Volcans du monde // Volcanoes of the world

Comme indiqué précédemment, l’activité de l’Ubinas (Pérou) a été intense ces derniers jours. Elle a culminé avec de violentes explosions le 19 juillet 2019. Cette activité explosive a débuté vers 2 h 35 (heure locale) ce même jour. Les images satellite ont montré que le nuage éruptif avait atteint une hauteur de 12,1 km au dessus du niveau de la mer. Des retombées de cendre ont été signalées dans plusieurs villages de la vallée d’Ubinas et de la région d’Arequipa
L’IGP a recommandé de relever le niveau d’alerte de Jaune à Orange.
Source: IGP.

++++++++++

Le VSI indique qu’une brève éruption s’est produite sur le Bromo (Indonésie) le 19 juillet 2019. Elle a duré environ 7 minutes et a déclenché une vague de panique parmi la population locale. Les mauvaises conditions météorologiques ont empêché une bonne observation de l’événement.
Parallèlement à l’éruption, il a été fait état d’un lahar dans le village de Ngadas. Cependant, le VSI a expliqué que la coulée de boue n’était pas directement liée à l’éruption. Elle était plutôt causée par les fortes précipitations qui se sont abattues sur la caldeira du Tengger et sur le Bromo ; elles ont remobilisé la cendre émise par le volcan.
Le niveau d’alerte du Bromo reste à 2 sur une échelle de 1 à 4. Il est toujours conseillé aux visiteurs de rester en dehors de la zone de danger d’un rayon de 1 km autour du cratère.
Source: VSI.

++++++++++

L’éruption de l’Etna observée le 19 juillet 2019 n’a pas été l’événement majeur décrit par plusieurs organes de presse. Ce fut une simple activité strombolienne avec un épanchement de lave classique sur ce volcan. Cependant, les nuages ​​de cendre produits par l’éruption ont fermé les aéroports de Catane et de Raguse pendant quelques heures.
L’intense activité strombolienne qui avait débuté sur le Nouveau Cratère Syd-Est (NCSE) le 19 juillet dans l’après-midi, a cessé brusquement entre 20h30 et 22h30. Au cours de la nuit, la vitesse d’écoulement de la lave sur le flanc nord du NCSE a fortement diminué et les fronts de coulées se sont arrêtés après avoir parcouru environ 2 200 mètres sur la paroi occidentale de la Valle del Bove où ils ont commencé à se refroidir, comme on pouvait le voir sur les caméras thermiques. Cependant, l’émission de lave a continué quelques heures. De petites explosions sporadiques se sont produites pendant la nuit dans le NCSE. À partir de 3h30 GMT), l’activité explosive au NCSE s’est de nouveau intensifiée avant de diminuer par la suite. Actuellement, les caméras thermiques confirment que les fronts de coulées ne bougent plus et sont en phase de refroidissement,
La sismicité et le tremor éruptif ont retrouvé des niveaux de base.

++++++++++

Dans son dernier bulletin hebdomadaire sur le Stromboli (Sicile), le laboratoire de Géophysique Expérimentale indique que l’activité éruptive reste soutenue, avec une augmentation de l’activité effusive, en particulier dans le secteur sud-ouest de la Sciara del Fuoco. On observe une vingtaine d’explosions stromboliennes chaque jour. Les projections de lave et de cendre atteignent souvent 400 mètres de hauteur. La coulée de lave qui émane du cratère sud-ouest présente un débit  d’environ 2 mètres cubes par seconde. La lave avance sur la partie supérieure de la Sciara del Fuoco sur une longueur d’environ 600 mètres et une largeur de 80 mètres. Le front de lave se situe à environ 300 mètres au-dessus du niveau de la mer. Des blocs se détachent régulièrement du front de coulée et roulent jusqu’à la mer.
Les émissions de SO2 montrent une tendance à la hausse et a atteignaient 255 tonnes par jour le 15 juillet, la valeur la plus élevée depuis 2014.

Source : Laboratorio Geofisica Sperimentale.

++++++++++

Le Marion Dufresne reprend la mer en direction du volcan sous-marin de Mayotte. Une nouvelle mission intitulée « Mayobs4 » a appareillé le 19 juillet 2019 pour observer le nouveau volcan  formé au large de l’île. Les scientifiques tentent toujours de comprendre le mécanisme des séismes qui ont secoué Mayotte pendant plus d’un an.

Prévue pour durer jusqu’au 31 juillet, cette mission va observer la dorsale volcanique entre le nouveau volcan et la zone sismique. Elle s’étire en Petite Terre et le nouveau volcan à 50 km à l’Est (voir carte ci-dessous). Cette dorsale est constituée d’une série de cônes volcaniques où l’on observe une instabilité depuis l’année dernière. Les séismes se situeraient beaucoup plus près de Petite Terre que du volcan, 5 à 15 kilomètres seulement. On a également détecté des émanations de gaz en cours d’analyse dans cette zone.

On suppose que la lave circule à l’intérieur d’un réseau de tunnels sous la croûte terrestre, et ressort au niveau du nouveau volcan. Dans ce cas les séismes seraient provoqués par ces remontées de magma. Cette circulation du magma a lieu à 20 ou 30 kilomètres de profondeur ; raison pour laquelle la magnitude des séismes serait atténuée en surface. Il faut parler au conditionnel car ces différentes hypothèses restent à vérifier.
Il faut rappeler que la Petite Terre est un volcan, comme en témoigne le cratère éteint du lac Dziani. Deux autres cratères se sont effondrés, formant les plages de Moya.
Source : FranceTV Info.

—————————————————

As I put it before, activity at Ubinas (Peru) has been intense in the past days. It culminated with violent explosions on July 19th, 2019. This explosive activity started at about 2:35 (local time) on that day. Satellite imagery showed that the eruptive cloud reached a height of 12.1 km above sea level. Ashfall was reported in several villages across the Ubinas Valley and the Arequipa region

IGP has recommended raising the alert level from Yellow to Orange.

Source: IGP.

++++++++++

VSI indicates that a short eruption occurred at Mount Bromo (Indonesia) on July 19th, 2019. It lasted about 7 minutes and sent a wave of panic along the local population. Poor weather conditions prevented a good observation of the event.

Parallel to the eruption, there were reports of a lahar in the village Ngadas. However, VSI indicated that the mudflow was not directly related to the eruption. It was rather caused by the heavy rainfall around the Tengger Caldera and the summit of Bromo which mixes with the ash produced by the volcano

The alert level for Mt Bromo remains at 2, on a scale of 1 – 4. Visitors are still advised to stay outside the 1-km radius danger zone around the crater.

Source: VSI.

++++++++++

The eruption of Mt Etna that was observed on July 19th, 2019, was not the major event mentioned by several news media. It was a simple strombolian activity with a minor lava effusion. However, the ash clouds produced by the eruption closed Catania and ragusa airports for a few hours.

The intense strombolian activity at the New Southeast Crater (NSEC), which had resumed on July 19th in the afternoon ceased between 8:30 and 10:30 p.m. During the night, the effusion rate at the vent on the northern flank of the NSEC was strongly reduced, and the lava fronts stagnated at about 2,200 metres on the western wall of the Valle del Bove and started cooling, as could be seen on the thermal cameras. However, lava effusion persisted a few hours. Sporadic small explosions occurred at the NSEC during the night. Starting at 3:30 a.m.(UTC), there was a renewed intensification of the explosive activity at the NSEC which later declined. Currently, the thermal cameras confirm that the most advanced lava flow fronts are not moving and are cooling,

Seismicity and the eruptive tremor have regained background levels.

In the meantime, activity is still quite intense at Stromboli, as can be seen on the Skyline webcam.

++++++++++

In its latest weekly bulletin on Stromboli (Sicily), the Laboratorio Geofisica Sperimentale reports that eruptive activity remains strong, with an increase in effusive activity, especially in the southwest sector of Sciara del Fuoco. About twenty strombolian explosions are observed every day. The projections often reach 400 metres in height. The lava flow from the southwestern crater has a flow rate of about 2 cubic metres per second. Lava advances on the upper part of the Sciara del Fuoco over a length of about 600 metres and a width of 80 metres. The lava front is about 300 metres above sea level. Blocks regularly break away from the front and roll to the sea.
SO2 emissions show an upward trend and reached 255 tonnes per day on July 15th, the highest value since 2014.
Source: Laboratorio Geofisica Sperimentale.

++++++++++

The Marion Dufresne is again taking the sea towards Mayotte’s submarine volcano. A new mission – Mayobs4 – left the port on July 19th, 2019 to observe the new volcano formed off the island. Scientists are still trying to understand the cause and process of earthquakes that have shaken Mayotte for more than a year.
Scheduled to last until July 31st, this mission will observe the volcanic ridge between the new volcano and the seismic zone. It stretches between Petite Terre and the new volcano, 50 km to the East (see map below). This ridge consists of a series of volcanic cones where there has been instability since last year. The earthquakes might be much closer to Petite Terre than the volcano, only 5 to 15 kilometers away. Gases that have been detected in this area are being analyzed.
It is suggested that the lava travels inside a network of tunnels under the earth’s crust, and comes out at the new volcano. In this case the earthquakes might be caused by these magma ascents. This circulation of magma takes place at a depth of 20 to 30 kilometres; This is why the magnitude of the earthquakes is probably attenuated on the surface. We must use the conditional because these different hypotheses remain to be verified.
It must be remembered that Petite Terre is a volcano, as evidenced by the extinct crater of Lake Dziani. Two other craters collapsed, forming the beaches of Moya.
Source: FranceTV Info.

Cratère et lac Dziani sur Petite Terre (Crédit photo: Wikipedia)

Des nouvelles du volcan sous-marin de Mayotte // Some news of Mayotte’s submarine volcano

Une activité sismique affecte l’île de Mayotte depuis le début du mois de mai 2018. Depuis le mois de juillet  2018, l’activité sismique a diminué mais une sismicité persiste, avec des événements parfois ressentis par la population. Les données fournies par les stations GPS installées sur l’île de Mayotte indiquent toujours depuis le mois de juillet 2018 un déplacement d’ensemble vers l’est (d’environ 20 cm depuis juillet 2018) et une subsidence d’environ 7-15 cm selon les sites au cours de cette même période.

Une première campagne de mesures océanographiques (MAYOBS 1) à bord du Marion Dufresne du 2 au 18 mai 2019 a permis une découverte majeure avec la naissance d’un nouveau volcan sous-marin à l’Est de Mayotte. Une deuxième campagne (MAYOBS 2) a été organisée du 11 au 17 juin 2019. Le but de cette nouvelle mission était de poursuivre les acquisitions de données suite aux récentes découvertes de la précédente, en procédant notamment à une nouvelle récupération et au redéploiement des sismomètres de fond de mer, à une nouvelle bathymétrie et à la mesure de la réflectivité sur les zones cartographiées au cours de MAYOBS 1, dans le but de détecter de possibles évolutions des reliefs sous-marins.

L’analyse de données sismiques réalisée à bord confirme une localisation toujours relativement profonde des séismes (entre 25 et 50km de profondeur), avec un essaim principal à environ 10 km à l’est de Petite-Terre. Les levés bathymétriques réalisés au-dessus du nouveau volcan ont montré que sa taille n’avait pas évolué depuis la campagne MAYOBS 1. En outre, au sud de ce volcan, un nouveau relief a été identifié. Cette nouvelle zone d’activité volcanique s’étend sur une surface couvrant 8,71 km², et sa hauteur varie de 25 à 75 mètres. Ce vaste épanchement représente un volume de 0,2 km3, suffisant pour recouvrir une ville de la taille de Paris d’une couche de 2 mètres de matière en fusion. Il ne figurait pas sur les relevés qui avaient été effectués quatre semaines auparavant ; cela implique qu’il soit apparu entre-temps, et cela donne une idée de l’ampleur du phénomène volcanique, qui focalise aujourd’hui l’attention des chercheurs.

Que ce soit sur la zone de l’essaim principal ou du volcan, les nouveaux levés ont confirmé la présence de panaches visibles dans les colonnes d’eau mais n’atteignant pas la surface.

Source : OVPF, IPGP.

—————————————-

Seismic activity has affected the island of Mayotte since the beginning of May 2018. Since July 2018, this seismic activity has decreased but still persists, with events sometimes felt by the population. The data provided by the GPS stations installed on the island of Mayotte have indicated since July 2018 a total displacement to the east (about 20 cm since July 2018) and a subsidence of about 7-15 cm according to the sites during this same period.
A first campaign of oceanographic measurements (MAYOBS 1) aboard the Marion Dufresne from May 2nd  to 18th, 2019, led to a major discovery with the birth of a new submarine volcano east of Mayotte. A second campaign (MAYOBS 2) was organized from June 11th to 17th, 2019. The purpose of this new mission was to continue the data acquisition following the recent discoveries of the previous one, including the recovery and the redeployment of seismometers on the seabed, a new bathymetry and the measurement of the reflectivity on the areas mapped during MAYOBS 1, in order to detect possible evolutions of the submarine reliefs.
The analysis of seismic data carried on board confirms the relatively deep location of earthquakes (between 25 and 50 km deep), with a main swarm about 10km east of Petite-Terre. The bathymetric surveys carried out above the new volcano have shown that its size has not changed since the MAYOBS 1 campaign. In addition, south of this volcano, a new relief has been identified. This new area of ​​volcanic activity extends over 8.71 km², and its height varies from 25 to 75 metres. This large effusion represents a volume of 0.2 km3, sufficient to cover a city the size of Paris with a layer of 2 metres of molten material. This area was not on the surveys that had been done four weeks ago; this implies that it has appeared in the meantime, and this gives an idea of ​​the magnitude of the volcanic phenomenon, which is now attracting the attention of researchers.
Whether in the area of ​​the main swarm or the volcano, the new surveys confirmed the presence of plumes visible in the water columns but not reaching the surface.
Source: OVPF, IPGP.

Comment lire un sismogramme du HVO (Hawaii) // How to read a HVO seismogram (Hawaii)

L’Observatoire des Volcans d’Hawaii, le HVO, exploite un réseau de stations de surveillance sismique sur la Grande Ile d’Hawaï et dans tout l’État. Le personnel du HVO recueille les données en temps réel à partir de nombreuses stations grâce à un logiciel de traitement informatique permettant de détecter, localiser et publier des informations sur les séismes survenus à Hawaii. Contrairement à ce qui se passe sur les volcans français, toutes les données sismiques sont librement accessibles au public.
La page consacrée aux séismes sur le site web du HVO (https://volcanoes.usgs.gov/observatories/hvo/) indique les emplacements des derniers séismes et on peut voir les stations de surveillance sur une carte (voir ci-dessous) où elles sont symbolisées par des triangles rouges.
Si vous cliquez sur le symbole d’une station particulière sur la carte, une fenêtre va apparaître avec l’affichage de quatre panneaux de webicorders (enregistreurs sismiques) pour des durées de 6 heures, 12 heures, 24 heures et 48 heures. Vous pouvez cliquer sur chaque période pour agrandir le webicorder.
Les tracés séismiques visibles sur les webicorders sont les versions numériques des vieux enregistreurs à tambour en papier utilisés au cours des dernières décennies. Chaque ligne correspond à un enregistrement sismique de 15 minutes, en partant du coin supérieur gauche, la dernière heure étant affichée en bas à droite. Ainsi, on lit un webicorder comme un livre, de gauche à droite et de haut en bas. L’heure de début de chaque ligne est affichée en heure locale (Heure de l’Etat d’Hawaii, ou HST) à gauche, et l’heure de fin de chaque ligne en temps universel (UTC) à droite.
Les données sismiques sont indiquées en bleu sur les webicorders, avec une alternance de tons bleu foncé et bleu clair pour chaque plage de 15 minutes. Les lignes bleues imitent le mouvement du sol sous le capteur sismique: la ligne monte si le sol se déplace vers le haut, la ligne descend si le sol se déplace vers le bas, et la ligne serait droite au niveau «zéro» si aucun mouvement du sol n’est détecté. Plus l’amplitude du mouvement du sol est élevée, plus la ligne bleue est haute. Ce qui est immédiatement évident, c’est que le sol monte et descend toujours très légèrement.
Les instruments sismiques sont très sensibles et enregistrent tout ce qui secoue le sol. Ils peuvent même enregistrer le vent, le tonnerre, la foudre, les vagues de l’océan qui viennent se briser contre l’île, ainsi que des séismes bien localisés dus aux chutes de pierres, aux tirs de mines dans des carrières ou à d’autres explosions.
Les séismes apparaissent sous forme de taches bleues. Chacune a certaines caractéristiques bien reconnaissables, notamment les ondes P (primaires) et S (secondaires ou de cisaillement), qui peuvent avoir un début net avant de décroître pour retrouver leur niveau de base. Une plus grande séparation entre les ondes P et S indique une distance croissante entre la station sismique et le séisme. D’autres types de séismes, par exemple ceux dus au mouvement de magma ou de gaz, ont une apparence différente, généralement avec une période d’énergie plus longue pouvant persister sur de plus longues périodes.
Source: USGS / HVO.

——————————————–

The Hawaiian Volcano Observatory (HVO) operates a network of seismic monitoring stations on the Island of Hawaii and throughout the state. The HVO staff collects real-time data from numerous stations using computer processing software to detect, locate, and publish information about earthquakes that are recorded in Hawaii. Contrary to what happens on French volcanoes, all seismic data are freely available to the public.
The earthquake page on the HVO website (https://volcanoes.usgs.gov/observatories/hvo/) shows recent earthquake locations and the monitoring stations can be seen on a map (see below) where they are symbolised by red triangles.
Clicking on a particular station symbol on the map will reveal a pop-up window that shows four panels of webicorders, for timespans of 6 hours, 12 hours, 24 hours, and 48 hours. You can click on each timespan to enlarge the webicorder.
The seismic webicorder plots are digital versions of the paper seismic drum recorders used in past decades. Each line shows the seismic record for 15 minutes, starting from the upper left, with the latest time in the bottom right. Thus, you read a webicorder like a book, from left to right and top to bottom. The start time of each line is shown in local time (Hawai‘i Standard Time, or HST) on the left, and the end time of each line is shown in Coordinated Universal Time (UTC) on the right.
Seismic data are shown in blue on webicorder plots, with each 15-minute span alternating between dark- and light-blue tones. The blue lines mimic ground motion under the seismic sensor: the line moves up if the ground shifts upwards, the line moves down if the ground moves downwards, and the line would be flat at “zero” if no ground motion is detected. The higher the amplitude of the ground motion, the taller the blue line will be. What is immediately apparent is that the ground is always moving up and down ever so slightly.
Seismic instruments are very sensitive and record anything that shakes the ground. So, wiggles on webicorder plots could be a record of wind, thunder, lightning, ocean waves crashing against the island, as well as of localized shaking from rockfalls, quarry blasts, or other explosions.
Earthquakes appear as blue smudges. Each has certain recognizable characteristics, including P- (primary) and S- (secondary or shear) waves, which may have a sharp onset and then decay to background level. Greater separation between P and S waves indicate increasing distance from the seismic station to the earthquake. Other types of earthquakes, for example those due to the movement of magma or gas, look different, generally with longer period energy that can persist over longer time frames.
Source: USGS / HVO.

Source: USGS / HVO

Capture d’écran d’un webicorder du HVO montrant 24 heures d’enregistrement par une station sismique sur le flanc sud du Mauna Loa. On distingue plusieurs séismes , ainsi que le bruit généré par le vent. (Source: USGS / HVO)

Les anciens sismos à tambour font maintenant figure de pièces de musée (Photo: C. Grandpey)

Le risque sismique sur la Grande Ile d’Hawaii // The seismic hazard on Hawaii Big Island

Hawaii est bien connu pour ses volcans actifs. Les éruptions du Mauna Loa et du Kilauea sont souvent spectaculaires et peuvent être destructrices. Il ne faudrait pas oublier non plus que l’Etat d’Hawaï est aussi sujet à des tremblements de terre. C’est l’un des endroits les plus sismiques des États-Unis, avec des milliers de secousses chaque année. Pas plus tard que le 28 avril 2019, la Grande Ile a été secouée par un séisme de M 4,2 dont l’épicentre se trouvait sous le flanc sud de Kilauea, à environ 20 km au sud-est du sommet et à une profondeur de 7 km. L’événement a été largement ressenti dans toute la partie orientale de Big Island. Il n’a toutefois causé aucune modification d’activité sur le Kileaua.
Les séismes du passé ont causé des dégâts structurels de plusieurs millions de dollars à la petite ville de Hilo. Le tremblement de terre de M 6,2 en 1973 avait une intensité VIII sur l’échelle de Mercali, avec 11 blessés et 5,6 millions de dollars de dégâts.
Le séisme de M 7,7 à Kalapana, en 1975 a été enregistré avec une intensité VIII à Hilo, et il a causé pour 4,1 millions de dollars de dégâts.
Hilo est la quatrième ville de l’État en termes de population, avec environ 43 000 habitants. On compte au moins 40 bâtiments historiques dans cette ville, y compris des écoles, des hôpitaux, des postes de police, des immeubles de bureaux, des magasins et des églises. L’architecture de Hilo lui donne souvent l’aspect d’une ville d’avant la seconde guerre mondiale. Elle est souvent considérée comme la plus ancienne ville de l’État. En fait, son histoire remonte à  l’année 1100. Les bâtiments historiques sont particulièrement vulnérables aux séismes, en particulier ceux construits avant l’adoption des normes parasismiques.
Selon le HVO, c’est l’intensité des ondes sismiques dans une zone donnée qui détermine le risque de dégâts. Une secousse avec une intensité «très forte» de VII peut causer des dégâts considérables aux structures mal construites, mais endommage généralement peu des structures bien conçues. Une secousse avec une intensité «sévère» de VIII causera des dégâts considérables à la plupart des bâtiments ordinaires. Avec une intensité «violente» de IX, même des structures spécialement conçues pour résister aux tremblements de terre peuvent subir des dégâts considérables. L’intensité «extrême» X détruira la plupart des structures. Il a été admis que des séismes de magnitude M 6,0 à Hawaii peuvent causer des dégâts sur de vastes zones.
L’État d’Hawaï a pris des mesures pour remédier aux problèmes de construction. En outre, un rapport de 2017 indique que 29% des routes hawaiiennes sont en mauvais état. Hawaii se situe au cinquième rang des pires villes du pays pour son réseau routier. Pour ce qui est du financement des routes dans le budget fédéral, Hawaii est le 10ème plus bas des Etats Unis. Près de 6% des routes hawaïennes ont été jugées en mauvais état. Les barrages constituent également le plus grand danger à Hawaii, comparés aux autres États.
Compte tenu de ces informations, certains habitants ne se sentent pas en sécurité sur leur lieu de travail et redoutent les séismes. Ils font remarquer que ce qui s’est passé à Christchurch (Nouvelle-Zélande) en 2011 pourrait aussi se produire à Hilo.
Les autorités expliquent que la Grande Ile doit s’attendre à de nouveaux séismes et s’y préparer. Les habitants doivent être conscients que des événements majeurs se produisent de temps en temps, même s’il n’y en a pas eu de secousse d’une magnitude supérieure à M6.9 depuis assez longtemps. Un sismologue du HVO a déclaré: «Le tout n’est pas de savoir si un puissant séisme se produira, mais de savoir quand il se produira. »
Source: Big Island Now.

—————————————————-

Hawai‘i is well known for its active volcanoes. The eruptions of Mauna Loa and Kilauea are often spectacular and can be setructive. One should not forget either that Hawaii is also an earthquake country. It is one of the most seismically active states in the US, experiencing thousands of earthquakes  each year. As recently as April 28th, 2019, Big Island residents experienced an M 4.2 earthquake beneath Kilauea’s south flank, roughly 20 kilometres SE of the summit at a depth of 7 kilometres. The quake was widely felt across East Hawaii. It did not cause any changes on Kileaua Volcano.

Earthquakes in the past have caused millions of dollars in structural damage to the small town of Hilo. The 1973 M 6.2 earthquake produced shaking of intensity VIII on the Mercali scale, injuring 11 people and causing 5.6 million dollars of damage.

The 1975 M 7.7 Kalapana earthquake caused a shaking with an intensity VIII in Hilo, causing 4.1 million dollars in damage.

Hilo is the state’s fourth largest city by population with approximately 43,000 residents. There are at least 40 historic buildings in this town, including schools, hospitals, police stations, office buildings, storefronts and churches. Hilo’s architecture gives it a pre-World War II persona. The city is often considered to be the state’s oldest one. In fact, oral history can be traced back to 1,100 AD. Historic buildings are especially vulnerable to seismic events, particularly those built before seismic codes were adopted.

According to the Hawaiian Volcano Observatory, what determines the potential for damage is how intense the seismic waves generated by the earthquake are in any given area. Shaking with ‘very strong’ intensities of VII can cause considerable damage to poorly-built structures but generally little damage to well-designed structures. It takes shaking at ‘severe’ intensity VIII to cause considerable damage to most ordinary buildings. At ‘violent’ intensity IX, even specially designed earthquake-tolerant structures can have considerable damage. ‘Extreme’ intensity X can destroy most structures. It has been admitted that earthquakes above magnitude M 6.0 in Hawai‘i generally can produce damages over large areas.

The state of Hawaii has taken some action to address building concerns. Besides, a 2017 report indicates that 29% of the state’s roads are in poor condition, ranking Hawaii the fifth worst in the nation. For highway funding as a percentage of the total government spending, Hawaii is the 10th lowest in the nation. Nearly 6% of Hawai‘i roads were deemed deficient. Dams posed the most hazard in Hawaii than any other state.

Given these reports, some residents feel unsafe in their workplace during earthquakes. They say that what happened in Christchurch (New Zealand) in 2011 that could so easily happen in Hilo.

Authorities explain that the Big Island needs to be prepared for earthquakes. Residents need to be aware there are big ones now and then, even though it has been there has not been an event above M6.9 for quite a long time. Said one HVO seismologist “It’s not a matter of if, but when a strong earthquake will occur.”

Source: Big Island Now.

Des séismes sont souvent enregistrés sur le flanc sud du Kilauea (Source: USGS)

Le Bolshaya Udina (Kamchatka) est-il vraiment éteint? // Is the Bolshaya Udina Volcano (Kamchatka) really extinct?

Jusqu’à aujourd’hui, on pensait que le volcan Bolchaya Udina (Kamchatka) était éteint, mais les scientifiques viennent de réaliser qu’il pourrait se réveiller et qu’une éruption meurtrière pourrait se produire à tout moment. On a cru que le volcan était éteint jusqu’en 2017, année pendant laquelle une activité sismique intense a été détectée sous l’édifice. Entre 1999 et septembre 2017, une centaine d’événements sismiques ont été enregistrés par les instruments. Ce nombre est monté en flèche entre octobre 2017 et février 2018, avec près de 2 400 événements. En février, un séisme de M 4.3 a frappé la région.
Les dernières données ont incité des chercheurs en provenance de Russie, d’Égypte et d’Arabie Saoudite à installer quatre stations de surveillance sismique entre mai et juin 2018. Ils ont constaté qu’un « groupe elliptique » d’activité sismique était apparu à environ 5 kilomètres sous la surface. Les scientifiques pensent que la sismicité pourrait révéler la présence d’ »intrusions magmatiques à haute teneur en fluides », ce qui pourrait justifier le passage du volcan de l’état actuel « éteint » de ce volcan à un état « actif ».
Un scientifique a déclaré que ce qui se passait sur le Bolshaya Udina ressemblait aux événements survenus sur le Bezymianny qui a connu une éruption très spectaculaire en 1956. Il est toutefois difficile de déterminer le niveau de menace du Bolshaya Udina en raison de la longue distance qui le sépare des stations sismiques permanentes. Il faudra installer de nouvelles stations pour comprendre si le volcan est vraiment dangereux. Il se pourrait que l’énergie accumulée sous l’édifice se libère au cours des prochains mois, ou qu’elle disparaisse sans que l’on assiste à une éruption. Si le volcan devait entrer en éruption, il pourrait constituer une menace importante pour les petits villages voisins, même si la densité de population est faible dans la région.
Source: Fox News.

——————————–

The Bolshaya Udina volcano in Kamchatka, previously classified as extinct, could be waking up, leading scientists to suggest a deadly eruption could occur at any time. The volcano was believed to be extinct until 2017, when increased seismic activity was detected beneath the edifice. Between 1999 and September 2017, roughly 100 seismic events were recorded by the instruments. That number increased 25-fold between October 2017 and February 2018, when nearly 2,400 events were detected. In February, an M 4.3 earthquake hit the area.
The latest data have incited researchers from Russia, Egypt and Saudi Arabia to instal four seismic monitoring stations under the volcano between May and June 2018, where they determined an « elliptical cluster » of seismic activity had formed about 5 kilometres below the surface. The scientists think the seismicityse may indicate the presence of « magma intrusions with a high content of fluids », which may justify changing the current status of this volcano from ‘extinct’ to ‘active.
One scientist said what is happening at Bolshaya Udina is similar to events at the Bezymianny volcano in Russia, which erupted dramatically in 1956. However, it is hard to determine the threat level of the volcano because of the long distance from permanent seismic stations. More stations will be needed to understand if it is dangerous or not. The energy could be released from the volcano over the next few months, or it could even disappear without any eruption. If the volcano does erupt, it could pose a significant threat to the small villages nearby, although there are not many people around.
Source: Fox News.

 

Le Bolshaya Udina est-il une bombe à retardement (Crédit photo: KVERT)

Séismes et éruptions volcaniques // Earthquakes and volcanic eruptions

A l’issue de ma conférence « Volcans et risques volcaniques », les gens me demandent souvent s’il existe un lien entre les séismes et les éruptions volcaniques. Je réponds que dans certaines circonstances, on a cru voir un lien et que, dans d’autres, le lien était loin d’être évident. Cependant, j’insiste sur le fait que la sismicité est présente avant une éruption car le magma provoque une fracturation des roches pendant son ascension et cette fracturation est enregistrée par les sismomètres.
Les séismes d’origine tectonique – provoqués par les mouvements des plaques, en particulier dans les zones de subduction – font partie des phénomènes naturels les plus impressionnants sur Terre. Rien d’étonnant à ce qu’ils soient parfois associés au déclenchement des éruptions volcaniques. Les volcans sont souvent situés dans des régions sismiques comme la célèbre Ceinture de Feu du Pacifique. On y enregistre 90% des séismes et on y rencontre 75% de tous les volcans actifs de la planète. Les éruptions et les tremblements de terre ont souvent lieu à peu près au même moment; Cependant, on ne peut affirmer qu’il existe un lien direct entre un séisme et une éruption qui a eu lieu peu de temps après le premier événement. Le volcan était peut-être déjà sur le point d’entrer en éruption, ou bien il était déjà en éruption depuis longtemps.
Des études récentes laissent supposer qu’il pourrait exister un lien entre les séismes et les éruptions volcaniques dans certaines situations. Par exemple, un article paru en 1993 établit un lien entre un séisme de magnitude M 7,3 en Californie et des manifestations volcaniques et géothermales observées immédiatement après. Une étude publiée en 2012 estime qu’un séisme de magnitude M 8,7 au Japon en 1707 a entraîné la pénétration du magma dans une chambre peu profonde du Mont Fuji et déclenché une puissante explosion du volcan 49 jours plus tard. Le séisme de magnitude M 7,2 survenu le 29 novembre 1975 sur le Kilauea à Hawaii a été rapidement suivi d’une éruption de courte durée.

Cependant, il existe d’autres cas où un séisme majeur n’a pas été suivi d’une éruption. L’un des meilleurs exemples se situe au Japon en 2011. Les scientifiques japonais craignaient que le puissant séisme de Tohoku (magnitude M 9.1) le 11 mars 2011 réveille le Mont Fuji, ce qui ne s’est jamais produit!
A l’heure actuelle, les mécanismes de déclenchement des séismes ne sont pas bien compris, et les documents reliant les tremblements de terre à des éruptions ne s’appuient que sur des spéculations. Il est possible que le timing dans tous les exemples mentionnés ci-dessus soit juste une coïncidence. Les géologues doivent avant tout comprendre le déclenchement des séismes et exclure toute intervention du hasard avant d’établir un lien entre séismes et éruptions.

Parfois, il est fait référence à l’histoire pour montrer la corrélation entre les séismes et les éruptions volcaniques. Un document publié en 2009 a utilisé des données historiques pour montrer qu’il existe une relation entre un séisme de M 8,0 au Chili et un nombre d’éruptions en nette hausse sur certains volcans situés à une distance pouvant aller jusqu’à 500 km. Le problème est que de telles données historiques ne sont pas vraiment fiables. En effet, les grands séismes et les grandes éruptions volcaniques sont des événements relativement peu fréquents, et les scientifiques ne disposent pas d’un recul suffisant. Les archives fiables n’existent que depuis un demi-siècle ou un peu plus, selon les régions.
Dans le passé, les données provenaient de récits de voyages et de journaux de bord assez ambigus. Ainsi, en 1840, Darwin a recueilli des informations fournies par des témoins oculaires et relatives à des modifications mineures survenues sur des volcans chiliens à la suite du puissant séisme de 1836. Au final, en lisant les écrits de Darwin, on ignore si des éruptions ont eu lieu.
Des simulations ont été réalisées en laboratoire en 2016 et 2018 pour tenter de comprendre le comportement du magma dans la chambre magmatique et voir si ce comportement pourrait éventuellement déclencher des séismes. Cependant, aucune corrélation réelle entre les séismes et les éruptions volcaniques n’est ressortie de ces expériences.
Adapté d’un article de 2018 dans le National Geographic.

———————————————–

During my conference “Volcanoes and volcanic risks”, people often ask me whether there is a link between earthquakes and volcanic eruptions. I answer that on some occasions there appears to be some link and in other circumstances the link is far from clear. However, I insist that seismicity is always linked to an eruption and present before the event as magma causes the fracturing of rocks during its ascent and this fracturing is recorded by the seismometers.

Tectonic earthquakes – caused by the movement of plates, especially in subduction zones – are among the most powerful natural phenomena on the planet. It’s no surprise that they are sometimes suspected of being able to trigger volcanic eruptions. Earth’s volcanoes are often located in seismic parts of the world like the well-known Ring of Fire around the Pacific Ocean. This area hosts 90 percent of the world’s recorded earthquakes and 75 percent of all active volcanoes. Eruptions and earthquakes are often taking place at roughly the same time; however, you can’t automatically assume that there’s a connection between a given quake and a subsequent eruption. The volcano may have already been preparing to erupt, or it is already been erupting for a long time.

Recent studies suggest that a connection could potentially exist between earthquakes and volcanic eruptions in certain situations. For instance, a 1993 paper links an M 7.3 quake in California to volcanic and geothermal rumblings immediately afterward. And a 2012 study reckons that an M 8.7 earthquake in Japan in 1707 forced deeper magma up into a shallow chamber, triggering a huge blast at Mount Fuji 49 days later. There was also the M 7.2 earthquake on Hawaii’s Kilauea volcano on November 29th, 1975, which was quickly followed by a short-lived eruption.

However, there are other examples showing that a major earthquake has not been followed by an eruption. One of the best example was in Japan in 19 when Japanese scientists feared the powerful M 9.1 Tohoku earthquake on March 11th, 2011 might wake up Mount Fuji, which it never did!

The triggering mechanisms for earthquakes are not well understood, and papers linking quakes to later eruptions can really only speculate. It is quite possible that the timing in all these examples was just a coincidence. Geologists must understand the specific triggering and rule out chance before a connection can be definitively made.

Sometimes, reference is made to history to show the correlation between earthquakes and volcanic eruptions. A 2009 paper used historical data to show that that M 8.0 quakes in Chile are associated with significantly elevated eruption rates in certain volcanoes as far as 500 kilometres away. The problem is that these sorts of historical data are not really reliable. Indeed, major earthquakes and large volcanic eruptions are both relatively infrequent events, and scientists have only been reliably keeping these records for the last half century or more, depending on the region.

Many data points in the past come from fairly ambiguous news reports and journal entries. For instance, in 1840, Darwin gathered eyewitness information on some minor changes at Chilean volcanoes following the powerful quake there in 1836. However, it is unclear if any eruptions took place.

Simulations were performed in laboratory in 2016 and 2018 to try and understand magma behaves within the chamber and how this behaviour might eventually trigger earthquakes. However, no real correlation between earthquakes and volcanic eruptions came out of these experiments.

Adapted from a 2018 article in the National Geographic.

La Ceinture de Feu du pacifique, une zone sismique et volcanique très active (Source: Wikipedia)

Le Mont Fuji, un volcan sous surveillance (Crédit photo: Wikipedia)

Mayotte : Nouvelles informations sur le volcan sous-marin // New information about the submarine volcano

Quelques jours après la découverte d’un volcan sous-marin au large de Mayotte, on commence à en savoir plus sur la situation sismique et volcanique dans la région.

S’agissant de la sismicité, la mission scientifique menée depuis deux semaines par le Marion Dufresne révèle – après remontée des 8 sismomètres qui avaient été installés au fond de la mer – que les épicentres ne sont pas situés entre 30 et 60 km de Mayotte comme on l’a cru depuis un an, mais à seulement 10 km de l’île. Toutefois, l’IPGP explique qu’ils ils sont plus proches en distance “épicentrale”(horizontale) et plus loin que prévu en distance hypocentrale (en profondeur). Les séismes sont situés désormais à des profondeurs de 20 à 50 km.

Après un début très impressionnant en mai-juin, une accalmie a été observée en juillet et août. Dès septembre, l’activité sismique a repris avec des magnitudes plus modérées et des événements plus espacés. Depuis, l’activité est globalement stable, avec de courtes périodes d’accalmies suivies de réveils.

Dans des notes précédentes, j’ai indiqué que la partie orientale de l’île de Mayotte avait tendance à s’incliner, voire à s’affaisser dans l’océan. A l’heure actuelle, cet enfoncement atteint 13 centimètres depuis juillet 2018. Ce déplacement est rapide à l’échelle géologique. Les géologues à bord du Marion Dufresne pensent qu’il peut s’expliquer par la vidange d’un réservoir profond, à environ 40 km de profondeur.

Selon moi, le nouveau volcan n’est pas près de percer la surface de l’Océan Indien. Je faisais la comparaison avec le Loi’hi à Hawaii dont le sommet se trouve à environ 900 mètres de profondeur. Celui du nouveau volcan mahoraise se trouvant à environ 2700 mètres de profondeur, il lui faudra probablement des siècles, voire des millénaires pour être visible au dessus des vagues. Les scientifiques de l’expédition sont moins affirmatifs. Selon eux, si l’on considère que ce nouveau volcan a atteint en un an la taille non négligeable de 800 mètres de hauteur pour 4 km de largeur, il ne lui faudrait à ce rythme que trois ans supplémentaires pour sortir la tête de l’eau ! Toutefois il est aussi possible que ce volcan ait d’ores et déjà arrêté sa croissance. Le Marion Dufresne a en effet découvert “plusieurs dizaines de cônes volcaniques dans une zone de 10 km de diamètre, tous datés de moins d’un million d’années et tous environ de la même taille”. Pour le moment, ce nouveau volcan est semblable à ses voisins. Il pourrait donc suivre le même chemin et rester sagement invisible au fond de l’océan.

S’agissant de la composition de la lave du nouveau volcan, la drague du Marion Dufresne a remonté des fragments durcis. Certains, chargés de gaz en dépression, ont explosé en sortant de l’eau ; d’autres sont noirs et criblés de bulles. Tous vont être analysés afin de déterminer précisément la nature de l’éruption, la profondeur et l’origine des roches que crache le volcan.

Comme je l’ai écrit précédemment, le nouveau volcan émet des fluides. Le sonar à bord du Marion Dufresne a analysé l’eau et détecté “une anomalie d’impédance acoustique qui indique que quelque chose s’échappe du dôme volcanique.’’ Pour l’heure, ni la hauteur de ce panache de fluides, ni sa composition ne sont connues.

Aucune restriction de navigation n’a été ordonnée dans la région de l’éruption sous-marine car le passage du Marion Dufresne n’a pas établi de risque spécifique. Les pêcheurs sont en revanche invités à signaler la présence d’éventuels nouveaux poissons morts.

Source : IPGP, via Le Journal de Mayotte.

———————————————

A few days after the discovery of an underwater volcano off Mayotte, one begins to know more about the seismic and volcanic situation in the region.
With regard to seismicity, the Marion Dufresne‘s scientific mission conducted two weeks ago reveals – after thecollection of  8 seismometers that had been installed at the bottom of the sea – that the epicentres are not located between 30 and 60 km from Mayotte as has been believed for a year, but only 10 km from the island. However, IPGP explains that they are closer in « epicentral » (horizontal) distance and further than expected in hypocentric (in depth) distance. The earthquakes are currently located at depths of 20 to 50 km.
After a very impressive start in May-June, a lull in seismicity was observed in July and August. In September, activity resumed with more moderate magnitudes and more spaced earthquakes. Since then, seismic activity has been globally stable, with short periods of lull followed by new tremors.

In previous notes, I indicated that the eastern part of the island of Mayotte tended to subside in the ocean. This phenomenon has reached 13 centimetres since July 2018. This displacement is fast at the geological scale. Marion Dufresne‘s geologists believe that it can be explained by the drainage of a deep reservoir, about 40 km deep.

In my opinion, the new volcano is not about to pierce the surface of the Indian Ocean. I made the comparison with Loi’hi in Hawaii whose summit is about 900 metres deep. As the new Mahoran volcano is about 2700 metres deep, it will probably take centuries, even millennia for it to be visible above the waves. The scientists of the expedition are less affirmative. According to them, if one considers that this new volcano reached the significant size of 800 metres in height and 4 km in width in one year, it would yake it only three additional years to appear at the surface of the water! However it is also possible that this volcano has already stopped its growth. The Marion Dufresne has indeed discovered « several tens of volcanic cones in an area of ​​10 km in diameter, all less than a million years old and all about the same size ». For the moment, this new volcano is similar to its neighbours. It could therefore follow the same path and remain invisible at the bottom of the ocean.

With regard to the composition of the lava of the new volcano, the drag onboard the Marion Dufresne brought some hardened fragments to the surface. Some of them, full of gas in depression, exploded out of the water; others are black and riddled with bubbles. All will be analyzed to precisely determine the nature of the eruption, the depth and origin of the rocks spewed by the volcano.
As I wrote previously, the new volcano also emits fluids. The Marion Dufresne‘s sonar analyzed the water and detected « an acoustic impedance anomaly that indicates something is coming out of the volcanic dome. » For now, neither the height of this plume of fluids nor its composition have been revealed.

No navigation restrictions were ordered in the area of ​​the underwater eruption because the passage of the Marion Dufresne did not establish a specific risk. Fishermen are however invited to report the presence of any new dead fish.

Source: IPGP, via Le Journal de Mayotte.

Localisation du nouveau volcan (Source: IPGP)

Carte topographique du Lo’ihi à Hawaii (Source: USGS)