Mauna Loa: une éruption à court terme ? // A short-term eruption ?

34 séismes ont de nouveau été enregistrés sur le Mauna Loa le 11 avril 2021. Bien qu’ils n’aient que de faibles magnitudes, les scientifiques ont prévenu la population que la hausse de l’activité sismique observée depuis quelque temps peut annoncer une éruption dans un proche avenir. On a enregistré 155 séismes d’une magnitude supérieure à M 1,5 au cours des sept derniers jours et 740 événements au cours du mois dernier, dont une secousse de M 4,3 le 3 avril.

Le séisme le plus important du 11 avril avait une magnitude de M 3,2, avec son épicentre à Pahala, au sud du sommet du Mauna Loa. Un séisme de M 3.0 a également été enregistré dans l’après-midi de ce même jour.

En mars, au vu de la sismicité, l’USGS a déclaré que ce serait le bon moment pour la population de mettre à jour les plans d’urgence personnels en cas d’éruption. Les données historiques montrent que, lors des éruptions précédentes, les coulées de lave n’ont mis que quelques heures pour atteindre les zones habitées. On se trouve dans la même situation que celle qui précède la saison des ouragans. Il est conseillé d’avoir un plan d’urgence en cas d’éruption. Un «go-bag» (sac d’urgence) avec des articles essentiels et les documents importants est recommandé si des évacuations sont ordonnées dans l’urgence en cas d’éruption.

Les éruptions du Mauna Loa ont tendance à produire de grandes coulées de lave rapides qui peuvent avoir un impact sur les localités dans les parties est et ouest de la Grande Ile, de Kona à Hilo. Hilo, à l’est d’Hawaï, s’est trouvée sous la menace de sept coulées de lave depuis les années 1850. En 1984, la lave s’est arrêtée à environ 6 kilomètres de la ville. Sur les côtés sud et ouest de l’île, des coulées de lave ont atteint la côte à huit reprises, dont trois fois en 1950.

Source: Presse hawaiienne.

———————————————-

34 earthquakes were again recorded on Mauna Loa on April 11th, 2021. Though only registering small magnitudes, scientists have warned citizens that the mounting seismic activity could signal that an eruption may be possible in the near future. There have been 155 earthquakes greater than M 1.5 in the past seven days, and 740 in the past month, including an M 4.3 event on April 3rd.

The most significant quake on April 11th had a magnitude of M 3.2, with its epicentre in Pahala, south of the summit of Mauna Loa. An M 3.0 tremor also struck in the afternoon of that same day.

In March, USGS said that as the volcano continues to awaken from its slumber, it would be a good time for people to revisit their personal emergency plans in the event of an eruption. Historical data shows that in previous eruptions it could take just hours for lava flows to reach populated areas. Similar to preparing for hurricane season, having an eruption plan in advance helps during an emergency. A “go-bag” with essential items and important documents is recommended, should evacuations be ordered in the event of an eruption.

Mauna Loa eruptions tend to produce large, fast-moving lava flows that can impact communities on both the east and west sides of the Big Island from Kona to Hilo.

Hilo in the east of Hawaii has been threatened by seven lava flows since the 1850s. In 1984, the lava stopped approximately 6 kilometres from the city. On the south and west sides of the island, lava flows have reached the coast eight times, including three times in 1950.

Source : Hawaiian news media.

Impact prévisible des coulées de lave du Mauna Loa (Source : USGS)

Spectrogrammes et bruit sismique // Spectrograms and seismic noise

L’un des derniers articles hebdomadaires rédigés par des scientifiques de l’Hawaiian Volcano Observatory (HVO) – géré par l’USGS – traitait du bruit sismique qui apparaît souvent sur les spectrogrammes. Le HVO utilise un grand nombre de sismomètres pour localiser les séismes et identifier les signaux liés aux mouvements de failles et à ceux du magma à l’intérieur des volcans. Cependant, les sismomètres enregistrent également les vibrations générées par de nombreuses autres sources. Certains signaux sont facilement identifiables tandis que d’autres restent un mystère. Les spectrogrammes viennent en complément des formes d’onde généralement associées aux séismes car ils permettent d’identifier facilement des signaux complexes voire multiples. L’heure est affichée sur l’axe horizontal, la fréquence du signal est affichée sur l’axe vertical et l’intensité du signal apparaît en couleur. Plus la couleur est chaude, plus le signal est fort à une heure et à une fréquence spécifiques. Voici un exemple de spectrogramme enregistré dans une station située près de Pu’uO’o:

Une source fréquente de bruit sur les spectrogrammes est causée par le mauvais temps. Le bruit généré par le vent et la pluie se caractérise par un contenu diffus en moyenne ou haute fréquence. Dans le spectrogramme ci-dessus, la station commence à enregistrer une forte averse qui approche. Si un analyste a le moindre doute sur l’origine des signaux, il lui suffit de jeter un œil à l’une des webcams pour s’en assurer.

Ce spectrogramme montre deux signaux couramment observés. Le plus visible est un ensemble de lignes en forme de ruban dans la partie supérieure du spectrogramme. Ce btuit est provoqué par un hélicoptère qui vole à proximité de la station sismique. S’agissant de la récente éruption du Kilauea, le signal à basse fréquence constant que l’on voit au bas du spectrogramme sous forme d’une bande jaune-orange est le tremor éruptif qui a commencé juste après que la lave ait percé la surfacedans l’Halema’uma’u dans la nuit du 20 décembre 2020. Depuis cette époque, presque toutes les stations à proximité du nouveau lac de lave au sommet de Kilauea enregistrent ce signal continu.

L’image ci-dessus montre des téléséismes. Ce sont des séismes observés à au moins 1000 km de distance. Au moment où les télésismes atteignent des stations très éloignées, toutes les fréquences ont été perdues, sauf les plus basses. Le signal basse fréquence qui commence vers 23h19 sur ce spectrogramme du 19 mars est le téléséisme d’un événement de M 7.0 qui s’est produit près d’Ishinomaki (Japon). À titre de comparaison, les pics large fréquence qui apparaissent sous forme de lignes verticales de couleur plus claire tout au long du spectrogramme sont de petits séismes locaux.

Le spectrogramme ci-dessus montre des chutes de pierres ou des éboulements. Ces signaux ont un contenu fréquentiel large et une apparition progressive. De tels événements peuvent durer plusieurs minutes. Afin de les identifier parfaitement, les sismologues recherchent la légère diminution du contenu basse fréquence au fur et à mesure de la progression de l’événement. Cette caractéristique apparaît sous forme d’une hausse superficielle sur le spectrogramme du 25 mars à partir de 2 h 59. La majorité des récents effondrements observés par les sismologues du HVO ont eu lieu sur le Pu’uO’o. Certains ont été précédés par des hélicoptères en train de voler près du cône.

Des sismographes sont utilisés partout dans le monde s pour analyser des événements tels que des ouragans à l’approche, des chants de baleines, des fans qui font la fête lors de grands matchs de football et même des essais nucléaires.

À Hawaï, la météo, le trafic aérien local, les séismes liés aux éruptions et les éboulements font partie des signaux sismiques intéressants que les sismologues du HVO peuvent observer lorsqu’ils surveillent l’activité sismique.

——————————————-

A weekly article written by USGS Hawaiian Volcano Observatory (HVO) scientists dealt with the seismic noise that appears on the spectrograms. HVO uses dozens of seismometers to locate individual earthquakes and identify signals that are related to faulting and magma movement within our volcanoes. However, seismometers also record vibrations caused by a variety of other sources. Some signals are easily identifiable while others remain a mystery.

Spectrograms can be a useful addition to the waveforms typically associated with earthquakes because they allow to easily identify complex or even multiple signals. Time is displayed on the horizontal axis, signal frequency is displayed on the vertical axis, and signal intensity is shown in colour. The warmer the colour, the stronger the signal is at that specific time and frequency. The first spectrogram above was recorded at a station located near Pu’uO’o.

°°°°°°°°°°

A common source of noise seen on spectrograms is cause by the bad weather. Noise from wind and rain is characterized by its diffuse mid- to high-frequency content. In the spectrogram above, the station starts to record an approaching rainstorm. If an analyst has any doubt over whether the signals are actually weather, they just need to have a look at one of the webcams to make sure.

°°°°°°°°°°

 The second spectrogram above shows two commonly observed signals. The most noticeable is the set of ribbon-like lines across the top of the spectrogram. This is caused by a helicopter flying near the seismic station.

Speaking of the recent eruption, the steady low-frequency signal seen on the bottom of this spectrogram as a yellow-orange band is the eruptive tremor that started shortly after lava broke the surface in Halema’uma’u on the night of December 20th, 2020. Since then, nearly all stations in the vicinity of the newly formed lava lake at Kilauea’s summit have been recording this continuous signal.

°°°°°°°°°°

The third image above shows teleseisms. These are earthquakes observed from at least 1000 km away. By the time teleseisms reach very distant stations, all but the lowest frequencies have been lost. The low-frequency signal starting around 11:19 p.m. in this March 19th spectrogram is a teleseism from an M 7.0 earthquake that struck near Ishinomaki (Japan). For comparison, the broad-frequency spikes appearing as lighter-colored vertical lines seen throughout this spectrogram are small local earthquakes.

°°°°°°°°°°

 The fourth spectrogram above shows rockfalls. These signals have a broad frequency content and gradual onset. These types of events can last for minutes at a time. In order to perfectly identify them, seismologists look for the slight decrease in low frequency content as the event progresses. This feature appears as a shallow ramp on the March 25th spectrogram starting at 2:59 a.m. The majority of recent rockfalls observed by HVO seismologists have been on Pu’uO’o, some of which have been preceded by helicopters flying near the cone.

Around the world, seismographs have been used to document events such as impending hurricanes, whale songs, fans celebrating during big football games, and even nuclear testing. In Hawaii, weather, local air traffic, eruptive tremor, and rockfalls are a few of the interesting seismic signals that HVO seismologists can see while monitoring earthquake activity.

Le système fissural sur la Péninsule de Reykjanes (Islande) // The fissure system on the Reykjanes Peninsule (Iceland)

Compte tenu de la situation éruptive actuelle sur la Péninsule de Reykjanes et de l’ouverture de plusieurs fissures éruptives, il est intéressant de jeter un œil aux cartes géologiques de la région. J’en ai choisi deux proposées par Dominik Pałgan du Département de géophysique de l’Institut d’océanographie de l’Université de Gdansk.

(A) La carte A propose la topographie de la péninsule basée sur le modèle numérique d’élévation (DEM) quadrillé à 100 m. La zone est un prolongement direct sur terre de la Dorsale de Reykjanes. Sept séismes majeurs (M l> 4) se sont produits dans la région entre 1950 et 2015 (points rouges). D’une manière générale, la Péninsule de Reykjanes possède 4 grands champs géothermiques à haute température (étoiles rouges) et 4 champs géothermiques beaucoup plus petits (étoiles orange). Les quatre champs à haute température sont: 1-Reykjanes, 2-Krýsuvík, 3-Brennisteinsfjöll et 4-Nesjavellir (Hengill).

(B) La carte B est une présentation géologique simplifiée de la péninsule basée sur les travaux de Saemundsson et al. (2010). La zone se caractérise par quatre essaims distinctifs survenus sur des fissures. Chaque site présente de multiples fissures éruptives, failles, fractures, édifices volcaniques, ainsi qu’un champ géothermique à haute température.

L’éruption actuelle se trouve sur le système volcanique de Krysuvik, au sud du mont Fagradalsfjall

——————————————

Considering the current eruptive situation on the Reykjanes Peninsula and the opening of several eruptive fissures, it is interesting to have a look at geological maps of the region. I have chosen two of them as suggested by Dominik Pałgan from the Department of Geophysics, Institute of Oceanography at the University of Gdansk.

(A) Map A shows the topography of the peninsula based on the Digital Elevation Model (DEM) gridded at 100 m. The area is a direct, onshore prolongation of the Reykjanes Ridge. Seven major earthquakes (M l >4) occurred here between 1950 and 2015 (red dots). In general, the Reykjanes Peninsula has 4 major high-temperature (red stars) and 4 much smaller geothermal fields (orange stars). The four high-temperature fields are: 1-Reykjanes, 2-Krýsuvík, 3-Brennisteinsfjöll and 4-Nesjavellir (Hengill). (B) Simplified geological map of the peninsula based on Saemundsson et al. (2010). The area is characterized by four distinctive fissure swarms (named underneath each swarm) each with multiple eruptive fissures, faults, fractures, volcanic edifices and an associated high-temperature geothermal field.

The current eruption is located on the Krysuvik volcanic system, south of Mt Fagradalsfjall.

Hawaii : l’océan et le volcan // The ocean and the volcano

Des phénomènes de houle sont observés en permanence sur tous les océans du globe. En effectuant des ondulations accompagnées de mouvements ascendants et descendants, les houles agissent sur le plancher océanique et délivrent un signal constant. Ces microséismes océaniques traversent la terre et apparaissent en surface sur les sismomètres. Le HVO a mis en place un certain nombre de sismomètres sur le Kilauea pour contrôler les processus volcaniques et les mouvements de failles actives. Lorsque le magma ne se déplace pas à l’intérieur du Kilauea et lorsque le volcan n’est pas en éruption, les microséismes océaniques apparaissent sur les sismomètres où ils laissent un signal répétitif constant.

Les signaux microsismiques présentent de grandes variations au cours des périodes où le Kilauea  traverse des épisodes d’inflation et déflation en raison du déplacement du magma sous la surface. Des variations similaires se produisent lorsque le volcan est en éruption, comme c’est le cas actuellement. Les scientifiques mesurent les différences entre les microséismes observés pendant les périodes d’activité volcanique et ceux enregistrés pendant les périodes de calme. Le but est d’identifier quand, où et pendant combien de temps le magma a migré et est resté stocké sous le Kilauea.

Les scientifiques du HVO ont récemment utilisé cette technique pour essayer de comprendre les événements qui ont conduit à l’effondrement du sommet du volcan et à l’éruption dans la Lower East Rift Zone en 2018. Les données microsismiques associées à des schémas sismiques et de déformation plus traditionnels donnent des indications sur l’augmentation de la pression dans la partie superficielle du réservoir magmatique au sommet du Kilauea. Le sommet et l’East Rift Zone ont immédiatement commencé réagir et à montrer une inflation, signe que le magma se déplaçait dans ces parties du volcan.

Les variations microsismiques ont également révélé qu’un séisme d’une magnitude de M 5,3 un an auparavant avait considérablement affaibli la croûte à la surface du volcan sous le  Pu’uO’o. Les scientifiques du HVO ont émis l’hypothèse que la hausse de pression au sommet du Kilauea s’ajoutant à l’affaiblissement de la croûte peu profonde sous le Pu’uO’o avait créé des conditions favorables au déplacement du magma le long de la zone de rift et le déclenchement de l’éruption en 2018.

Les scientifiques du HVO ont récemment installé huit sismomètres temporaires supplémentaires autour du cratère de l’Halema’uma’u au sommet du Kilauea, pour suivre les mouvements du magma sous le nouveau lac de lave. Ces sismomètres temporaires, en même temps que le réseau sismique permanent, permettent un échantillonnage spatial plus large des microséismes océaniques qui traversent le réservoir magmatique du Kilauea. Cela permet une étude plus précise de l’endroit où des changements physiques se produisent sous le cratère.

Le fait que l’éruption actuelle soit confinée à l’intérieur du cratère de l’Halema’uma’u au sommet du Kilauea est idéal pour étudier les mécanismes physiques associés à cette éruption. En analysant ces données, les scientifiques du HVO espèrent répondre à plusieurs questions: 1) Où se situent la source magmatique et les conduits empruntés par ce même magma pendant cette éruption ? 2) Cette technique peut-elle aider à comprendre les petites variations de l’activité volcanique observées à certains moments au cours de cette éruption ? 3) Cette technique peut-elle fournir des indices sur la fin de l’éruption ? 4) Dans quelle mesure peut-on appliquer les leçons de cette étude à la compréhension et à la prévision des futures éruptions du Kilauea?

Source: USGS / HVO

—————————————————

Ocean swells occur continuously around the world. As these swells rise and fall, they couple with the ocean floor below them creating a constant signal. These oceanic microseisms, travel through the solid earth and are observed at the surface using  seismometers.

HVO has a number of seismometers in place across Kilauea Volcano for monitoring volcanic processes and active fault movements. When magma is not moving within or erupting from Kilauea, the oceanic microseisms appear on seismometers as a repeating and unchanged signal.

The microseismic signals display large variations during periods when Kilauea is inflating or deflating due to magma moving beneath its surface. Similar variations occur when the volcano is actively erupting, such as now. Scientists measure differences in these observed microseisms during periods of volcanic activity relative to times of quiet, in an effort to identify when, where, and for how long magma is migrating and being stored within Kilauea.

HVO scientists recently applied this technique to better understand the events leading up to the 2018 Lower East Rift Zone eruption and summit collapse. Microseism data combined with more traditional seismic and deformation patterns document the increase of pressure within the shallow region of the magma storage reservoir at Kilauea’s summit. Both the summit and the East Rift Zone immediately began expanding rapidly, suggesting that magma was moving into these regions.

Variations in microseisms also revealed that an M 5.3 earthquake a year earlier had significantly weakened the volcanic crust directly beneath Pu’uO’o. HVO scientists hypothesized that the combination of increased pressure at Kilauea’s summit and the weakening of the shallow crust beneath Pu’uO’o, created conditions favourable for magma to move downrift and erupt in 2018.

HVO scientists recently deployed eight additional temporary seismometers around Halema’uma’u Crater, at the summit of Kilauea, to track magma movements beneath the new lava lake. These temporary seismometers, along with HVO’s permanent seismic network, allow for a larger spatial sampling of the oceanic microseisms travelling through Kilauea’s magma reservoir. This, in turn, means a denser sampling of where physical changes are occurring beneath the crater.

Confinement of the ongoing eruption within Halema’uma’u Crater at Kilauea’s summit is ideal for surveying the physical mechanisms associated with this eruption. With analysis of these data, scientists at HVO hope to answer several questions: 1) where is the magma source and pathways for this eruption?; 2) can this technique help us understand small increases and decreases in volcanic activity observed at times during this eruption?; 3) can this technique provide clues for when the eruption will end?; and 4) how can we apply what we have learned in this study to assist in better understanding and forecasting volcanic activity associated with future eruptions at Kīlauea?

Source : USGS / HVO

Crédit photo : USGS / HVO

Essaim sismique sur le Mauna Loa (Hawaii) mais pas d’éruption en vue // Seismic swarm on Mauna Loa (Hawaii) but no imminent eruption

Le 18 mars 2021, le HVO a enregistré un essaim sismique avec plus de 40 événements dans la partie supérieure de la zone sismique de Ka’oiki du Mauna Loa. Les secousses se sont produites dans un secteur d’environ 1,6 km de diamètre et à 800-6500 mètres sous la surface. L’événement le plus significatif avait une magnitude M 3,5. La plupart des autres secousses avaient une magnitude inférieure à M 2,0. Le HVO explique que la présence de foyers sismiques peu profonds dans cette zone ne signifie pas qu’une éruption est imminente. L’observatoire enregistre des séismes peu profonds dans cette zone depuis de nombreuses décennies. Ils ne montrent aucun signe d’ascension magmatique et font partie des « réajustements normaux en raison de l’évolution des contraintes à l’intérieur de l’édifice volcanique.»

————————————–

On March 18th, 2021, HVO recorded more than 40 earthquakes beneath Mauna Loa’s upper Ka‘ōiki seismic zone. These earthquakes occurred in a cluster about 1.6 km wide and 800-6,500 metres below the surface. The largest event had a magnitude M 3.5. The bulk of the events had a magnitude less than M 2.0.

HVO explains that clustering of shallow earthquakes in this region does NOT mean an eruption is imminent. The observatory has recorded shallow earthquakes in this area for many decades. They do not show any signs of magmatic involvement and are “part of normal re-adjustments of the volcano due to changing stresses within it.”

Vue du sommet du Mauna Loa (Crédit photo : HVO)

Péninsule de Reykjanes (Islande): le magma sortira-t-il ? // Will magma erupt or not ?

L’activité sismique sur la Péninsule de Reykjanes a marqué le pas le 16 mars 2021, mais de nouvelles images InSAR indiquent que le dyke magmatique continue de progresser à une profondeur qui se situe toujours à environ 1 km sous la surface.

Les nouvelles images satellites montrent qu’au cours de la semaine écoulée, la croûte terrestre de chaque côté du dyke s’est écartée d’une vingtaine de centimètres. Cette poussée a provoqué des fissures le long de la route qui longe la côte sud de la péninsule. Les conducteurs sont priés d’être prudents.

Les scientifiques considèrent toujours le secteur de Nátthagi, juste au sud du Fagradalsfjall, comme le point le plus probable de sortie de la lave si une éruption doit avoir lieu. La Preotection Civile travaille sur un plan d’urgence en cas d’éruption. Les pelleteuses et les bulldozers sont prêts à intervenir pour protéger les infrastructures telles que les routes ou les zones habitées. Cependant, il n’est pas prévu que ces équipements creusent des fossés pour détourner la lave afin de sauver les routes, car ces dernières sont relativement faciles à reconstruire. Toutefois, si une éruption menaçait les centrales électriques ou les localités de la région, cette option serait envisagée.

Si une éruption se produit à Nátthagi, il est peu probable qu’elle menace les zones habitées ou les centrales électriques. Un géophysicien du Met Office islandais explique qu’il y a encore des signes évidents que le magma est en mouvement et que le calme actuel de la sismicité ne signifie probablement pas la fin de l’essaim dans la péninsule de Reykjanes.

Source: Iceland Review. .

————————————————

While the seismic activity on the Reykjanes eninsula was less strong on March 16th, 2021 than it has been for the past few weeks, new InSAR images indicate that the magma dike keeps growing at a similar depth as before, about 1 km underneath the surface.

The new satellite images indicate that over the past week, the earth’s crust on either side of the dike has been pushed apart by about 20 cm. The shifts in the land have caused cracks alongside the nearby road along the south coast of the peninsula. Drivers are asked to be careful.

Scientists still consider Nátthagi, just south of Mt Fagradalsfjall the most likely point of eruption and the Department of Civil Defense and Emergency Response is working on a contingency plan if an eruption were to occur. Excavators and bulldozers are ready to be used to protect infrastructure in the area such as roads or inhabited areas. However, they likely wouldn’t risk digging ditches to redirect lava to save roads, as roads are relatively easily reconstructed, but if an eruption threatens powerplants or towns in the area, this option is available.

If an eruption occurs in Nátthagi, it is unlikely to threaten inhabited areas or power plants.

A geophysicist at the Icelandic Met Office explains that that there are still clear signs that magma is on the move and that today’s comparative calm in seismicity does not probably mean the end of the Reykjanes Peninsula earthquake swarm.

Source: Iceland Review.

Source : Icelandic Road and Coastal Administration

Péninsule de Reykjanes (Islande): les scientifiques face à la situation actuelle // Scientists in the face of the current situation

Selon les volcanologues islandais, si une éruption se produit sur la Péninsule de Reykjanes, elle mettrait probablement un terme à l’essaim sismique qui a commencé dans la région le 24 février 2021. En effet, selon eux, une éruption allègerait la pression qui a déclenché de fréquents séismes dans la région.

Les scientifiques islandais restent persuadés que l’essaim sismique se soldera probablement par une éruption… tôt ou tard. Cependant, ils n’excluent pas que l’activité sismique se termine sans éruption. En bref, personne n’est en mesure de prévoir ce qui va se passer sur la péninsule. La prévision volcanique dans la situation actuelle est nulle.

Au cours de l’année écoulée, les géologues islandais ont décelé quatre intrusions magmatiques sur la Péninsule de Reykjanes… mais la lave n’a jamais percé la surface! Le dyke à l’origine des séismes actuels est plus important que les précédents. Il s’étend de Keilir à Fagradalsfjall. Les autres intrusions semblent avoir eu lieu près de Svartsengi (au nord de Grindavík), dans le système volcanique dans la partie la plus occidentale de la péninsule, et du côté de Krýsuvík (près du lac Kleifarvatn).

Les scientifiques islandais s’accordent pour dire que l’interprétation de l’histoire géologique de la Péninsule de Reykjanes est difficile. En effet, les matériaux volcaniques émis lors des éruptions précédentes recouvrent la région, ce qui rend difficile l’examen des strates qui pourraient aider à prévoir les éruptions futures. De plus, il n’y a pas eu d’éruption volcanique dans la région depuis 800 ans et, par conséquent, les géologues ne peuvent pas s’appuyer sur une expérience antérieure. Ils ne peuvent se fier qu’à des données GPS et des images satellites qui, chaque semaine depuis le début de l’activité sismique, permettent de se faire une idée sur l’évolution de la situation dans la péninsule. Ces données montrent clairement que le dyke magmatique continue de progresser vers le sud-sud-ouest ; ce déplacement va de pair avec l’activité sismique. Des observations, mais pas de prévisions fiables!

Source: Iceland Monitor.

 ———————————————–

According to Icelandic volcanologists, if an eruption ovccurred on the Reykjanes peninsula, it would likely put an end to the swarm of earthquakes that began in the area on February 24th, 2021. In their opinion, an eruption would relieve the pressure that has been causing frequent earthquakes in the area.

The Icelandic scientists remain persuaded that the seismic swarm will likely end with an eruption, sooner or later. However, they also say the quakes could end without an eruption, but that is difficult to predict. To put it shortly, nobody is able to predict what will happen next. Volcanic prediction in the current situation equals to zero.

During the past year, Icelandic geoscientists have noticed what they believe to be four magma intrusions on the Reykjanes peninsula…..but lava never emerged at the surface!

The magma dyke causing the present quakes is more significant than the previous ones. It extends from Keilir to Fagradalsfjall. The other magma intrusions appeared to be near Svartsengi (north of Grindavík), in the volcanic system on Reykjanes point (the westernmost part of the peninsula), and by Krýsuvík (near Kleifarvatn lake).

Icelandic scientists agree to say that interpreting the geological history of the Reykjanes peninsula can prove difficult. Indeed, volcanic material from earlier eruptions covers the area, making it difficult to look at strata, which otherwise could help predict future eruptions. Moreover, there hasn’t been a volcanic eruption in the area for 800 years, and, as a result, geoscientists cannot base their knowledge on prior experience of eruptions in the area. They can only rely on GPS data and satellite pictures, which every week since the beginning of the seismic activity have shed light on developments on the peninsula. This data clearly shows that the magma dyke continues to expand south-southwest ; its movements are in line with the seismic activity. Observations, but no reliable predictions!

Source: Iceland Monitor.

En rouge, la zone où une éruption est susceptible de se produire (Source : IMO)