
The proposed ideas are in theory potentially technically feasible, knowing that their implementation would be difficult because of weather conditions and would necessarily lead to environmental pollution. Moreover, the two methods, even though the intentions are good, would be like putting a bandage on a wooden leg. They will not solve the problem of global warming. The real solution does not lie with this kind of crazy project. The problem should be addressed directly at the source, namely by limiting greenhouse gas emissions. But our governments still seem reluctant to take real, far-reaching measures. . .
Source: SciencePost, The Cryosphere.

Source: The Cryosphere.