Sismicité et lithosphère à Hawaii // Seismicity and lithosphere in Hawaii

Comme il le fait régulièrement, l’Observatoire des Volcans d’Hawaii, le célèbre HVO géré par l’USGS, vient de publier un article très intéressant sur la sismicité à Hawaii et sa relation plus ou moins étroite avec les volcans.
L’auteur de l’article explique que la plupart des séismes à Hawaii sont intimement liés aux volcans, mais il arrive aussi qu’ils se produisent à cause d’un effet de courbure de la Terre sous le poids de la chaîne volcanique.
L’article rappelle que les plaques tectoniques sont constituées de la lithosphère, une couche essentiellement rigide qui s’étend de la croûte au manteau supérieur. Les îles hawaïennes étant situées à la surface de la plaque Pacifique, leur poids énorme pèse sur la lithosphère et la fait fléchir. Cela génère des contraintes susceptibles de provoquer des séismes baptisés séismes de flexion par les sismologues.

L’île d’Hawaii, du fait de sa grande taille et de son âge relativement jeune, exerce une grande pression sur la lithosphère. La zone de contrainte et de flexion maximale liée à cette masse s’étend sur une centaine de kilomètres au large de l’île. Lorsque la plaque se réajuste pour retrouver une position neutre, cela provoque un renflement significatif au niveau de la lithosphère autour d’Oahu à environ 300 km de là. C’est pourquoi les séismes se produisent parfois loin de la principale zone d’activité sismique et volcanique de l’île d’Hawaï.
Il existe deux exemples de séismes de flexion enregistrés au large des côtes au cours des dernières semaines : 1) un événement de M 3.7 le 21 janvier 2019 à environ 240 km à l’est de l’île d’Hawaï et 2) un événement de M 4.6 le 7 février à environ 84 km au sud-ouest de l’île. L’événement de janvier avait une magnitude trop faible pour pouvoir êtreressenti par la population. En revanche, l’événement de février a été plus intense et a été signalé par 115 personnes à Hawaï, Maui et Oahu, à une distance de 370 km de l’épicentre. C’est le séisme le plus significatif ressenti à Hawaii depuis un événement de M 4,4 le 9 août 2018.
Les séismes de flexion sont parfois appelés «séismes du manteau», ce qui reflète le fait qu’ils se produisent souvent au niveau du manteau supérieur plutôt que dans la croûte terrestre. Les ondes sismiques se déplacent plus facilement à travers le manteau qu’à travers à la croûte. C’est l’une des raisons pour lesquelles les séismes d’origine mantellique peuvent provoquer davantage de dégâts, d’autant plus que leur magnitude peut dépasser M 6,0.
La flexion lithosphérique produit des séismes à Hawaii, mais ils sont moins fréquents que ceux liés directement à l’activité volcanique. Chaque année, le HVO enregistre des dizaines de milliers de secousses sur et à proximité des volcans actifs de Big Island, et seulement quelques centaines d’événements de flexion au large des côtes.

Source : HVO.

Cet article me rappelle ce qui se passe actuellement en Islande où la lithosphère rebondit car les glaciers, du fait du réchauffement climatique, perdent de leur masse et exercent une pression moindre sur la croûte terrestre. Ce phénomène appelé « rebond isostatique » peut engendrer des problèmes. Ainsi, le petit port de Hofn sur la côte sud de l’île est moins profond qu’auparavant, ce qui, à terme, risque de poser des problèmes à certains navires pour entrer dans le port.

Certains géologues pensent que ce rebond isostatique est susceptible de favoriser la remontée du magma à l’intérieur des volcans islandais sous-glaciaires. Toutefois, on ne dispose pas d’un recul suffisant pour affirmer qu’un tel phénomène se produit. Les dernières éruptions en Islande ont eu lieu en 2010 (Eyjafjajjajökul) et 2014 (Holuhraun).

————————————————–

As it does regularly, the USGS Hawaiian Volcano Observatory (HVO) has released a very interesting article about seismicity in Hawaii and its link with volcanoes.

The author of the article explains that earthquakes in Hawaii are intimately related to the volcanoes. However, they sometimes happen simply because the Earth under the island chain gets too much bent.

The article reminds us that Earth’s tectonic plates are made of the lithosphere, which is a mostly rigid layer extending from the crust into the upper mantle. As the Hawaiian Islands are located on top of the Pacific Plate, their huge weight flexes the lithosphere. This results in stresses that can lead to earthquakes.

Seismologists call these events “flexural earthquakes” to reflect their cause. The massive Island of Hawaii produces the largest force on the lithosphere due to its relatively young age, which results in forces on the underlying lithosphere. The zone of maximum bending stress from this load extends about 100 km offshore from the island. As the plate re-adjusts back to a neutral position, it results in a raised bulge in the lithosphere that extends around Oahu about 300 km away. This is why earthquakes occasionally happen so far from the main area of seismic and volcanic activity on the Island of Hawaii.

There have been two examples of offshore flexural earthquakes in the past weeks. They include an M 3.7 event on January 21st, 2019 which occurred about 240 km east of the Island of Hawaii, and an M 4.6 event on February 7th about 84 km southwest of the island. The January event was too small and distant for anyone to feel. But the February earthquake produced significant shaking and was reported by 115 citizens from Hawaii, Maui, and Oahu, up to 370 km from the epicentre. It was the largest earthquake felt in Hawaii since an M 4.4 on August 9th, 2018.

Flexural earthquakes are sometimes called “mantle earthquakes,” reflecting the fact that they often occur at depths within the Earth’s upper mantle rather than within the crust. Seismic waves travel more efficiently through the mantle compared with the crust. This is one reason why mantle earthquakes can have widespread and sometimes damaging effects, especially as their sizes can exceed the M 6.0 range.

Lithospheric flexure produces earthquakes in Hawaii less frequently than those directly related to active volcanism. Each year, HVO records tens of thousands of earthquakes on and near Big Island’s active volcanoes, compared with only a few hundred offshore flexural events.

Source : HVO.

This article reminds me of what is happening in Iceland where the lithosphere is rebounding because glaciers, due to global warming, lose their mass and exert less pressure on the Earth’s crust. This phenomenon called « isostatic rebound » can cause problems. Thus, the small port of Hofn on the south coast of the island is shallower than before, which, in the long run, may cause problems for some ships to enter the port.
Some geologists believe that this isostatic rebound is likely to favour the rise of magma inside subglacial Icelandic volcanoes. However, there is not enough evidence to say that such a phenomenon has occurred. The last eruptions in Iceland took place in 2010 (Eyjafjajjajökul) and 2014 (Holuhraun).

Schémas montrant les séismes volcaniques et non-volcaniques à Hawaii, ainsi que l’effet de flexion de la Grande Ile sur la lithosphère (Source : USGS / HVO)

Bientôt un séisme au Japon? // Soon an earthquake in Japan ?

On sait que certains comportements inhabituels d’animaux sont susceptibles d’annoncer des catastrophes naturelles. Par exemple, les mouettes avaient disparu avant une éruption majeure du Stromboli en Sicile. Il y a aussi des histoires de poules qui ont cessé de pondre et d’abeilles qui ont délaissé leur ruche. De nombreux propriétaires d’animaux ont affirmé avoir vu leurs chiens et leurs chats se comporter étrangement avant un tremblement de terre. En ce moment, c’est la découverte d’un certain nombre régalecs morts qui inquiète les Japonais.

Selon Wikipedia, le régalec, roi des harengs ou ruban de mer (Regalecus glesne)  est un poisson très long dont la taille maximale n’est pas connue. Il mesure en moyenne 5 mètres, ce qui en fait le plus long des poissons osseux. On ne sait que peu de choses sur son comportement, l’essentiel des observations ayant été faites sur des spécimens échoués ou agonisants. À Taïwan, on l’a  surnommé « poisson séisme » car les rares fois où les pêcheurs l’ont découvert, c’était peu après un tremblement de terre dont l’épicentre se situait en mer. La légende veut que les poissons remontent vers la surface quand ils sont dérangés par les secousses sismiques, mais la relation entre ces deux évènements n’a pas fait l’objet de recherches scientifiques..

Il y a quelques jours, un régalec mesurant près de quatre mètres du museau à la queue a été retrouvé prisonnier d’un filet de pêche au large du port d’Imizu, dans la préfecture de Toyama, sur la côte nord. Le poisson était déjà mort et il a ensuite été transporté à l’aquarium d’Uozu pour y être étudié. Deux autres régalecs avaient été découverts dans la baie de Toyama neuf jours plus tôt.
Les régalecs – reconnaissables à leur long corps argenté et à leurs nageoires rouges – fréquentent généralement les eaux profondes et on les voit rarement en surface. Une légende raconte que lorsque les régalecs remontent dans des eaux peu profondes, c’est le signe qu’une catastrophe naturelle est proche.
Cependant, les biologistes ont une explication beaucoup plus prosaïque. Selon un professeur d’ichtyologie de l’Université de Kagoshima, «ces poissons ont tendance à remonter à la surface en profitant des courants marins lorsque leur condition physique est mauvaise, ce qui explique pourquoi ils sont si souvent morts lorsqu’on les retrouve. Le lien avec l’activité sismique existe depuis de très nombreuses années, mais il n’existe aucune preuve scientifique ; je ne pense donc pas que les gens doivent s’inquiéter ».
Néanmoins, la réputation du régalec en tant qu’indicateur d’une catastrophe imminente a été confirmée au Japon en 2010 quand une dizaine de poissons se sont échoués le long de la côte nord du pays. Quelques mois plus tard, en mars 2011, un séisme de magnitude M 9,0 a frappé le nord-est du Japon, provoquant un puissant tsunami qui a tué près de 19 000 personnes et détruit la centrale nucléaire de Fukushima.
Les scientifiques japonais ont averti qu’un puissant séisme pourrait se produire à court terme dans la Fosse de Nankai, parallèle à la côte méridionale du Japon, entre Nagoya et l’île de Kyushu. Le tsunami qui s’ensuivrait pourrait entraîner des pertes importantes en vies humaines et la destruction des zones côtières. Selon les dernières prévisions du gouvernement, un tel séisme majeur pourrait générer un tsunami de plus de 30 mètres de hauteur.
Par ailleurs, le gouvernement japonais a récemment annoncé un nouveau train de mesures dans l’éventualité d’un puissant séisme à Tokyo, avec notamment des mesures supplémentaires pour évacuer les étrangers. Ces mesures préconisent également une meilleure diffusion des informations sur les abris, les itinéraires d’évacuation et les services médicaux. Les informations seront disponibles dans un plus grand nombre de langues via des sites Internet d’information sur les catastrophes.
Source: Presse japonaise et internationale.

————————————————

It is well known that some animal unusual behaviour may announce incoming natural disasters. For instance, seagulls disappeared before a major eruption at Stromboli in Sicily. There are also stories of hens that stopped laying eggs and bees leaving their hive in a panic. Countless pet owners claimed to have witnessed their cats and dogs acting strangely before an earthquake. This time, the discovery of a number of deep-sea oarfish is worrying the Japanese as this kind of fish is traditionally thought to be harbingers of a natural disaster.

According to Wikipedia, the oarfish, king of herring or sea sliver (Regalecus glesne) is a very long fish whose maximum size is not known. It may reach 5 metres, making it the longest bone fish. Little is known about his behaviour, as most observations were made on stranded or dying specimens. In Taiwan, it has been dubbed « earthquake fish » because fishermen discovered it a few times soon after an earthquake with an epicentre at sea. Legends say that oarfish go up to the surface when disturbed by earthquakes, but the possible relationship between these two events has not been confirmed by scientific research.

A few days ago, an oarfish measuring nearly four metres from snout to tail was found tangled in a fishing net off the port of Imizu, in the north-coast prefecture of Toyama. The fish was already dead but was later taken to the nearby Uozu Aquarium to be studied. Two more oarfish were discovered in Toyama Bay nine days earlier.

Oarfish – characterised by long silver bodies and red fins – usually inhabit deep waters and the fish are rarely seen from the surface, although legend has it that when oarfish rise to shallow waters, disaster is near.

However, biologists have a more prosaic explanation. According to a professor of ichthyology at Kagoshima University, “these fish tend to rise to the surface when their physical condition is poor, rising on water currents, which is why they are so often dead when they are found. The link to reports of seismic activity goes back many, many years, but there is no scientific evidence of a connection so I don’t think people need to worry.”

Nevertheless, the oarfish’s reputation as an indicator of imminent doom was enhanced after at least 10 oarfish were washed up along Japan’s northern coastline in 2010. In March 2011, an M 9.0 earthquake struck off northeast Japan, triggering a massive tsunami that killed nearly 19,000 people and destroyed the Fukushima nuclear plant.

Experts warned that an earthquake in the Nankai Trough, which runs parallel to Japan’s southern coast from off Nagoya to the southern island of Kyushu, could be imminent and resulting tsunami could cause massive loss of life and destruction in coastal areas. The most recent government predictions suggest a tsunami more than 30 metres high could be generated by a major quake.

The Japanese government has recently announced a new package of response measures to a major earthquake beneath Tokyo, including additional steps to evacuate foreigners from the city. They also call for improved delivery of information on places to take shelter, evacuation routes and medical treatment. The information will be made available in more languages via disaster information websites.

Source : Japanese and international press.

Régalec échoué sur une plage (Crédit photo: Wikipedia)

Le point sur la sismicité à Mayotte (Archipel des Comores) // Latest news about seismicity in Mayotte (Comoro Islands)

La sismicité continue à Mayotte, mais les relevés du BRGM (voir graphique ci-dessous) montrent qu’elle est moins intense qu’il y a quelques mois. Dans son bulletin du 30 janvier 2019, le Bureau indique qu’il a dénombré 98 séismes de magnitude supérieure ou égale à M 3.5 entre le 10 et le 30 janvier, (soit en moyenne 5 par jour) dont 13 séismes de magnitude supérieure ou égale M 4.0.

Depuis novembre 2018, le niveau d’activité sismique est stable et constant. Depuis le début de l’essaim sismique, les événements ont été localisés pour la plupart dans une zone située entre 30 et 40 km à l’est de Mamoudzou.

Le BRGM précise que l’apparition de l’essaim sismique en mai 2018 a surpris la communauté scientifique. La connaissance géologique de la zone de l’essaim étant limitée, la compréhension du phénomène se précise au fur et à mesure de l’observation des séismes. Différentes hypothèses sur leurs causes ont ainsi été étudiées. En plus des mesures sismiques, de nouvelles données ont été analysées en octobre et novembre 2018, notamment des données de déformation de la surface de l’île. Une équipe du Laboratoire de Géologie de l’Ecole Normale Supérieure de Paris a ainsi montré que la phase actuelle de l’essaim s’explique par une composante volcanique.

Comme je l’ai indiqué précédemment, le 11 novembre 2018, un signal atypique très basse fréquence a été détecté par les réseaux internationaux. Il est caractéristique d’un phénomène volcanique.

On arrive donc à hypothèse selon laquelle on se trouve devant une conjonction d’effets tectoniques et volcaniques pour expliquer la situation au large de Mayotte. Afin de mieux comprendre la situation, des possibilités de déployer de nouveaux instruments à terre et en mer sont à l’étude.

D’un point de vue sismique, la situation actuelle s’inscrit dans une sismicité connue et modérée dans le canal du Mozambique. L’archipel des Comores présente, le long de ses 500 kilomètres, une sismicité relativement diffuse dans un contexte tectonique et volcanique. Cette sismicité est régulière avec une fréquence relativement importante de séismes de magnitude proche de M 5 dans l’ensemble de la zone.

La sismicité à proximité immédiate de Mayotte est moins bien connue mais des séismes entraînant des dommages se sont déjà produits dans le passé, par exemple le 1er décembre 1993, avec une secousse de M 5.2. En revanche, aucun séisme destructeur de magnitude supérieure à M 6 n’a été enregistré à ce jour à proximité de Mayotte.

Source : BRGM.

————————————————–

Seismicity continues in Mayotte, but the BRGM surveys (see graph below) show that it is less intense than a few months ago. In its bulletin of January 30th, 2019, the Bureau indicates that it counted 98 earthquakes with a magnitude greater than or equal to M 3.5 between January 10th and 30th, (ie an average of 5 events per day) including 13 earthquakes with a magnitude greater than or equal to M 4.0.
Since November 2018, the level of seismic activity has been stable and constant. Since the beginning of the seismic swarm, events have been located for the most part in an area between 30 and 40 km east of Mamoudzou.
BRGM states that the appearance of the seismic swarm in May 2018 surprised the scientific community. The geological knowledge of the zone of the swarm being limited, the understanding of the phenomenon becomes more precise with the observation of the earthquakes. Different hypotheses on their causes have thus been studied. In addition to seismic measurements, new data were analyzed in October and November 2018, including deformation data on the island’s surface. A team from the Laboratoire de Géologie de l’Ecole Normale Supérieure of Paris has shown that the current phase of the swarm is explained by a volcanic component.
As I indicated earlier, on November 11th, 2018, an atypical, very low frequency signal was detected by international networks. It is characteristic of a volcanic phenomenon.
The final hypothesis is that we are confronted with a conjunction of tectonic and volcanic effects to explain the situation off Mayotte. To better understand the situation, opportunities to deploy new instruments on land and at sea are being explored.
From a seismic point of view, the current situation is part of a known and moderate seismicity in the Mozambique Channel. The Comoros archipelago presents, along its 500 kilometres, a relatively diffuse seismicity in a tectonic and volcanic context. This seismicity is regular with a relatively large frequency of earthquakes with magnitudes close to M 5 in the whole area.
The seismicity in the immediate vicinity of Mayotte is less well known but earthquakes causing damage have already occurred in the past, for example on December 1st, 1993, with a an M 5.2 quake. However, no destructive earthquake with a magnitude greater than M 6 has been recorded so far near Mayotte.
Source: BRGM.

Source: BRGM

Essaim sismique à proximité de l’Hekla (Islande) // A seismic swarm near Mt Hekla (Iceland)

Un essaim sismique a été enregistré le 27 janvier 2019 à quelques kilomètres à l’ouest du Torfajokull et à une quinzaine de kilomètres à l’est de l’Hekla. On a dénombré une trentaine d’événements d’une magnitude variant globalement entre M 1 et M 3,7, entre 3 et 7 km de profondeur.

Etant donné la proximité de l’Hekla, la situation mérite d’être surveillée. Il est bon de rappeler que la dernère éruption de ce volcan a eu lieu fin février 2000, précédée d’un bref épisode sismique d’une heure vingt. Après un début intense, l’éruption s’est essoufflée et s’est terminée dans les premiers jours du mois de mars.

Les éruptions précédentes au 20ème siècle se sont produites en mars-avril 1948, mai-juillet 1970, août 1980 et janvier-mars 1991.

Elles se caractérisent souvent par ne première phase explosive violente suivie d’une activité moins intense, avec des coulées de lave et d’abondantes émissions de cendre.

Certains scientifiques affirment que l’Hekla aurait un cycle éruptif décennal, mais l’examen des éruptions au cours des âges montre que ce cycle n’existe pas vraiment. On remarquera que 19 années se sont déjà écoulées depuis la dernière éruption. D’une manière plus générale, la notion de cycle éruptif n’a jamais été vraiment prouvée sur les volcans actifs.

Source : IMO, Smithsonian Institution.

———————————————————

A seismic swarm was recorded on January 27th, 2019 a few kilometres west of Torfajokull and about fifteen kilometres east of Mt Hekla. There were about thirty events with a magnitude generally ranging between M 1 and M 3.7, between 3 and 7 km deep.
Given the proximity of Mt Hekla, the situation deserves to be monitored. It is worth remembering that the last eruption of this volcano took place at the end of February 2000, preceded by a brief seismic episode of one hour and twenty minutes. After an intense start, the eruption declined and ended in the first days of March.
Previous eruptions in the 20th century occurred in March-April 1948, May-July 1970, August 1980 and January-March 1991.
They are often characterized by a first violent explosive phase followed by a less intense activity, with lava flows and abundant ash emissions.
Some scientists claim that Mt Hekla has a ten-year eruptive cycle, but the review of eruptions over the ages shows that this cycle does not really exist. It should be noted that 19 years have passed since the last eruption. More generally, the notion of eruptive cycle has never really been proven on active volcanoes.
Source: IMO, Smithsonian Institution.

Source: IMO

Mt Agung (Bali / Indonésie) & Ambrym (Vanuatu)

Selon le Centre de gestion des risques, l’Agung a connu un nouvel épisode éruptif le 21 janvier 2019 à 17 heures (heure locale). Le sismogramme montre que l’éruption a duré 1 minute et 12 secondes avec une amplitude maximale de 23 millimètres. Les mauvaises conditions météo ont empêché d’évaluer la quantité de cendre émise par le volcan pendant l’éruption.
Le niveau d’alerte est maintenu à 3 (siaga) sur une échelle de quatre niveaux.
Les habitants, les randonneurs et les touristes doivent respecter le rayon de 4 km de la zone de danger.

La sismicité est assez forte au Vanuatu ces temps-ci. Plusieurs événements tectoniques ont été enregistrés au cours des derniers mois. Un événement peu profond d’une magnitude de M 6,6 a été enregistré près des côtes du Vanuatu le 15 janvier 2019.
Des témoins ont indiqué que des séismes liés à l’activité volcanique à Ambrym ont ouvert des fractures dans le sol au cours du mois écoulé. Elles ont endommagé des villages entiers et entraîné l’évacuation de 700 personnes. Ces dernières ont été transférées dans des zones plus sûres de l’île. Jusqu’à présent, il n’est pas prévu de les transférer dans d’autres îles. Toutefois, si l’activité volcanique s’intensifie, il est envisagé de les déplacer à Malekula, l’une des grandes îles de la province.
L’activité volcanique est actuellement faible et le niveau d’alerte reste à 3. La zone de danger reste d’environ 2 km autour de Benbow et à 4 km autour de Marum (voir carte). Une autre zone de risque se situe à moins de 3 km des principales fractures au sud-est d’Ambrym.
Bien qu’elle soit inférieure à celle de décembre 2018 et non ressentie par la population, la sismicité persiste à Ambrym. GeoHazards indique qu’elle est lié à l’activité volcanique actuelle. Elle pourrait continuer d’affecter les fractures existantes, en particulier dans le sud-est d’Ambrym. Les dernières images satellitaires confirment la déformation du sol à Ambrym, ce qui signifie que la population de l’île et des îles voisines doivent s’attendre à plus de séismes, de gaz volcaniques et de retombées de cendre.
Source: GeoHazards, The Watchers.

————————————————-

According to the Center for Volcanology and Geological Hazard Mitigation, Mount Agung erupted on January 21st, 2019 at 5 p.m. (local time). The seismogram shows that the eruption lasted 1 minute and 12 seconds with a maximum amplitude of 23 millimetres. Foggy weather prevented from measuring the amount of ash the volcano spewed during the eruption.

The alert level is kept at 3 (siaga) on a four-level scale.

Residents, climbers and tourists should steer clear of the danger zone within a 4-kilometer radius of the crater.

 

Seismicity is quite hjgh in Vanuatu these days. Several tectonic earthquakes have been recorded during the past months. A strong and shallow event with an M 6.6 magnitude hit near the coast of Vanuatu on January 15th, 2019.

Witnesses indicate that other earthquakes related to volcanic activity at Ambrym opened fissures in the ground during the past month. They damaged entire villages, forcing the evacuation of 700 people. These persons are being relocated to safer zones on the island. There are so far no plans to relocate them to other islands. Should volcanic activity intensify, there is a plan to move them to Malekula, one of the big islands in the province.

Volcanic activity is currently low and the alert level remains at 3. The danger zone remains about 2 km around Benbow and 4 km around Marum (see map). The additional area of risk is within 3 km from major cracks in the South East of Ambrym.

Although it is lower than in December 2018 and not felt by the population, seismicity persists at Ambrym. GeoHazards indicates it is related to the current volcanic activity. It may continue to affect the existing cracks, especially in the South East Ambrym area. The latest satellite imagery confirms ongoing land deformation at Ambrym, which means the population of the island and neighbouring ones may expect more earthquakes, volcanic gases and ashfall at any time.

Source : GeoHazards, The Watchers

 Fractures provoquées par l’activité sismique à Ambrym (Source: strangesounds.org)

Zones de sécurité sur l’île d’Ambrym (Source: GeoHazards)

Mayotte (Archipel des Comores) : Vers une éruption sous-marine? // Toward a possible submarine eruption ?

Il semble que la situation s’oit en train de s’accélérer dans le secteur de Mayotte, dans l’archipel des Comores. Comme je l’ai écrit à plusieurs reprises, la région est affectée par un essaim sismique intense qui inquiète la population. Toutefois, jusqu’à présent, la cause de cette sismicité n’a été ni détectée, ni expliquée.
L’inquiétude a récemment grandi lorsque de nombreux poissons morts sont apparus sur plusieurs sites au large de la barrière de corail, à l’est-sud-est de Mayotte, entre Madagascar et le Mozambique, là où l’essaim a commencé en mai 2018. Les premiers événements avaient des magnitudes proches de M 3,0, suivis d’autres secousses de magnitudes M 3,5 et M 3,7, avec un séisme de M 4,5 le 10 mai 2018.
Selon les autorités locales, la découverte de poissons morts était accompagnée «d’une forte odeur de gaz, de caoutchouc ou de plastique brûlé, et de soufre.».
Il se peut que les poissons morts soient liés à l’essaim sismique ou à un possible événement volcanique qui aurait pu perturber le fragile équilibre écologique des fonds océaniques où évolue cette faune. Des situations semblables ont été observées à La Réunion et à Hawaii dans le passé, lorsque la lave a pénétré dans l’océan. La vente des poissons morts a été interdite. Suite à leur découverte, la Préfecture a conseillé aux pêcheurs d’éviter certaines zones définies par leurs coordonnées GPS.
À titre préventif, les pompiers de Mayotte organisent des exercices visant à simuler le sauvetage de personnes piégées par des glissements de terrain, et on apprend aux habitants de l’île à vérifier si les murs de leurs maisons et de leurs entreprises ne sont pas fissurés. Un de mes amis dont la fille est médecin dans un hôpital m’a raconté qu’il y a de plus en plus de patients souffrant de crises d’angoisse et se rendant à l’hôpital pour obtenir des médicaments.
Comme je l’ai écrit dans une note précédente, un signal sismique atypique de très basse fréquence en provenance de l’île de Mayotte a été détecté par les réseaux du monde entier peu avant 9h30 (TU) le 11 novembre 2018. Le signal s’est répété toutes les 17 secondes environ, sur une durée d’une vingtaine de minutes. Le BRGM a déclaré que les signaux de ce type sont caractéristiques des phénomènes volcaniques.
J’ai également indiqué que depuis la mi-juillet, les stations GPS de l’île ont détecté un glissement de plus de 61 mm vers l’est et de 30 mm vers le sud. Au vu de ces mesures, des chercheurs français ont estimé qu’une volumineuse poche de magma se frayait un chemin vers la surface à proximité de Mayotte.
Je pense personnellement que cette hypothèse mérite d’être prise en compte. Le risque d’une éruption dans les profondeurs de l’océan est réel. Jusqu’à présent, aucun signe externe d’une telle éruption (changements de couleur de l’eau de mer, par exemple) n’a été observé. Cependant, la présence de poissons morts fait penser à une possible émission de lave (?), de gaz nocifs et éventuellement d’eau à haute température au fond de l’océan. En conséquence, la situation doit être surveillée de près.
Source: The Watchers, BRGM, IPG, média français.

———————————————-

It seems the situation is accelerating at Mayotte in the Comoros. As I put it several times before, the region is affected by an intense seismic swarm that worries the population. Up to now, the cause of this seismicity has not been detected and explained.

More anxiety was recently triggered when a large number of dead fish emerged at various sites off the barrier reef just east-southeast of Mayotte, between Madagascar and Mozambique where the swarm started in May 2018. The first evenys had magnitudes close to M 3.0, followed by more quakes with magnitudes M 3.5 and M 3.7 and culminating at M4.5 on May 10th, 2018.

According to local authorities, the discovery of dead fish was accompanied by “a strong smell of gas, burning rubber, plastic or sulphur.”

The dead fish may be linked to the earthquake swarm and a possible volcanic origin which could have disturbed the fragile ecological balance of the shallows in which this fauna evolves. Similar situations have been observed in Réunion and Hawaii in the past when lava entered the ocean. The sale of the dead fish has been prohibited. Following their discovery, the Prefecture has advised fishermen to avoid certain zones defined by their GPS coordinates.

As a prevention Mayotte’s firefighters are conducting drills designed to simulate rescuing people trapped by a landslide, and emergency experts are teaching island residents to check their homes and businesses for cracked walls. A friend of mine whose daughter is a doctor in a hospital told be there are more and more patients suffering from anxiety attacks and visiting the hospital to get medicines.

As I put it in a previous post, an atypical very low frequency signal originating near the island of Mayotte was detected by international networks around the world just before 09:30 UTC on November 11th, 2018. The signal repeated in a wave about every 17 seconds, lasting for about 20 minutes in total. The French BRGM said signals of this type are characteristic of volcanic phenomena.

I also indicated that since mid-July, GPS stations on the island have tracked it sliding more than 61 mm to the east and 30 mm to the south. Using these measurements, French researchers estimated that a voluminous magma body is squeezing its way through the subsurface near Mayotte.

In my opinion, this hypothesis needs to be taken into account. The risk of an eruption in the depths of the ocean is real. Up to now, external signs of such an eruption (changes of colour in the ocean water, for instance) have not been observed. However, the presence of dead fish is an indication of the release of lava (?), noxious gases and possibly hot water on the ocean floor. As a consequence, the situation should be closely monitored.

Source: The Watchers, BRGM, IPG, French news media.

Sismicité à Mayotte et dans toute la région (Source: BRGM)

Essaim sismique à proximité de Santorin // Seismic swarm close to Santorini

Un essaim sismique a été enregistré au sud-ouest de l’île de Santorin le 13 janvier 2019.
Selon le réseau grec de surveillance sismique, l’essaim a commencé aux premières heures du 13 janvier avec un événement de M 2.5 à une profondeur de 13 km. Cinq minutes plus tard, un autre séisme de magnitude M 2,5 a été enregistré, suivi de 15 autres secousses au cours de l’après-midi. Les magnitudes allaient de M 2,1 à M 3,9 à des profondeurs de 8 à 17 km. Aucun autre séisme n’a été enregistré dans la région au cours des heures suivantes.
L’essaim sismique s’est produit près de la ligne tectonique de Kameni, qui s’étire dans une direction sud-ouest / nord-est. Le magma s’est souvent frayé un chemin le long de cette ligne au cours des 100 000 dernières années, mais rien ne permet de dire aujourd’hui que la dernière sismicité est d’origine volcanique.
La dernière éruption à Santorin a débuté à Nea Kameni le 10 janvier 1950 et s’est terminée le 2 février de la même année. Elle a édifié un petit dôme et produit une coulée de lave, avec une petite activité explosive. Aujourd’hui, quelques fumerolles avec une température d’environ 80°C nous rappellent que le volcan est encore potentiellement actif.
Santorin est surtout connue pour son éruption cataclysmale aux alentours de 1600 av. J.-C. Elle avait probablement un VEI de 7 et est considérée comme l’une des plus grandes éruptions de l’histoire sur Terre. Elle a détruit la civilisation minoenne. Elle fut probablement plus puissante que l’éruption du Krakatau en 1883. L’éruption de Santorin est souvent liée aux Dix Plaies de l’Égypte que j’ai évoquées dans plusieurs notes sur ce blog en octobre 2010.
Source: Réseau sismique grec, The Watchers.

——————————————————–

A seismic swarm was recorded south-west of Santorini volcano on January 13th, 2019.

According to the Hellenic Unified Seismic Network, the swarm started in the early hours of January 13th with an M 2.5 event at a depth of 13 km. It was followed by another M 2.5 quake five minutes later and another 15 earthquakes in the afternoon. Magnitudes ranged from M 2.1 to M 3.9 and depths from 8 to 17 km. No other earthquakes were registered in the area over the next hours.

The earthquakes occurred near the Kameni tectonic line, while lies in a south-west / north-east direction. Magma often rose to the surface along this line in the Santorini volcano’s past 100 000 years. However, there is currently no sign that the earthquakes have a volcanic origin.

The last eruption at Santorini started at Nea Kameni on January 10th, 1950 and ended on February 2nd of the same year. It produced a small lava dome and a lava flow, accompanied by some explosive activity. Today only a few fumaroles with atemperature of about 80°C remind us that the volcano is still potentially active.

Santorini is better known for the major catastrophic eruption around 1600 B.C. It probably had a VEI of 7, and is considered as one of the largest eruptions on Earth in recorded history. It destroyed the Minoan civilisation. It was probably more powerful than the 1883 eruption of Krakatau. The early eruption of santorini is often linked with the Ten Plagues of Egypt which I explaines in several posts of the blog (in French) in October 2010.

Source : Hellenic Unified Seismic Network, The Watchers.

La caldeira de Santorin vue depuis l’espace (Crédit photo: NASA)