Le risque sismique n’intéresse pas le Conseil Régional de Nouvelle-Aquitaine

En lisant Le Populaire du Centre ce dimanche 8 avril 2018, on apprend que le Conseil Régional de Nouvelle-Aquitaine a « rejeté à deux reprises un projet innovant dans le domaine de la prévention des catastrophes naturelles ». L’ONG Les Pompiers de l’Urgence Internationale (PUI) – basée à Limoges – a besoin de 500 000 euros pour équiper un véhicule d’un simulateur de séismes. Selon Philippe Besson, président des PUI, cette innovation, unique en Europe, permettrait d’aller au plus près des populations pour mener des opérations de sensibilisation dans les zones à risques.

Il semble que les autorités en charge de la région Nouvelle-Aquitaine aient la mémoire courte et oublient un peu vite que plusieurs régions de France sont exposées au risque sismique. Il y a quelques mois, le Bureau central sismologique français a publié une liste des séismes les plus significatifs, de magnitude supérieure à M 5, enregistrés en France métropolitaine depuis 1900 :

– Séisme de Lambesc (Bouches-du-Rhône) en 1909. D’une magnitude M 6,2 sur l’échelle de Richter, il a causé la mort de 46 personnes et 250 ont été blessées.

– Séisme d’Arette (Pyrénées-Atlantiques) en 1967. Aucune victime directe n’est à déplorer, mais l’événement de  magnitude M 5,1, a causé d’énormes dégâts matériels et il a fallu plusieurs années pour tout reconstruire.

– Séisme d’Annecy (Haute-Savoie) en 1996. Malgré une magnitude de M 5,2, le séisme n’a fait aucune victime, bien qu’il ait eu lieu pendant la nuit du 14 juillet..

– Perpignan (Pyrénées-Orientales) en 1996. Séisme de magnitude M 5,6. Aucune victime. Quelques dégâts matériels.

– Sud-est de Bonifacio (Corse) en 2000. Localisé à une quinzaine de kilomètres à l’est des côtes de la Sardaigne et à une cinquantaine des côtes corses, ce séisme de magnitude M 5,3 n’a pas provoqué de dégâts.

– Hennebont (Bretage) en 2002. L’activité sismique est relativement faible dans cette région, mais elle reste constante. C’est pourquoi le séisme de magnitude M 5,4 reste un événement rare, mais non négligeable.

– Rambervillers (Vosges) en 2003.  Près de 40 départements ainsi que des secteurs de la Suisse et de l’Allemagne ont ressenti la secousse de magnitude M 5,4. Le séisme a causé de gros dégâts matériels mais aucun à la centrale nucléaire de Fessenheim, pourtant proche de l’épicentre…

– Roulans (Doubs) en 2004. Bien que ressenti dans un rayon de 300 kilomètres, ce séisme de magnitude M 5,1n’a fait aucun blessé mais a causé de nombreux dégâts matériels avec des fissurations de façades

– Barcelonette (Alpes-de-Haute-Provence) en 2014. Magnitude de M 5,3. Plusieurs départements ont subi de violentes vibrations : de la Savoie au Var, en passant par le Rhône, l’Isère, les Bouches-du-Rhône et les Alpes-Maritimes. Il n’a fait aucune victime.

Ces différents événements montrent la nécessité d’informer les populations, en particulier dans les régions les plus menacées par les séismes. Les simulateurs fixes connaissent un gros succès. Il serait fort dommage que la Région Nouvelle-Aquitaine n’accède pas à la demande des PUI. Ne pas oublier que c’est après une catastrophe que l’on exprime des regrets.

A noter que les Japonais sont en avance sur la France. Ils possèdent des camions avec des simulateurs à leur bord. Il est vrai que le pays est particulièrement exposé au risque sismique.

Si les séismes vous intéressent, je vous conseille fortement de visiter le site AZURSEISME géré par mon ami André Laurenti: https://www.azurseisme.com/

Signal produit par le séisme de M 4,9 en Méditerranée le 7 juillet 2011, à environ 107 km à l’ouest d’Ajaccio et à 175 km au sud-sud-est de Cavalaire dans le Var. (Source: Azurséisme)

Publicités

Prévention des séismes et tsunamis à la Martinique // Seismic and tsunami prevention in Martinique

Depuis que ce blog existe, je ne cesse de mettre l’accent sur l’importance que revêt l’EDUCATION des populations dans les contextes volcanique et sismique. Lors de mes conférences « Volcans et risques volcaniques », je donne l’exemple de la ville de Kagoshima, au pied du volcan japonais Sakurajima, où la population est régulièrement soumise à des exercices d’évacuation dans l’éventualité d’une éruption majeure qui menacerait l’agglomération située à quelques encabliures de ce volcan particulièrement actif.

Le 14 mars 2018, le site web France-Antilles a diffusé un article avec le titre suivant: « Près de 35 000 Martiniquais mobilisés pour Caribe Wave 2018« . Il s’agissait d’un exercice grandeur nature d’alerte tsunami. Commencé le jeudi 15 mars 2018, il a regroupé une cinquantaine de pays et territoires de la Caraïbe, soit environ 200 000 personnes.

L’exercice se déroule de la manière suivante: Selon le scénario établi par le Groupement Intergouvernemental de Coordination / Système d’Alerte aux Tsunamis pour la CARaïbe, un séisme fictif va générer un tsunami dans la Caraïbe. Les côtes de la Martinique sont notamment touchées.

Organisé par le GIC/SATCAR depuis 2011, cet exercice permet de tester le système d’alerte montante vers les autorités publiques responsables de la gestion de crise ainsi que les procédures de diffusion de l’alerte descendante rapide vers la population. Ce dernier point est du ressort des services opérationnels, les mairies, les opérateurs et les médias.

En Martinique, 3 500 personnes, dont une vingtaine de communes et plus de 20 000 collégiens et lycéens se sont inscrits pour participer à l’exercice, via le site http://www.tsunamizone.org/francais/. Ces communes ont choisi soit de mettre en place une sensibilisation, soit de participer à un exercice d’évacuation. En 2018, une attention particulière a été portée sur les itinéraires d’évacuation et sur les 650 sites refuges identifiés.

Parallèlement à cette campagne de sensibilisation sur le terrain, les autorité locales, avec la caution du Préfet de la Martinique, ont distribué un dépliant intitulé « Alerte Tsunami » (voir ci-dessous) qui, graphiques à l’appui, explique ce qu’est un tsunami, comment reconnaître les trois signes naturels d’un tel phénomène et que faire en cas de danger ou d’alerte. Il est en particulier rappelé que « ces vagues ne sont pas surfables! »

Lorsque j’ai visité la ville de St Pierre, j’ai remarqué les nombreux panneaux apposés dans les rues et sur les ruines des monuments historiques, et indiquant les parcours à suivre en cas d’alerte tsunami. Semblables panneaux sont visibles dans d’autres localités côtières

Au cours de mon séjour aux Antilles, j’ai eu l’occasion de parler de cette démarche d’éducation de la population avec plusieurs personnes. Je pense qu’il faudrait aller encore plus loin, comme le font les Islandais. Dans ce pays, les autorités ont demandé aux habitants de la côte sud de l’île, menacée par des éruptions volcaniques et des crues glaciaires, de télécharger une application sur leurs smartphones. En cas de danger imminent, les habitants reçoivent instantanément un message d’alerte leur indiquant le comportement à adopter dans les délais les plus brefs. Il est fort à parier que ce progrès dans le domaine de la prévention sera bientôt adopté par les populations antillaises.

Le risque sismique est identifié depuis longtemps en Martinique. Depuis le 18ème siècle, l’île a subi plusieurs tremblements de terre importants. Le dernier en date, le 29 novembre 2007 avait une magnitude de M 7,4. Il a  été localisé au nord de la Martinique, à une profondeur de 152 km. Les dégâts furent modérés et d’ampleur inégale. A l’image du Centre de découverte des sciences de la Terre, certaines habitations de la Martinique bénéficient de mesures parasismiques.

S’agissant des tsunamis, au cours des trois derniers siècles, la Martinique et la Guadeloupe ont été frappées par plus d’une dizaine d’événements de ce type. Les plus récents ont été observés en mai 1901, décembre 1901, mars et avril 1902, le 6 mai 1902, le 30 août 1902 et le 24 juillet 1939. Cependant, tous n’ont pas été recensés et certaines surcotes marines ne furent jamais identifiées, faute de connaissances.

——————————————

Ever since I created this blog, I have kept focusing on the concept of EDUCATION of populations in volcanic and seismic contexts. During my conferences « Volcanoes and Volcanic Risks », I give the example of the city of Kagoshima, at the foot of the Japanese volcano Sakurajima, where the population regularly performs evacuation exercises in the event of a major eruption which would threaten the community located a short distance from this very active volcano.

On March 14th, 2018, the France-Antilles website published an article with the following title: « Nearly 35,000 Martiniquais mobilized for Caribe Wave 2018 ». This was a life-size tsunami warning exercise. Started on Thursday, March 15th, 2018, it brought together about fifty countries and territories of the Caribbean, about 200,000 people.

The exercise took place as follows: According to the scenario established by the Intergovernmental Coordination Group / Tsunami Warning System for CARIBBEAN, a fictitious earthquake generated a tsunami in the Caribbean. The coasts of Martinique were particularly affected.

Organized by the GIC / SATCAR since 2011, this exercise makes it possible to test the rising alert system towards the public authorities responsible for crisis management as well as the procedures for disseminating the rapid downward alert to the population. This last point is the responsibility of the operational departments, the mayors and the media.

In Martinique, 3,500 people, including some 20 municipalities and more than 20,000 middle and high school students have registered to participate in the exercise, via the site http://www.tsunamizone.org/english/. These municipalities chose either to set up an awareness campaign or to participate in an evacuation exercise. In 2018, special attention was paid to the evacuation routes and the 650 identified refuge sites.

In parallel with this awareness campaign on the field, the local authorities, with the guarantee of the Prefect of Martinique, have distributed leaflets entitled « Tsunami Alert » (see below) which, with graphics, explains what a tsunami is, how to recognize the three natural signs of such a phenomenon and what to do in case of danger. People are reminded that « these waves are not surfable! »

When I visited the city of St Pierre, I noticed the many signs posted in the streets and the ruins of historical monuments, and indicating the routes to follow in case of tsunami warning.

During my stay in the West Indies, I had the opportunity to talk about this process of education of the population. I pointed out  that the prevention has to go even further, as the Icelanders do. In this country, the authorities have asked residents of the south coast of the island, threatened by volcanic eruptions and glacial floods, to download an application on their smartphones. In case of imminent danger, the inhabitants receive an instant warning message indicating the behaviour to adopt as soon as possible. It is a safe bet that this progress in the field of prevention will soon be adopted by the West Indian populations.

The seismic risk has long been identified in Martinique. Since the 18th century, the island has suffered several earthquakes. The most recent, on November 29th, 2007 had a magnitude of M 7.4. It was located north of Martinique, at a depth of 152 km. The damage was moderate and uneven.

As for tsunamis, over the last three centuries, Martinique and Guadeloupe have been hit by more than a dozen events. The most recent ones were observed in May 1901, December 1901, March and April 1902, May 6, 1902, August 30, 1902 and July 24, 1939. However, not all were recorded and some increases in the sea level were never identified, due to a lack of knowledge.

Une brochure très pédagogique:

En cas d’alerte tsunami…

Eléments parasismiques au Centre de découverte des sciences de la Terre:

Photos: C. Grandpey

Le Grand Séisme de Ka’u (Hawaii) en 1868 // The great 1868 earthquake of Ka’u (Hawaii)

Aujourd’hui 2 avril 2018 marque le 150ème anniversaire du plus puissant séisme jamais enregistré à Hawaï au cours des deux derniers siècles. D’une magnitude estimée à M 7,9, ce séisme avait son épicentre près de Pahala dans le district de Ka’u. Connu sous le nom de Grand Séisme de Ka’u, il a atteint la même intensité que celui de San Francisco en 1906. Il a été ressenti jusque sur l’île de Kauai et a fait s’arrêter les horloges sur l’île d’Oahu. À Ka’u, où les secousses ont duré plusieurs minutes, la destruction fut presque totale. Les bâtiments et les murs construits en pierre ont été détruits jusqu’à Hilo. Les secousses ont provoqué des glissements de terrain depuis  Ka’u jusque sur la côte nord d’Hamakua et ont provoqué une petite éruption sur la zone de Rift Sud-Ouest du Kilauea. Une coulée de boue à Wood Valley, au nord de Pahala, a enseveli 31 Hawaïens. Un tsunami a fait déferler au moins huit vagues de plus de 6 mètres de hauteur pendant plusieurs heures. Elles ont causé des dégâts de South Point (Kalae) à Cape Kumukahi (Kapoho), détruit plus de 100 structures et tué 47 personnes. Si un tel événement se produisait aujourd’hui, le Grand Séisme de Ka’u serait l’un des plus puissants enregistrés ces dernières années à travers le monde. Comme l’île d’Hawaï était peu peuplée en 1868, les pertes humaines furent limitées.
À Hawaï, les séismes les plus destructeurs se produisent le long d’une faille en pente douce située entre la base des volcans et l’ancien fond océanique sur lequel ils reposent. Cette faille, située à une profondeur d’environ 11 km, est connue géologiquement sous le nom de faille de décollement (du mot français « décoller », qui signifie « se détacher de »).
Une grande partie de l’île d’Hawaii a été secouée par l’événement de 1868. Si l’on se réfère aux mesures effectuées lors du séisme de M 7 à Kalapana en 1975, également sur la faille de décollement, toute la partie de l’île située au sud et à l’est du sommet et des zones de rift du Mauna Loa s’est probablement déplacée vers la mer et s’est affaissée durant la séisme de 1868.
Le Grand Séisme de Ka’u du 2 avril faisait partie d’une crise volcanique de longue durée qui s’est déroulée pendant 16 jours. Le 27 mars, une éruption a commencé en douceur dans le Moku’aweoweo, la caldeira sommitale du Mauna Loa. L’activité sismique a augmenté tout au long de la journée et, dans l’après-midi du 28 mars, un séisme de magnitude 7,0 s’est produit à Ka’u et a causé d’importants dégâts. Au cours des quatre jours suivants, des secousses presque continues ont été signalées à Ka’u et à Kona Sud. Les séismes se sont poursuivis à raison de 50 à 300 événements par jour – dont un événements de M 6,0 – jusqu’au 2 avril, date à laquelle le Grand Séisme de Ka’u s’est produit à 16 heures. Une violente réplique a eu lieu le 4 avril et des répliques de magnitude décroissante ont continué pendant plusieurs dizaines de jours.
Le Grand Séisme de Ka’u a débloqué la zone de rift sud-ouest du Mauna Loa et le 7 avril 1868 une fissure éruptive s’est ouverte sur le volcan, juste au-dessus de la zone où se trouvent aujourd’hui la route 11 et à l’est des Hawaiian Ocean View Estates.
Bien que nous ne sachions pas à quelle fréquence des événements aussi puissants que le Grand Séisme de Ka’u peuvent se produire, nous savons qu’à Hawaii ce sont les volcans actifs qui gèrent les contraintes qui génèrent les plus grands séismes. Les risques liés au Mauna Loa comprennent donc des éruptions, mais aussi de puissants séismes le long de la faille de décollement de Ka’u et de Kona Sud, comme le confirme le séisme de M 6.9 enregistré près de Captain Cook en 1951. Pour cette raison, il est conseillé aux habitants de l’île d’Hawaii de se tenir prêts à faire face à des éruptions volcaniques, mais aussi à des séismes potentiellement destructeurs.
Source: USGS / HVO.

———————————————-

Today April 2nd 2018 marks the 150th anniversary of the largest earthquake to strike Hawaii in the last two centuries. Estimated to be an M 7.9 event, this earthquake struck near Pahala in the Ka‘u District of the Island of Hawaii in 1868. Known as the great Ka’u earthquake, it had the same maximum intensity as the 1906 San Francisco earthquake. It was felt as far away as the island of Kauai and stopped clocks on Oahu. In Ka’u, where the shaking went on for several minutes, the destruction was nearly total. Stone buildings and walls were destroyed as far away as Hilo. The shaking caused landslides from Ka’u to Hawaii Island’s northern Hamakua coast and induced a small eruption on Kilauea Volcano’s Southwest Rift Zone. A mudslide in Wood Valley north of Pahala buried 31 Hawaiians. A tsunami, consisting of at least eight waves over several hours, was estimated to be more than 6 metres high in Ka’u. The waves caused damage from South Point to Cape Kumukahi (Kapoho), destroyed more than 100 structures, and took 47 lives. If it happened today, the great Ka’u earthquake would be one of the world’s strongest earthquakes of these past years. Because the Island of Hawaii was sparsely populated in 1868, the loss of lives was limited.

In Hawaii, the most destructive earthquakes occur along a gently sloping fault between the base of the volcanoes and the ancient ocean floor on which they are built. This fault, located at a depth of approximately 11 km, is known geologically as a décollement, from the French word “décoller,” which means “to detach from.”

A large part of the Island of Hawaii moved during the 1868 event. Based on measurements of how much the earth moved during Hawaii’s M 7.7 Kalapana earthquake in 1975, which also occurred on the décollement, the entire island south and east of Mauna Loa’s summit and rift zones probably moved seaward and subsided several metres during the great Ka’u earthquake of 1868.

The April 2nd great Ka’u earthquake was part of a larger volcanic crisis that unfolded over 16 days. On March 27th, an eruption quietly began in Moku’aweoweo, the caldera at the summit of Mauna Loa. Seismic activity increased through the day, and by the afternoon of March 28th, an M 7.0 earthquake occurred in Ka’u, which caused extensive damage. During the following four days, nearly continuous ground shaking was reported in Ka’u and South Kona. Earthquakes continued at rates of 50 to 300 events per day, including an M 6.0 each day, leading up to April 2nd, when the great Ka‘u earthquake occurred at 4 p.m. A severe aftershock occurred on April 4th, and aftershocks of decreasing magnitudes continued for several tens of days.

The great Ka’u earthquake unlocked Mauna Loa’s Southwest Rift Zone, and on April 7th, 1868, an eruptive fissure opened low on the mountain, just above today’s Highway 11 and east of Hawaiian Ocean View Estates.

Though we do not know how often events as large as the great Ka’u earthquake occur, we do know that, in Hawaii, active volcanoes drive the stresses that generate the largest earthquakes. Mauna Loa’s hazards, therefore, include eruptions, as well as large earthquakes along the décollement in Ka’u and South Kona, like the M 6.9 earthquake that occurred near Captain Cook in 1951. Because of this, Island of Hawai‘i residents are encouraged to be prepared for both volcanic eruptions and potentially damaging earthquakes.

Source: USGS / HVO.

Zone de rift dans le désert de Ka’u (Photo: C. Grandpey)

La Terre est une planète vivante // The Earth is a living planet

La Terre est une planète vivante, en perpétuel mouvement. Les plaques tectoniques ne cessent de s’écarter, entrer en collision ou glisser les une contre les autres. C’est ainsi qu’une fracture de plusieurs kilomètres de longueur est apparue récemment dans le SO du Kenya, apportant une nouvelle preuve concrète que le continent africain est en train de se séparer en deux au niveau du Rift est-africain qui s’étire sur plus de 3000 km et marque la limite entre la plaque africaine à l’ouest et la plaque somalienne à l’est. Dans quelques millions d’années, la corne de l’Afrique, avec la Somalie et des morceaux d’Éthiopie, du Kenya et de la Tanzanie, formera une île qui s’éloignera du continent africain.

La fracture apparue au Kenya continue de grandir et s’accompagne d’une activité sismique. D’une quinzaine de mètres de profondeur, elle a coupé la route commerciale de Mai Mahiu-Narok. Bien que la plupart du temps l’évolution du Rift est-africain soit imperceptible, la formation de nouvelles failles ou de fractures, comme celle qui vient de s’ouvrir au Kenya, peut provoquer des séismes. Cependant, en Afrique de l’Est, la plus grande partie de cette sismicité est répartie sur une vaste zone le long de la vallée du Rift et les secousses ont une magnitude relativement faible. A côté des séismes, le volcanisme est une autre manifestation en surface du processus continu de rupture continentale et de la proximité de l’asthénosphère par rapport à la surface.

Le Rift est-africain est un endroit fantastique car il permet d’observer les différentes étapes de sa formation sur toute sa longueur. Au sud, là où le rift est plus jeune, le processus d’extension est faible et la fracturation se produit sur une vaste zone. Le volcanisme et la sismicité sont limités. En remontant vers la région de l’Afar, tout le plancher de la Vallée du Rift est couvert de roches volcaniques. Cela révèle que, dans cette région, la lithosphère s’est amincie jusqu’à presque atteindre un point de rupture complète. Lorsque cette rupture se produira, un nouvel océan commencera à se former par la solidification du magma dans l’espace créé par la rupture des plaques. Au final, sur une période de dizaines de millions d’années, l’extension du fond marin progressera sur toute la longueur du rift. L’océan envahira cet espace et le continent africain deviendra donc plus petit. Une grande île apparaîtra dans l’Océan Indien composée de parties de l’Éthiopie et de la Somalie, y compris la Corne de l’Afrique.
Sources : Presse internationale, Futura Science, The Watchers.

Voici une petite vidéo montrant la fracture apparue au Kenya: https://youtu.be/wO7s5zIhX6k

——————————————-

 The Earth is a living planet, in perpetual movement. The tectonic plates constantly move apart, collide or slide against each other. Thus, a fracture several kilometres long has recently appeared in the SW of Kenya, providing further concrete evidence that the African continent is dividing in two at the level of the East African Rift which stretches over 3000 km and marks the boundary between the African plate to the west and the Somali plate to the east. In a few million years, the Horn of Africa, with Somalia and parts of Ethiopia, Kenya and Tanzania, will form an island that will move away from the African continent.
The fracture that has appeared in Kenya continues to grow and is accompanied by seismic activity. About fifteen metres deep, it has cut the Mai Mahiu-Narok commercial highway. Although most of the time the evolution of the East African Rift is imperceptible, the formation of new faults or fractures, such as the one that has just opened in Kenya, can cause earthquakes. However, in East Africa, most of this seismicity is spread over a large area along the Rift Valley and its magnitude is relatively low. In addition to earthquakes, volcanism is another surface evidence of the continuous process of continental rupture and the proximity of the asthenosphere to the surface.
The East African Rift is a fantastic place because it allows to observe the different stages of its formation along its length. To the south, where the rift is younger, the extension process is limited and faulting occurs over a large area. Volcanism and seismicity are limited. Going up to the Afar region, the entire floor of the Rift Valley is covered with volcanic rocks. This reveals that in this region the lithosphere has thinned to almost complete break up. When this break up occurs, a new ocean will begin to form by the solidification of magma in the space created by the broken up plates. In the end, over a period of tens of millions of years, the extension of the seafloor will progress over the entire length of the rift. The ocean will invade this space and the African continent will become smaller. A large island will appear in the Indian Ocean composed of parts of Ethiopia and Somalia, including the Horn of Africa.
Sources: International Press, Futura Science, The Watchers.

Here is a short video showing the fracture in Kenya : https://youtu.be/wO7s5zIhX6k

Vue du Rift est-africain (Source: USGS)

Les séismes lents du Kilauea (Hawaii) // Kilauea Volcano’s slow earthquakes (Hawaii)

Périodiquement, des séismes sont enregistrés sur le flanc sud du Kilauea et le HVO les attribue au glissement lent de l’édifice volcanique dans l’Océan Pacifique. Le dernier événement de ce type a eu lieu en octobre 2015 et, auparavant, en mai 2012, février 2010 et juin 2007.
Ces séismes de glissement lent se produisent lorsqu’une faille commence à glisser, mais si lentement que le phénomène prend plusieurs jours au lieu de quelques secondes dans le cas d’un tremblement de terre classique. Sur le Kilauea, les séismes lents se produisent sur la faille de décollement presque horizontale qui se trouve sous le flanc sud du volcan, à une profondeur de 6 à 8 km. C’est cette même faille qui a été responsable du séisme de magnitude M 7,7 à Kalapana en 1975. Cependant, les séismes lents ne produisent pas d’ondes sismiques et donc pas de fortes secousses destructrices comme un séisme classique. Ils permettent d’évacuer une partie de la contrainte qui s’est accumulée sur la faille.
Au cours d’un séisme lent, le flanc sud du Kilauea avance en général d’environ 3 cm vers l’océan. L’événement s’étale sur 2 ou 3 jours, et présente les mêmes caractéristiques qu’un séisme de magnitude M 6.0. Le réseau GPS du HVO montre que le flanc sud avance régulièrement vers la mer d’environ 6 cm chaque année. Les événements de glissement lent du Kilauea ont tendance à se produire uniformément dans le temps; en particulier, ceux postérieurs à 2005 qui ont eu lieu tous les deux ans et demi, à trois mois près. Ils ont été provoqués chaque fois par un glissement sur la même section de la faille et présentent la même magnitude.
Les séismes lents du Kilauea sont des exemples de « séismes types», autrement dit des événements à répétition, de magnitude et de localisation identiques, qui correspondent à une rupture la même section de la faille. Au début, la notion de « séisme type » a été avancée dans l’espoir qu’elle pourrait permettre de prévoir les séismes classiques, les plus destructeurs. Cette idée a fait suite à l’observation d’une série de séismes qui semblaient se produire tous les 22 ans près de la ville de Parkfield en Californie. Après les séismes de 1857, 1881, 1901, 1922, 1934 et 1966, tous de magnitude M 6.0 sur le même section de la faille de San Andreas, les scientifiques avaient prédit que le prochain séisme se produirait en 1988. En fait, le séisme de Parkfield n’a pas eu lieu avant 2004, soit 16 ans après la date prévue. Cependant, même si l’hypothèse de « séisme type » n’a pas permis de prévoir un séisme classique, elle est utile pour prévoir des « séismes lents » partout dans le monde. De tels événements, récurrents et prévisibles, affectent la zone de subduction de Cascadia au large des Etats de Washington et de l’Oregon. Cette faille génère tous les 15 mois des glissements lents équivalant à un séisme de magnitude M 6. Au Japon, sur la zone de subduction le long de la fosse de Nankai, des glissements importants se produisent environ tous les 7 ans et correspondent à des séismes de magnitude M 7,0.
Dans la mesure où l’événement de glissement lent le plus récent sur le Kilauea s’est produit en octobre 2015 et que les « séismes lents » ont une périodicité de 2,5 ans (à 3 mois près), le HVO pense que le prochain pourrait être enregistré d’ici août 2018, mais aucune secousse ne sera ressentie par la population. .
Source: USGS / HVO.

——————————————

Occasionally, earthquakes are recorded on the southern flank of Kilauea Volcano and HVO attributes them to the slow sliding of the volcanic edifice into the Pacific Ocean. The last slip event was in October 2015, and before then, in May 2012, February 2010, and June 2007.

Slow slip events are sometimes called “slow earthquakes.” They happen when a fault begins sliding, just like in a regular earthquake, but so slowly that it takes several days to finish instead of several seconds. At Kilauea, slow earthquakes occur on the nearly flat-lying décollement fault that underlies the volcano’s south flank at a depth of 6-8 km. This is the same fault that was responsible for the M 7.7 Kalapana earthquake in 1975. However, slow earthquakes produce no seismic waves and, therefore, none of the damaging shaking of a regular earthquake. They help relieve a small amount of stress on the fault.

During a slow earthquake, the south flank usually surges seaward by about 3 cm. This additional motion occurs over 2-3 days, and is about the same amount that would happen in a regular M 6.0 earthquake. HVO’s GPS monitoring network shows that the south flank moves steadily seaward about 6 cm every year. Kilauea slow slip events tend to occur evenly in time; in particular, events after 2005 have occurred every 2.5 years, give or take 3 months. They are also caused by slip on the same section of the fault every time and tend to be about the same size.

Kilauea slow slip events are examples of so-called “characteristic” earthquakes, a series of several earthquakes of similar magnitude and location, which indicates that they are breaking the exact same part of the fault again and again. The characteristic earthquake hypothesis was originally developed in hope that it could predict regular, and possibly damaging, earthquakes. This idea emerged from observations of a series of earthquakes that seemed to strike about every 22 years near the town of Parkfield, California. After earthquakes in 1857, 1881, 1901, 1922, 1934, and 1966, all of which occurred as M 6.0 events in the same part of the San Andreas Fault, scientists predicted the next earthquake would occur in 1988. As it turned out, the next Parkfield earthquake did not occur until 2004, 16 years after the predicted date. However, even though the characteristic earthquake hypothesis was not successful at predicting a regular earthquake, it has been useful for forecasting the occurrence of slow slip events around the world. Locations where recurring, predictable slow slip events happen include the Cascadia Subduction zone offshore of Washington and Oregon. This fault produces slow slip events equivalent to an M 6.7 earthquake every 15 months. In Japan, on the subduction zone along the Nankai Trough, major slow slip events occur approximately every 7 years and are equivalent to M 7.0 earthquakes!

Because the most recent slow slip event on Kilauea happened in October 2015, and the events have a recurrence time of 2.5 years (give or take 3 months), HVO can forecast that the next one might occur between now and August 2018. But there won’t be any shaking that could be easily felt by individuals.

Source: USGS / HVO.

Sur le schéma ci-dessus, les flèches noires montrent l’intensité des séismes lents (voir échelle en bas du schéma), ainsi que leur orientation telle qu’elle a été enregistrée par le réseau GPS du HVO en octobre 2015. Les couleurs font référence à la topographie, depuis le niveau de la mer (en vert) jusqu’à 1200 m d’altitude (en marron). L’océan est en bleu. (Source : HVO)

Kick’em Jenny (Mer des Caraïbes): Ça se calme // Kick’em Jenny (Caribbean Sea): Seismic activity is declining

Selon le Centre de recherche sismique de l’Université des Indes occidentales, la sismicité a considérablement diminué ces derniers jours à Kick’em Jenny mais le niveau d’alerte est maintenu à la couleur Orange. En effet, l’histoire montre qu’une telle accalmie peut ne pas signifier la fin de l’épisode sismique. Il est demandé aux navires et autres embarcations de rester à l’écart de la zone d’exclusion de 5 km autour du volcan.
Au vu de la profondeur actuelle des secousses, une éruption de Kick ’em Jenny serait peu susceptible de provoquer un tsunami.
Source: Centre de recherche sismique de l’Université des Indes occidentales

—————————————-

According to the University of the West Indies Seismic Research Center, seismicity has decreased significantly in the past days at Kick’em Jenny but the alert level is kept at Orange. Indeed, history shows that such a lull may not mean the end of the seismic episode. Ships are still asked to stay away from the 5-km exclusion zone around the volcano.

With regard to the current depth of the earthquakes, an eruption of Kick ’em Jenny is unlikely to cause a tsunami.

Source: University of the West Indies Seismic Research Center

La lune et le Ruapehu (Nouvelle Zélande) // The Moon and Mt Ruapehu (New Zealand)

Des scientifiques américains du Jet Propulsion Laboratory (JPL) de la NASA ont établi un lien entre les cycles des marées et l’éruption soudaine du Ruapehu en 2007. Ils pensent même que cette corrélation apparente pourrait offrir une solution pour prévoir les futures éruptions. Cependant, des scientifiques néo-zélandais ont émis des doutes et critiquent la méthodologie utilisée pour cette étude qui a été publiée dans la revue Scientific Reports.
L’étude a montré comment, juste avant l’éruption soudaine du Ruapehu le 25 septembre 2007, l’activité sismique à proximité du cratère correspondait étroitement aux changements bimensuels de la force de la marée. En examinant les données couvrant une douzaine d’années, les chercheurs ont constaté que cette corrélation entre l’amplitude du signal sismique et les cycles des marées est apparue seulement dans les trois mois précédant l’éruption de 2007.
Les marées terrestres sont gérées quotidiennement par l’attraction lunaire. Au cours des pleines et nouvelles lunes, l’attraction lunaire s’aligne avec celle du soleil, ce qui rend l’amplitude des marées un peu plus importante. Au cours du premier et du dernier quartier, l’amplitude des marées est légèrement plus faible. Alors que les marées sont généralement considérées comme une montée et une baisse des eaux, les contraintes gravitationnelles peuvent également affecter la croûte de notre planète. Beaucoup de recherches ont été effectuées afin de savoir si la force de marée peut déclencher des éruptions volcaniques, mais aucune réponse vraiment fiable n’a été fournie.
Les chercheurs du JPL qui ont travaillé sur le Ruapehu ont adopté un angle d’approche différent et ont recherché s’il existait un signal détectable associé à la force des marées et qui pourrait être une indication de l’approche d’une éruption. Ils ont choisi d’étudier le Ruapehu, d’une part parce que son activité est étroitement surveillée depuis des années par GNS Science, et d’autre part  parce qu’ils étaient particulièrement intéressés par les données provenant des capteurs sismiques situés près du cratère.
L’équipe scientifique s’est penchée sur 12 années de données sismiques et a recherché les périodes où apparaissait une corrélation entre la sismicité et les cycles lunaires. Les chercheurs ont constaté que pendant la majeure partie de cette période de 12 ans, il n’existait pas de corrélation entre l’activité sismique et les cycles lunaires, à l’exception des trois mois qui ont précédé l’éruption phréatique de 2007. Tandis que les fluctuations de l’amplitude sismique étaient subtiles, la force de la corrélation avec le cycle des marées atteignait 5 sigma, ce qui signifie que la probabilité que ce modèle soit dû au hasard était d’environ un sur 3,5 millions. [NDLR : 5 sigma est une mesure de la confiance des scientifiques à l’égard de leurs résultats.]
Pour comprendre comment la force des marées a pu avoir une influence sur le comportement du Ruapehu pendant ces trois mois, les chercheurs ont utilisé un modèle de tremor sismique qu’ils avaient développé précédemment. Il montre que lorsque la pression de la poche de gaz sous le volcan atteint un niveau critique – niveau auquel une éruption phréatique devient possible – les différentes contraintes associées au changement de force des marées étaient suffisantes pour changer l’amplitude du tremor. Ils sont persuadés que ce fut le cas en 2007. Lorsque la pression dans le système est devenue critique, elle est devenue sensible aux marées. Les scientifiques ont pu montrer que le signal était détectable. Ils voudraient maintenant recueillir plus de données concernant d’autres éruptions sur d’autres volcans pour voir si le signal de marée est apparu ailleurs.
Comme je l’ai écrit plus haut, les scientifiques néo-zélandais ont exprimé des doutes sur les résultats de l’étude et ont regretté l’absence de nombreux paramètres sismiques. Un chercheur néo-zélandais a déclaré que « l’étude considère le mécanisme comme un piégeage des gaz provoqué par des changements dans la perméabilité des roches, mais n’aborde pas directement la résistance de ces roches […] Avec seulement deux événements abordés par l’étude – et l’un d’eux pas « prévu » par le modèle – je ne suis pas sûr qu’elle puisse avoir une valeur prédictive. »
Source: New Zealand Herald.

Cette étude m’intéresse car j’ai moi-même fait des observations sur la corrélation possible entre la pression atmosphérique et l’activité éruptive en milieu strombolien. Vous trouverez un résumé de cette étude dans la colonne de gauche de ce blog.

——————————————

US scientists at NASA’s Jet Propulsion Laboratory (JPL) have linked tidal cycles to Mt Ruapehu’s surprise eruption in 2007, and even suggest the apparent correlation could offer a new way to predict future eruptions. However, New Zealand scientists have cast doubt over that idea and questioned the methodology used for the study which was recently published in the journal Scientific Reports..

The study indicated how, just before Ruapehu’s surprise eruption on September 25th, 2007, seismic tremors near its crater became tightly correlated with twice-monthly changes in the strength of tidal forces. Looking at data for this volcano spanning about 12 years, the researchers found that this correlation between the amplitude of seismic tremor and tidal cycles developed only in the three months before this eruption.

Earth’s tides rise and fall daily due to the gravitational tug of the moon as the Earth rotates.

In full and new moons, the lunar gravitational pull lines up with that of the sun, which makes the daily tidal bulges a little larger during those moon phases. During the first and third-quarter moons, the daily tidal bulge is slightly smaller. While tides are generally thought of as rising and falling waters, gravitational stresses can also affect the planet’s solid crust. A lot of research has been focused on whether or not tidal forces can trigger eruptions, but there is no definitive evidence that they do.

The Mt Ruapehu researchers wanted to take a different angle with their study and look at whether there was some detectable signal associated with tidal forces that could tell us something about a volcano’s criticality. The researchers chose to study Ruapehu partly because its activity has been closely monitored for years by GNS Science, and were particularly interested in data from seismic sensors located near the crater.

The team worked through 12 years of seismic data, looking for any period when the seismicity was correlated with lunar cycles. They found that for most of that period, there was no correlation between tremor and lunar cycles, except the three months before 2007’s phreatic eruption. While the fluctuations in seismic amplitude were subtle, the strength of the correlation to the tidal cycle was as strong as 5 sigma, meaning that the probability that pattern arose by chance was about one in 3.5 million.

To understand how tidal forces may have been affecting Ruapehu during those three months, the researchers used a model of seismic tremor that they had developed previously. It suggested that when the pressure of the gas pocket beneath the volcano reaches a critical level — a level at which a phreatic eruption was possible — the differing stresses associated with changing tidal forces were enough to change the amplitude of tremor. They are persuaded it was what happened in 2007. When the pressure in the system became critical, it became sensitive to the tides. The scientists were able to show that the signal was detectable. They would like to collect more data from other eruptions and other volcanoes to see if the tidal signal showed up elsewhere.

As I put it above, New Zealand scientists expressed doubts about the results of the study and explained that many seismic parameters were missing. One NZ researcher said that « the paper considers the mechanism to be one of gas trapping driven by changes in rock permeability, but doesn’t directly address the strength of this rock […] With only two events addressed by the paper – and one of them not « predicted » by the model – I am not confident that it would have any predictive value. »

Source: New Zealand Herald.

I was interested in this study as I have myself made observations about the possible correlation between atmospheric pressure and Strombolian activity. You will find an abstract of this study in the left-hand column of this blog.

Photos: C. Grandpey