A propos des séismes lents // About slow-slip earthquakes

Dans une note intitulée « Les séismes lents du Kilauea, publiée le 28 mars 2018, j’expliquais que des séismes sont enregistrés périodiquement sur le flanc sud du Kilauea. Le HVO les attribue au glissement lent de l’édifice volcanique dans l’Océan Pacifique. Les Anglosaxons les ont baptisés « slow-slip earthquakes », « séismes lents » en français. Ces événements ne sont pas l’apanage du Kilauea ; on les observe ailleurs dans le monde.

Les scientifiques néo-zélandais de GNS Science (à l’origine Institute of Geological and Nuclear Sciences) surveillent un événement sismique lent qui a débuté fin mars 2019 près de Gisborne, au large de la côte est de l’Ile du Nord. Une séquence sismique semblable a déjà été observée dans ce même secteur en mars 2010.
Les séismes lents sont assez fréquents dans cette partie de la Nouvelle-Zélande, en raison de la subduction de la Plaque Pacifique qui se déplace vers l’ouest et plonge sous la Plaque Australienne.

En cliquant sur le lien ci-dessous, vous aurez des explications sur les séismes lents. Le document est en anglais. Vous trouverez ci-dessous une traduction en français pour vous aider à comprendre cet important chapitre de la sismologie.

https://youtu.be/xgk2zBvdOgw

—————————————–

In a post entitled « Kilauea Volcano Slow Earthquakes, published on March 28th, 2018, I explained that earthquakes are recorded periodically on the southern flank of Kilauea. HVO attributes them to the slow slide of the volcanic edifice in the Pacific Ocean. Anglosaxons called them « slow-slip earthquakes », « séismes lents » in French. These events are not exclusive to Kilauea; they are observed elsewhere in the world.

GNS scientists are monitoring a slow-slip event that started at the end of March 2019 near Gisborne, off the east coast of North Island, New Zealand. A similar seismic event was observed in the same area in March 2010.

Slow-slip events are quite common in this part of New Zealand, due to the subducting Pacific Plate moving westward under the Australian Plate,

By clicking on this link, you will learn more about slow-slip earthquakes :

https://youtu.be/xgk2zBvdOgw

°°°°°°°°°°°°°°°°°°°°

Définition d’un séisme lent.

En Nouvelle Zélande, les plaques tectoniques Pacifique et Australienne entrent en contact le long d’une série de lignes de failles. Au niveau de l’Ile du Nord, dans un processus de subduction, la plaque Pacifique plonge en direction de l’ouest sous la côte orientale de l’Ile du Nord, au niveau de la Fosse et Zone de Subduction de Hikurangi qui constitue la faille la plus importante et la plus active de Nouvelle Zélande. Les deux plaques tectoniques se déplacent l’une vers l’autre le long de cette faille. Dans la partie la plus profonde de la Zone de Subduction de Hikurangi, les roches sont plus chaudes et les deux plaques peuvent se déplacer l’une contre l’autre lentement et de manière continue. En revanche, à des profondeurs moindres, les plaques ont des bords moins réguliers et leur frottement provoque par moment des blocages. Les contraintes s’accumulent alors dans la zone de blocage. Au bout de quelques années, la situation se débloque pour un temps et c’est alors que se produit un séisme lent avec libération des contraintes et de l’énergie qui s’étaient accumulées.

Un séisme lent ressemble à un séisme classique dans la mesure où il y a libération d’énergie le long d’une zone de faille, mais cette libération d’énergie se fait sur des semaines ou des mois, alors que pour un séisme classique c’est une affaire de secondes. Les systèmes GPS renseignent sur le déplacement du sol.

Les séismes sur les zones de subduction.

Parfois, le mouvement des plaques n’est pas lent, mais soudain et rapide, ce qui provoque des séismes. De puissants séismes peuvent se produire après que deux plaques soient restées bloquées pendant longtemps, des siècles ou des millénaires. Au cours de ce laps de temps de blocage très long, il s’accumule suffisamment de contraintes et d’énergie le long de la faille jusqu’au moment où une rupture se produit. Les plaques se déplacent alors rapidement l’une contre l’autre en provoquant un séisme.

Un déplacement lent des plaques peut-il provoquer un séisme majeur ?

Les déplacements lents des plaques tectoniques se produisent souvent en limite de plaques dans des zones où se déclenchent les séismes classiques. Les scientifiques cherchent à savoir dans quelle mesure un déplacement lent des plaques peut contribuer à augmenter les contraintes dans la zone de blocage entre deux plaques et si cela peut avoir une influence sur les ruptures de plaques qui déclenchent les puissants séismes.

Le jour où les scientifiques parviendront à comprendre la relation entre le déplacement lent des plaques et le déclenchement des séismes, un grand pas aura été franchi dans le domaine de la prévision sismique. Il est utile de noter que de nombreux déplacements lents de plaques en Nouvelle Zélande n’ont pas déclenché de puissants séismes.

Sur le document, au bout de 2’58’’, on nous montre sur une carte une importante zone de blocage qui recouvre la partie centrale et inférieure de l’Ile du Nord de la Nouvelle Zélande. C’est là que s’accumulent les contraintes et l’énergie susceptibles de provoquer un nouveau séisme à l’avenir. A proximité de cette zone, on peut en voir une autre où se produit un déplacement lent des plaques.

C’est le rôle de GNS Science d’étudier ces phénomènes qui se produisent en Nouvelle Zélande, mais aussi ailleurs dans le monde.

Capture d’écran de trois images de la vidéo. Elles illustrent le frottement des plaques tectoniques, leur blocage, et l’accumulation de contraintes et d’énergie (Source : GNS Science).

Le séisme du 13 avril 2019 à Hawaii // The earthquake of April 13th, 2019 in Hawaii

Un séisme de M 5,3 (avec une magnitude initiale de M 5,5) a été enregistré dans la région du Hualalai, sur la Grande île d’Hawaii, à 17h09 (heure locale) le samedi 13 avril 2019. Il avait une profondeur de 16 km et l’épicentre était situé à 10,5 km au sud-est de Puuanahulu. Aucun tsunami n’a été détecté après l’événement. Environ 11 minutes plus tard, à 17h20, un deuxième séisme de M 3.0 a été signalé à 3,5 km au sud de Puuanahulu.
Le HVO indique que trois répliques ont été enregistrées moins d’une heure après le premier séisme. Des chutes de pierres ont été signalées le long des Highways 19 et 11.
Le HVO précise par ailleurs que le séisme n’a pas modifié l’activité du Kilauea et du Mauna Loa. Bien que le séisme se soit produit en bordure E du Hualalai, rien n’indique que l’événement soit lié à l’activité volcanique. La dernière éruption de ce volcan a eu lieu en 1800-1801, avec des coulées de lave émises par cinq bouches el long de fractures éruptives ; elles ont atteint la mer et enseveli des villages. L’emplacement et la profondeur du dernier séisme laissent supposer qu’il était probablement lié au tassement de la croûte terrestre sous le poids de l’île.
Source: USGS.

——————————————-

An M 5.3 earthquake (with a preliminary magnitude of M 5.5) was recorded in the Hualalai region of the Big Island at 5:09 p.m. (local time) on Saturday, April 13th, 2019. It had a depth of 16 km and the epicentre was located 10.5 km SE of Puuanahulu. No tsunami was expected after the event. About 11 minutes later at 5:20 p.m., a second M 3.0 quake was reported 3.5 km S of Puuanahulu.

The HVO reports that three aftershocks were recorded within an hour of the earthquake. There have been reports of rockfalls along Highways 19 and 11.

HVO indicates that the earthquake has caused no detectable changes in activity at Kilauea and Mauna Loa volcanoes. Although the earthquake occurred under the east margin of Hualalai volcano, there is no indication that the event is related to volcanic activity. The volcano’s last eruption was in1800-1801, when it produced lava flows from 5 fissure vents that reached the sea and buried Hawaiian villages. The location and depth of the last earthquake suggest it was likely related to flexure or settling of the crust beneath the weight of the island.

Source : USGS.

Emplacement du séisme du 13 avril 2019 (Source: USGS)

Mayotte : Une possible activité volcanique ? // A possible volcanic activity ?

En lisant le Journal de Mayotte du 3 avril 2019, on apprend que « deux scientifiques de la mission de volcanologie ‘Tellus Mayotte’ sont sur le territoire du 3 au 10 avril afin de poursuivre la mission initiée en décembre 2018. Ils vont notamment s’intéresser aux émanations gazeuses observées en Petite Terre, et à l’activité éruptive. »

La mission ‘Tellus Mayotte’ de l’Institut Physique du Globe de Paris (IPGP) était venue fin février déposer 6 sismomètres sous-marins autour de la zone d’épicentre des séismes. Ils devraient être relevés vers le mois de septembre.

Une autre équipe de la mission ‘Tellus Mayotte’ est actuellement sur l’île, avec un chercheur de l’Observatoire Volcanologique du Piton de la Fournaise (OVPF) et une physicienne du Laboratoire Magmas et Volcans de Clermont-Ferrand.

Lors de la récupération des 6 sismomètres dans 6 mois, on devrait en savoir plus sur le phénomène qui secoue et angoisse les mahorais depuis prés de 10 mois.

Les deux scientifiques de la mission ‘Tellus Mayotte’ vont poursuivre les études en cours, avec en particulier le suivi de la composition et de la température des émissions gazeuses constatées en Petite Terre, notamment dans le secteur de la plage de l’aéroport et de la Vigie. L’objectif est d’identifier les sources de ces fluides et de détecter tout changement potentiel, notamment en relation avec l’activité sismique en cours.

Un autre objectif sera « la reconstruction de l’activité éruptive et de sa variabilité spatiale et temporelle. » Autrement dit, il s’agit de constater le volume de matière en fusion émise sur la période. On remarquera ici que, pour la première fois, on parle officiellement d’une activité volcanique, ce qui n’avait été jusqu’à présent qu’une hypothèse émise par la mission le mois dernier.

Affaire à suivre, mais il serait grand temps que l’on sache ce qui se passe au large de Mayotte.

Source : Journal de Mayotte

 ———————————————–

Reading the Journal de Mayotte of April 3rd, 2019, we learn that « two scientists from the volcanology mission ‘Tellus Mayotte’ are in the territory from April 3rd to 10th to continue the mission initiated in December 2018. They will focus on gaseous emissions observed in Petite Terre, and eruptive activity.  »
The ‘Tellus Mayotte’ mission of the Physical Institute of the Globe of Paris (IPGP) arrived at the end of February to install 6 underwater seismometers around the epicentre zone of the earthquakes. They are expected to be picked up around September.
Another team of the ‘Tellus Mayotte’ mission is currently on the island, with a researcher from the Volcanological Observatory of Piton de la Fournaise (OVPF) and a physicist from the Magmas and Volcanoes Laboratory of Clermont-Ferrand.
After the recovery of the 6 seismometers in 6 months, we should know more about the phenomenon that has shaken and worried the Maorais for nearly 10 months.
The two scientists of the ‘Tellus Mayotte’ mission will continue studies in progress, with in particular the monitoring of the composition and the temperature of the gaseous emissions observed in Petite Terre, in particular in the sector of the beach of the airport and La Vigie . The objective is to identify the sources of these fluids and to detect any potential changes, particularly in relation to the ongoing seismic activity.
Another objective will be « the reconstruction of eruptive activity and its spatial and temporal variability. In other words, it is necessary to note the volume of molten material emitted over the period. It will be noted here that, for the first time, there is officially talk of volcanic activity, which until now had only been a hypothesis emitted by the mission last month.
Well see what happens next, but it is high time we knew what is happening off Mayotte.
Source: Journal de Mayotte.

Carte montrant l’emplacement des six sismomètres sous-marins (petits carrés) autour de la zone d’épicentre (Source : IPGP)

Pas de cycle éruptif à Yellowstone // No eruptive cycle at Yellowstone

Je n’ai jamais cru aux cycles éruptifs, encore moins lorsque ces cycles couvrent des périodes de milliers d’années. Certains volcanologues affirment qu’une éruption à Yellowstone est «en retard» car le volcan a un cycle éruptif de 600 000 ans et aucune éruption ne s’est produite depuis 631 000 ans. À mes yeux, cela semble un peu tiré par les cheveux!
Heureusement, de nombreux scientifiques ne sont pas d’accord avec cette théorie et certains d’entre eux ont expliqué dans les Yellowstone Chronicles pourquoi elle n’était pas valable. Ils expliquent d’abord que beaucoup de gens ont tendance à évoquer les puissants séismes en faisant référence à la notion de cycle. Les séismes se produisent lorsque suffisamment de contrainte s’accumule sur une faille et provoque sa rupture. Cette contrainte s’accumule du fait du mouvement constant des roches de part et d’autre de la faille. La vitesse de ce mouvement est généralement constante sur des milliers, voire des millions d’années, de sorte que les séismes qui en résultent peuvent avoir une fréquence assez régulière. C’est pourquoi il est possible de calculer les probabilités à long terme de séismes dans certaines régions.
En suivant cette logique concernant les séismes, on devrait pouvoir prendre en compte les âges des éruptions passées à Yellowstone et calculer un intervalle de récurrence moyen (en supposant que les éruptions à Yellowstone se produisent sur une base régulière). S’agissant des éruptions majeures, Yellowstone en a connu trois: il y a 2,08, 1,3 et 0,631 millions d’années. Cela équivaut à un laps de temps d’environ 725 000 ans en moyenne entre les éruptions. Cela étant, il reste environ 100 000 ans à justifier, mais ce nombre est basé sur très peu de données et n’a donc pratiquement aucun sens.
Le problème, c’est que les volcans ne fonctionnent pas comme les failles qui déclenchent les séismes. À de rares exceptions près, le magma ne s’accumule pas à une vitesse constante à l’intérieur des édifices volcaniques. Au lieu de cela, les éruptions se produisent quand il y a suffisamment de magma dans le sous-sol et quand il y a une pression suffisante pour que ce magma monte à la surface. Cela ne se produit généralement pas selon un planning bien établi. Nous en avons la preuve avec les coulées de lave de Yellowstone qui sont la forme la plus courante l’activité éruptive sur ce volcan; la plus récente remonte à 70 000 ans.

Ces coulées de lave ne sont pas apparues régulièrement dans le temps. Elles sont apparues en tirs groupés, avec plusieurs éruptions en l’espace de quelques milliers d’années, séparées par des centaines de milliers d’années sans aucune éruption. En effet, les réservoirs magmatiques de Yellowstone reçoivent le nouveau magma de manière discontinue, ce qui entraîne plusieurs éruptions sur une courte période, avec de longues périodes de repos entre ces épisodes éruptifs.
Donc, dire que Yellowstone est « en retard » dans son cycle éruptif n’a aucun sens. Yellowstone n’est pas en retard et personne ne sait quand la prochaine éruption aura lieu. Visiter le Parc National de Yellowstone ne présente aucun risque… pour le moment!
Source: Yellowstone Chronicles.

—————————————————-

I have never believed in eruptive cycles, all the less when these cycles include periods of thousands of years. Some volcanologists affirm that an eruption in Yellowstone is “overdue” because the volcano has an eruptive cycle of 600,000 years and no eruption has occurred for 631,000 years. To my eyes, this seems a little far-fetched!

Fortunately, many scientists do not agree with this approach and some of them have explained in the Yellowstone Chronicles why it is not valid. They first explain that many people tend to think of big earthquakes by referring to the notion of cycles. Earthquakes occur when enough stress builds up on a fault and makes the fault snaps. The stress accumulates because of consistent motion of the rocks on either side of the fault. The rate of this motion is generally constant over thousands to millions of years, so the earthquakes that result from the motion can have fairly regular timing. This is why it is possible to calculate the long-term probabilities of earthquakes in some areas.

By this logic, we should be able to look at the ages of past Yellowstone eruptions and calculate an average recurrence interval (assuming Yellowstone eruptions occurred on a regular schedule). In terms of large explosions, Yellowstone has experienced three of them : 2.08, 1.3, and 0.631 million years ago. This comes out to an average of about 725,000 years between eruptions. That being the case, we still have about 100,000 years to go, but this number is based on very little data and so is basically meaningless.

Volcanoes, however, are not like faults. With rare exceptions, volcanoes do not accumulate magma at a constant rate. Instead, they erupt when there is a sufficient supply of liquid magma in the subsurface and sufficient pressure to cause that magma to ascend to the surface. This does not generally happen on a schedule.

We have the proof of this with the Yellowstone lava flows which are the most common form of magmatic eruption at Yellowstone; the most recent one was 70,000 years ago. However, these lava flows did not erupt regularly through time. Instead, they erupted in tight clusters, with several eruptions happening within the space of a few thousand years, separated by up to hundreds of thousands of years with no eruptions. This is because the Yellowstone magma reservoir system receives new magma only in discontinuous batches, causing several eruptions in a short period of time with long periods of quiet in between these episodes.

So, saying that Yellowstone is “overdue” is sheer nonsense. Yellowstone is not overdue and nobody knows when the next eruption will take place. Visiting Yellowstone National Park is safe…for the moment!

Source: Yellowstone Chronicles.

Source : Yellowstone Volcano Observatory

Photos: C. Grandpey

La situation sismique à Mayotte (suite) // The seismic situation in Mayotte (continued)

Dans son bulletin mensuel du mois de mars, l’OVPF fait le bilan de la situation sur le Piton de la Fournaise, mais donne aussi des nouvelles de la sismicité sur l’île de Mayotte. Comme indiqué précédemment, cette sismicité a débuté au début du mois de mai 2018. Elle consiste en essaims sismiques dont les épicentres se situent à 30 à 60km à l’est de la côte de Mayotte. La grande majorité de ces séismes est de faible magnitude, mais plusieurs évènements de magnitude modérée (avec un maximum de M 5,9) ont été ressentis par la population et ont endommagé certaines constructions.

Depuis le mois de juillet l’activité sismique a diminué mais une sismicité persiste et certains événements sont ressentis par les habitants. Cette situation m’a été confirmée par des Mahorais à l’occasion du Salon du Livre de Paris. Mars 2019 a été particulièrement actif avec notamment 24 séismes de magnitude supérieure ou égale à M 4 comptabilisés par le BRGM entre le 1er et le 24 mars. A noter que le 28 mars, lendemain de la publication par le BRGM de son bulletin mensuel évoquant une stabilité des secousses sismiques, les habitants ont été réveillés vers 4h40 par un événement de M 4,6. L’épicentre a été localisé à environ 60 kilomètres de Mamoudzou.

Les données des stations GPS du réseau Teria installées sur l’île de Mayotte indiquent depuis le mois de juillet un déplacement d’ensemble vers l’est d’environ 15 cm et une subsidence d’environ 6-12 cm suivant les sites au cours de cette même période. Pour les 3 derniers mois, la source à l’origine de ces déplacements a pu être localisée à une trentaine ou quarantaine de km à l’est de Mayotte et à environ 35 km de profondeur. Cela laisse supposer que des transferts de fluides dans la croûte se poursuivent toujours dans le secteur de l’essaim sismique.

Source : OVPF, Outremer News, Le Journal de Mayotte.

————————————————–

In its monthly bulletin of March, OVPF explains the situation on Piton de la Fournaise, but also gives news of seismicity on the island of Mayotte. As mentioned previously, this seismicity began in early May 2018. It consists of seismic swarms whose epicentres are located 30 – 60km east of the coast of Mayotte. The vast majority of these earthquakes are of low magnitude, but several events of moderate magnitude (with a maximum of M 5.9) have been felt by the population and have damaged some buildings.
Since the month of July, seismic activity has decreased but seismicity persists and certain events are felt by the inhabitants. This situation was confirmed to me by Mahorais at the Paris Book Festival. March 2019 was particularly active, with 24 earthquakes with magnitudes greater than or equal to M 4 recorded by BRGM between March 1st and 24th. It should be noted that on March 28th, the day after the publication by BRGM of its monthly bulletin evoking a stability of the earthquakes, the inhabitants were awakened around 4.40am by an M 4.6 event. The epicentre was located about 60 kilometres from Mamoudzou.
Data from the Teria network of GPS stations installed on the island of Mayotte have indicated since July an overall displacement to the east of about 15 cm, and a subsidence of about 6-12 cm according to the sites during this same period. For the last 3 months, the source at the origin of these displacements could be located about thirty or forty kilometres east of Mayotte and about 35 km deep. This suggests that fluid transfers in the crust are still continuing
in the sector of the seismic swarm.
Source: OVPF, Outremer News, Le Journal de Mayotte.

Déplacements (en mètres) enregistrés sur 4 stations GPS localisés à Mayotte et au nord de Madagascar à Diego Suarez  sur les composantes est (en haut), nord (au milieu) et vertical (en bas) entre avril 2018 et mars 2019 (Source : OVPF, IPGP)

.

 

Mayotte : Le mystère demeure ! // Still a mystery !

Le 16 mars 2019, à l’occasion du Salon du Livre de Paris, j’ai rencontré des habitants de Mayotte qui m’ont dit que la terre continuait de trembler sur leur île, même si les secousses sont aujourd’hui moins fortes qu’en mai 2018, lorsque l’essaim sismique a commencé. Il ne faudrait pas oublier que le 11 novembre 2018, un « grondement » a été enregistré par les sismomètres du monde entier. Un nouveau document explique qu’il a pu être provoqué par « le plus grand événement volcanique en mer jamais observé dans les temps historiques. »
Avec sa source à 48 kilomètres à l’est de l’île de Mayotte, le signal sismique a immédiatement attiré l’attention des scientifiques. Il faisait partie d’une séquence sismique qui avait débuté dans la région en mai 2018, mais la très basse fréquence enregistrée en novembre était très différente d’une séquence sismique habituelle et sa cause n’était pas immédiatement évidente. Les scientifiques ont tous été d’accord pour dire qu’il ne pouvait s’agir que d’un événement volcanique impliquant le déplacement d’un vaste volume de magma sous le plancher océanique, avec pour conséquence une déflation significative de ce même plancher. Aujourd’hui, un nouveau document émanant de chercheurs français a été téléchargé sur le serveur public EarthArXiv. Bien que beaucoup de questions restent en suspens, il semble que le volume de magma impliqué soit si important qu’il s’agisse certainement de l’un des plus importants événements volcaniques en mer jamais repérés par l’instrumentation scientifique moderne.
La difficulté à apporter des réponses à cet événement majeur est due au manque cruel de d’équipement de surveillance des profondeurs océaniques dans le monde. En conséquence, beaucoup d’événements ont probablement eu lieu en mer depuis le début des observations, mais n’ont pas pu être détectés par les scientifiques. Comme je l’ai écrit très souvent, nous connaissons mieux la surface de Mars et de la Lune que les profondeurs de nos propres océans.
Les mouvements du sol à Mayotte révèlent que les fonds marins au large de l’île s’affaissent à raison d’environ un centimètre par mois. Dans le même temps, l’île de Mayotte elle-même se déplace vers l’est à raison de 1,6 cm par mois. Ces deux phénomènes indiquent que quelque chose d’énorme est en mouvement dans les profondeurs et provoque une déflation significative.
La nature des événements sismiques laisse supposer que la source magmatique se trouve à une profondeur de 25 kilomètres sous le plancher océanique. On pense qu’au cours des six premiers mois de la séquence sismique, au moins un kilomètre cube de magma s’est déplacé, ce qui équivaut à environ 385 grandes pyramides de Gizeh.
Cependant, certains scientifiques pensent qu’une éruption n’a pas forcément eu lieu près de Mayotte. Il se peut que la lave n’ait pas atteint la surface. Au lieu de cela, le magma a pu s’être injecté dans les sédiments épais qui tapissent le fond de l’océan et y avoir séjourné. Cela a déjà été observé ailleurs, lorsque le magma est plus dense que les sédiments environnants.
Bien que le volume global de magma impliqué au large de Mayotte soit comparable à celui de l’éruption du Havre (Iles Kermadec) en 2012, il est probable que les deux événements sont assez différents. L’éruption du Havre impliquait certainement beaucoup de matériel éruptif, comme l’a démontré l’immense banc de pierre ponce aperçu depuis un avion. Dans le même temps, de grands dômes volcaniques se sont formés sur le plancher océanique du Havre. Dans le cas de Mayotte, si une éruption a effectivement eu lieu, il s’agit plutôt d’un épanchement fissural mettant en jeu de la lave plus fluide.
Quelle qu’en soit la cause, le signal sismique du 11 novembre laisse les scientifiques extrêmement perplexes. En particulier, les épisodes haute fréquence à répétition, qui sont semblables à (mais ne sont pas liées à) ceux générés par une activité industrielle, sont difficiles à expliquer.
Une explication possible serait que les événements haute fréquence sont liés à l’effondrement de l’encaissant rocheux entourant la chambre magmatique. Cela a pu perturber le réservoir magmatique en le faisant osciller ou « bourdonner ». Parallèlement, les ondes, en rebondissant, ont pu frapper les parois de la chambre magmatique et provoquer d’autres effondrements, ce qui a généré d’autres événements haute fréquence. Tout cela aurait synchronisé les événements basse et haute fréquence et donné naissance au signal si particulier du 11 novembre.
Le cadre géologique est également assez étrange. L’événement volcanique majeur se serait produit à l’extrémité Est de la chaîne d’îles, ce qui ne semble pas logique étant donné que les îles volcaniques les plus jeunes se trouvent à l’Ouest.

On ignore également quelle est la cause première du volcanisme dans la région. Il peut être dû à un processus en bordure de plaque tectonique, à un panache mantellique à très haute température, ou même à une extension du rift est-africain, événement tectonique majeur qui déchire lentement le continent.
Il y a aussi un élément écologique qui reste inexpliqué : la découverte de nombreux poissons morts au large de Mayotte. Il se peut que l’activité magmatique les ait effrayés et les ait fait remonter vers la surface où ils n’ont pas supporté les faibles pressions auxquelles ils ne sont pas habitués.

Ce ne sont pour l’instant que des hypothèses. L’installation d’instruments dans la zone concernée est absolument nécessaire. Comme je l’ai écrit précédemment, le CNRS et le BRGM, ainsi que d’autres organismes, mettent en place actuellement des équipements à Mayotte, sur le site de l’activité et sur les Iles Glorieuses, à l’est. Des drones sous-marins et des systèmes de surveillance par des radars basés sur les navires seront nécessaires pour déterminer la quantité de lave qui a percé la surface, en supposant qu’elle ait percé la surface !. Des simulations numériques et des travaux de laboratoire peuvent aussi s’avérer nécessaires pour mieux comprendre ce qui se passe sous la surface.
Source: EarthArXiv.

———————————————————

On March 16th, 2019, during the Salon du Livre of Paris, I met residents of mayotte who told me seismicity was going on on their island, even though it is less strong than in May 2018 when the swarm began. We should also remember that on November 11th, 2018, a deep rumble was recorded by seismometers around the world. A new pre-print paper about the event is now suggesting that it was caused by the largest offshore volcanic event in recorded history.

Originating 48 kilometres east of the island of Mayotte, the seismic signal immediately caught the attention of geoscientists. It was part of a prolonged seismic sequence that had started in the area back in May 2018, but the very low-frequency recorded in November stood out because it was not immediately obvious what caused it. The scientists agreed that it could only have originated from a volcanic event, one involving the movement of a vast volume of magma beneath the seafloor, causing the ground to significantly deflate.

Now, a new paper by French researchers has been uploaded to the public server EarthArXiv. Although there are plenty of unanswered questions, it appears that the volume of magma involved is so huge that this is certainly one of the largest offshore volcanic events ever spotted by modern scientific instrumentation.

There is a major caveat to all this, however. Compared to land-based monitoring, there is a huge lack of offshore monitoring happening around the world today, and there are likely plenty of offshore events that have taken place since modern records began that scientists have not picked up on. As I wrote it very often, we know the surface of Mars and the Moon better than the depths of the earth’s oceans.

The way the ground on Mayotte is moving implies that the seafloor off its eastern shoreline is sinking at a rate of about one centimetre per month. At the same time, Mayotte itself is shifting eastward at a rate of 1.6 centimetres per month. Both indicate something huge underground is on the move, causing some serious deflation.

The nature of the seismic events suggests that the magma source is centered at a depth of 25 kilometres beneath the seafloor. In the first six months of the sequence alone, at least one cubic kilometre of magma has shifted around, which is roughly equivalent to 385 Great Pyramids of Giza.

However, some other scientists think that what is happening near Mayotte is not necessarily an eruption.as there is currently no direct evidence of an eruption having taken place. There is a significant probability that no lava reached the surface. Failing to breach into the sea, the migrating magma might have injected itself into thick sediments in the seafloor and spread itself around. This has been observed elsewhere, when the magma is denser than the surrounding sediment.

Although the overall volume of magma involved is comparable to the 2012 Havre eruption (Kermadec Islands), the two are likely to be quite different events. The former definitely involved plenty of eruptive material, whose huge pumice raft was first spotted from a plane. At the same time, large volcanic domes formed on the seafloor. In Mayotte’s case, if an eruption did take place, it is more likely to be some sort of fissure effusion involving more fluid lava.

Whatever the cause, the November 11th signal’s individual elements still remain deeply puzzling. In particular, its repeated high-frequency bursts, which are similar (but are not related to) industrial activity, are difficult to explain.

One highly speculative explanation is that the high-frequency events are related to the collapse of the rocky walls surrounding the magma chamber. This disturbs the magma reservoir, causing it to oscillate or ‘hum.’ At the same time, waves bouncing back and forth hit other flanks and trigger more collapses, generating more high-frequency events. This all happens in a way that causes the low- and high-frequency events to synchronize, forming the November 11th signal.

The geological setting is also pretty weird. This major volcanic event is taking place on the eastern end of the island chain, whereas the youngest volcanic islands are to the west. So it appears to be happening in the ‘wrong’ place.

It’s also unclear what is responsible for the volcanism in the first place. It could be caused by action along a tectonic plate boundary, an upwelling plume of superheated mantle material, or even an extension of the East African Rift, a major tectonic event that is slowly tearing the continent apart.

There is even an ecological element to the story that is currently unexplained: the emergence of lots of dead fish offshore from Mayotte. It is thought that the magmatic activity might have scared them up to the surface, where they experienced low pressures that they couldn’t survive in.

Like much about the event, this remains speculative for now. Clearly more instrumentation is required. As I put it before, the French CNRS and BRGM and other authorities are now deploying equipment on Mayotte, at the site of the activity, and on the Glorioso Islands to the east. That still won’t solve all the enigmas. Underwater drones and ship-based radar surveys will be required to determine how much lava erupted at the surface, if any. Numerical simulations and laboratory work may be required to better comprehend what’s going on beneath the surface.

Source: EarthArXiv.

Situation géographique de Mayotte et de l’archipel des Comores (Google Maps)

Hawaii: Le séisme du 13 mars 2019 n’a pas une origine volcanique // The March 13th earthquake was not related to volcanic activity

Selon le HVO, le séisme de magnitude M 5,5 survenu sur la Grande Ile d’Hawaii le 13 mars 2019 n’était pas lié à une reprise de l’activité volcanique sur le Kilauea. Son épicentre a été localisé à 12 km au sud-sud-est de Volcano Village, à une profondeur de 7 km sous le niveau de la mer. Les séismes enregistrés à cet endroit et à cette profondeur à Hawaii sont dus à des mouvements le long d’une faille de décollement qui sépare le sommet de la croûte océanique de l’accumulation de roches volcaniques qui ont formé la Grande Ile. Cette même faille est responsable du séisme de M 6.9 enregistré en mai 2018. Le premier séisme lié par les scientifiques à la faille de décollement fut un événement de M 7,7 en novembre 1975. Il s’agit du plus puissant séisme enregistré à Hawaï au cours du siècle dernier. Le séisme de Ka’u sous le flanc sud-est du Mauna Loa en 1868 a également été provoqué par une faille de décollement.
Le séisme de M 5,5 du 13 mars 2019 est, à ce jour, la réplique la plus significative de l’événement de M 6,9 enregistré au mois de mai dernier. La séquence de répliques qui a suivi le séisme de 1975 a duré environ une décennie et on admet généralement que les répliques incluent des événements d’une magnitude inférieure à celle de l’événement principal. À cet égard, la secousse de M 5.5 du 13 mars n’est pas vraiment une surprise. Le HVO s’attend à de nouvelles répliques pendant encore plusieurs années.
Le HVO insiste sur le fait que le séisme du 13 mars 2019 n’annonce pas une augmentation de l’activité volcanique.
Source: USGS / HVO.

————————————-

HVO indicates that the M 5.5 earthquake that was felt on Hawaii Big Island on March 13th, 2019 was not related to any resumption of volcanic activity on Kilauea Volcano. It was centered 12 km south-southeast of Volcano Village, at a depth of 7 km below sea-level. Earthquakes at this location and depth in Hawaii are due to movement along a decollement or detachment fault which separates the top of the original oceanic crust from the pile of volcanic rock that has built up to form Hawaii Big Island. The same fault was responsible for the May 2018 M 6.9 event. The first earthquake in Hawaii that scientists associated with decollement faulting was an M 7.7 event in November 1975. it was, Hawaii’s largest earthquake in the past century. The great Ka‘u earthquake beneath Mauna Loa’s southeast flank in 1868 has also been interpreted as a result of decollement faulting.
The last M 5.5 earthquake is, to date, the largest event among the thousands of earthquakes considered aftershocks of last May’s M 6.9 event. The aftershock sequence following the 1975 earthquake lasted roughly a decade, and it is generally understood that aftershock sequences could include earthquakes as large as one magnitude unit lower than the mainshock magnitude. In this regard, the M 5.5 of March 13th was expected. And, HVO expects aftershocks to persist for several more years.
HVO insists that the March 13th earthquake does not signal an increase in volcanic activity.
Source: USGS / HVO.

Source: USGS / HVO