Nouvelle approche de la fonte des glaciers en Alaska et en Asie // New approach to glacier melting in Alaska and in Asia

En raison du réchauffement climatique, la fonte des glaciers dans le monde est l’une des principales causes de l’élévation du niveau de la mer. La fonte des glaciers constitue également une menace directe pour des centaines de millions de personnes qui dépendent de leur eau de fonte pour les besoins en eau potable et pour l’irrigation des cultures. J’ai insisté sur cet aspect de la fonte des glaciers dans plusieurs articles sur l’Amérique du Sud, en particulier le Pérou.
De nouvelles recherches, basées sur les informations de la mission CryoSat de l’Agence Spatiale Européenne (ESA), montrent quelle masse de glace a été perdue par les glaciers autour du golfe d’Alaska et sur les hautes montagnes de l’Asie.
La surveillance des glaciers à l’échelle mondiale est compliquée en raison de leur nombre, de leur taille, de leur éloignement et du terrain difficile d’accès qu’ils occupent. Divers instruments satellitaires permettent de surveiller les changements. Jusqu’à ces derniers temps, les chercheurs utilisaient l’altimètre radar pour analyser l’évolution des glaciers de montagne. En général, les altimètres radar satellitaires sont utilisés pour surveiller les variations de hauteur de la surface de la mer et les changements de hauteur des calottes glaciaires en Antarctique et au Groenland. Ils mesurent le temps mis par une impulsion transmise par le satellite pour être réfléchie par la surface de la Terre et revenir au satellite. En connaissant la position exacte du satellite dans l’espace, cette mesure du temps permet de calculer la hauteur de la surface au sol.
Cependant, le résultat fourni par ce type d’instrument est généralement trop approximatif; il est mal adapté à la surveillance des glaciers et des variations de l’épaisseur de la glace. Le CryoSat de l’ESA est un énorme progrès. Il repousse les limites de l’altimétrie radar. Un mode particulier de traitement des données – le traitement par bandes – permet de cartographier les glaciers dans les moindres détails. Le document ci-dessous fournit une vue extraordinaire de la fonte des glaciers dans le monde. N’hésitez pas à utiliser le mode plein écran pour avoir une meilleure vue des résultats.

https://youtu.be/r4tx1QS6-b8

Un article publié récemment dans The Cryosphere décrit de quelle façon les scientifiques ont utilisé CryoSat pour étudier la perte de glace dans le golfe d’Alaska et sur les hautes montagnes d’Asie. Ils ont découvert qu’entre 2010 et 2019, les glaciers autour du golfe d’Alaska ont perdu 76 gigatonnes (Gt) de glace par an tandis que les hautes montagnes d’Asie ont perdu 28 Gt de glace par an. Ces pertes reviennent à ajouter respectivement 0,21 mm et 0,05 mm par an à l’élévation du niveau de la mer.
Ce qui est intéressant dans l’ensemble de données fournies par CryoSat, c’est que l’on peut observer l’évolution de la glace avec une résolution exceptionnellement élevée dans l’espace et dans le temps. Cela permet de découvrir des variations comme l’augmentation de la perte de glace à partir de 2013 dans certaines parties du golfe d’Alaska,à cause du réchauffement climatique.
L’étude, qui a été réalisée dans le cadre du programme Science for Society de l’ESA, montre également que presque toutes les régions ont perdu de la glace, à l’exception du Karakoram-Kunlun en Asie, un phénomène connu sous le nom d’« anomalie de Karakoram ».
Cette étude démontre que l’ensemble de données altimétriques radar haute résolution peut fournir des informations essentielles pour mieux quantifier et comprendre les fluctuations des glaciers à l’échelle mondiale. Cela ouvre également la possibilité de surveiller l’ensemble des glaciers avec des satellites tels que la future mission CRISTAL qui fait partie de l’expansion du programme européen Copernicus.
Source : The Cryosphere.

————————————–

Because of global warming, ice melting from glaciers around the world is one of main causes of sea-level rise. The loss of glacier ice also poses a direct threat to hundreds of millions of people relying on glacier runoff for drinking water and irrigation. I have insisted on this aspect of glacier melting in several posts about South America and especially Peru.

New research, based on information from ESA’s CryoSat mission, shows how much ice has been lost from mountain glaciers in the Gulf of Alaska and in High Mountain Asia since 2010.

Monitoring glaciers globally is a challenge because of their sheer number, size, remoteness, and the rugged terrain they occupy. Various satellite instruments offer key data to monitor change, but one type of spaceborne sensor – the radar altimeter – has seen limited use over mountain glaciers. Traditionally, satellite radar altimeters are used to monitor changes in the height of the sea surface and changes in the height of the huge ice sheets that cover Antarctica and Greenland. They work by measuring the time it takes for a radar pulse transmitted from the satellite to reflect from Earth’s surface and return to the satellite. Knowing the exact position of the satellite in space, this measure of time is used to calculate the height of the surface below.

However, the footprint of this type of instrument is generally too coarse to monitor mountain glaciers. ESA’s CryoSat pushes the boundaries of radar altimetry and a particular way of processing its data – swath processing – makes it possible to map glaciers in fine detail. The document below provides an incredible picture of glacier melting in the world. Don’t hesitate to use the full screen option to get a better view of the results.

A paper published recently in The Cryosphere describes how scientists used CryoSat to investigate ice loss in the Gulf of Alaska and High Mountain Asia. They found that between 2010 and 2019, the Gulf of Alaska lost 76 Gt of ice per year while High Mountain Asia lost 28 Gt of ice per year. These losses are equivalent to adding 0.21 mm and 0.05 mm to sea level rise per year, respectively.

One of the unique properties of this dataset is that one can look at ice trends at exceptionally high resolution in space and time. This enables to discover changes in trends, such as the increased ice loss from 2013 onwards in parts of the Gulf of Alaska, which is linked to global warming.

The study, which was carried out through ESA’s Science for Society program, also shows that almost all regions have lost ice, with the exception of the Karakoram-Kunlun area in High Mountain Asia, a phenomenon known was the “Karakoram anomaly.

This research demonstrates that this unique high-resolution radar altimetry dataset can provide crucial information to better quantify and understand glacier changes on a global scale. This also opens up possibilities to monitor glaciers globally with satellites such as the planned CRISTAL mission, part of the expansion of Europe’s Copernicus program.

Source: The Cryosphere.

Les glaciers de Glacier Bay en Alaska sont parmi ceux qui fondent le plus vite dans le monde (Photos: C. Grandpey)

Réchauffement climatique: l’altimétrie radar pour observer les glaciers // Global warming: radar altimetry to observe glaciers

Grâce aux nouvelles technologies, les scientifiques sont mieux à même de mesurer l’impact du réchauffement climatique sur les glaciers. Par exemple, les progrès de la technologie satellitaire révèlent aujourd’hui que les glaciers en Alaska et en Asie ont perdu 4 % de leur volume entre 2011 et 2019.
Les chercheurs ont utilisé la technologie d’altimétrie radar à bord d’un satellite de l’Agence Spatiale Européenne (ESA). Selon eux, c’est la première étape vers l’observation en continu, en haute résolution et.pendant toute l’année, de tous les glaciers de la Terre depuis l’espace.
La fonte de l’ensemble des glaciers a représenté près d’un tiers de l’élévation du niveau de la mer au cours de ce siècle, même s’ils représentent moins de 1 % de la glace terrestre. Le recul des glaciers déstabilise les pentes des montagnes, entraînant des glissements de terrain et des inondations, tandis que la diminution de la glace a déjà causé et continuera d’avoir un impact sur l’agriculture, l’hydroélectricité et la qualité de l’eau dans certaines régions.
Mesurer exactement combien et à quelle vitesse les glaciers fondent n’est pas chose aisée. La méthode traditionnelle consiste à les observer sur place, ce qui est valable pour les glaciers accessibles à plus basse altitude comme la Mer de Glace en France, l’une des masses de glace les plus étudiées au monde.
Le problème est que les techniques traditionnelles sont difficiles à mettre en place dans les zones reculées de l’Himalaya ou des montagnes de l’Alaska. Les progrès de la technologie satellitaire au cours de la dernière décennie ont permis aux scientifiques de commencer à effectuer une certaine surveillance depuis l’espace.
L’altimétrie radar avait été utilisée dans le passé pour mesurer les calottes glaciaires et les terrains très plats. C’est une méthode simple : le satellite émet une onde radar vers un point particulier de la Terre. Lorsque ce signal rebondit sur la surface et revient vers le satellite, il est possible de calculer la hauteur de la surface qu’il a percutée.
Ces dernières années, les améliorations technologiques ont permis d’obtenir des mesures avec une résolution beaucoup plus élevée, ce qui a permis d’utiliser l’altimétrie radar sur les glaciers de Patagonie et d’Islande. Les résultats étant positifs dans ces régions, les chercheurs ont appliqué la nouvelle technologie aux glaciers de l’Alaska et de l’Asie qui constituaient le centre de leur étude. Le travail de recherche consistait à effectuer des relevés mensuels d’un peu plus de la moitié des glaciers du Golfe d’Alaska et d’environ un tiers des glaciers asiatiques. Les scientifiques sont arrivés à la conclusion que la diminution de la masse de glace a entraîné jusqu’à 0,016 millimètre par an d’élévation du niveau de la mer, soit 0,16 millimètre par décennie en moyenne.
Les chercheurs ont découvert que les glaciers à basse altitude et à proximité des océans sont très sensibles aux événements climatiques saisonniers et pluriannuels. L’oscillation décennale du Pacifique, un modèle récurrent de hausse et de baisse des températures de surface des océans, a contribué à une augmentation substantielle des températures en Alaska à partir de 2014 et à une accélération de la fonte des glaciers. Les glaciers continentaux du plateau tibétain n’ont montré pratiquement aucun changement saisonnier, et les variations d’une année à l’autre étaient plus progressives.
Le type de données recueillies par le satellite de l’ESA est essentiel pour alimenter les modèles complexes qui permettent aux scientifiques d’estimer ce qui se passera dans le climat du futur. Il y a dix ans, on avait une idée plus ou moins précise de l’évolution d’une zone entière. Aujourd’hui, avec les données satellitaires, les glaciologues peuvent dire avec précision comment chaque glacier a évolué au cours des années passées; ils peuvent ensuite calibrer leur modèle pour savoir ce qui se passera dans le futur.
Les scientifiques s’accordent à dire que dans presque toutes les régions du monde, les glaciers continueront de reculer au cours des prochaines décennies au fur et à mesure que la planète se réchauffera. Beaucoup disparaîtront, même si l’humanité réussit à freiner les émissions de gaz à effet de serre. Même si nous parvenons à maintenir le réchauffement climatique en dessous de 2° Celsius par rapport à l’époque préindustrielle – l’objectif de l’Accord de Paris en 2015 – il ne restera qu’entre 724 et 1 484 des quelque 4 000 glaciers qui existent dans les Alpes aujourd’hui.
Source : Bloomberg Green.

——————————————

Thanks to newtechnologies, scientits are better able to measure the impact of global warming on the glaciers. For instance, advances in satellite technology reveal that ice masses in Alaska and Asia have lost 4% of their volume between 2011 and 2019.

Researchers used radar altimetry technology on board a European Space Agency satellite,. They say it is the first step toward year-round observation of all of the Earth’s glaciers from space in high resolution.

Glacier melting as a whole accounted for almost a third of the sea level rise this century, even as they represent less than 1% of land ice. The shrinking of glaciers is making mountain slopes less stable, resulting in landslides and floods, while the decrease in ice is already and will continue to impact agriculture, hydropower and water quality in some regions.

Measuring exactly how much and how fast glaciers are melting has been a challenge. The traditional methodconsists in observing them on site, which is OK for accessible glaciers at lower altitudes like France’s Mer de Glace, one of the most thoroughly-studied ice masses in human history.

The problem is that traditional techniques are hard to deploy in remote areas high up in the Himalayas or deep in the Alaskan mountains. Advances in satellite technology over the past decade have allowed scientists to conduct some monitoring from space.

Radar altimetry had been used in the past to measure ice sheets and very flat terrain. It’s a simple method: the satellite emits a radar wave to a particular point on Earth. As that signal bounces off the surface and back to the satellite, it is possible to calculate the height of the surface it first struck.

In recent years, improvements in technology have led to readings with much higher resolution,which allowed to use the technology on glaciers in South America’s Patagonia region and in Iceland. As the results were positive, the researchers moved on to the two glacier systems – Alaska and Asia – in their current study. The research involved monthly readings of just over half the glaciers in the Gulf of Alaska, and about a third in Asia. It concluded that the decrease in ice mass contributed as much as 0.016 millimetres per year to sea level rise, or 0.16 millimetres per decade on average.

Researchers found that glaciers at low altitudes and close to the oceans are highly sensitive to seasonal and multi-annual climatic events. The Pacific decadal oscillation, a recurring pattern of rising and falling ocean surface temperatures, has contributed to a substantial increase in temperatures in Alaska since 2014, and to an acceleration of glacial melting. Continental glaciers in the Tibetan Plateau showed almost no seasonal changes, and year-to-year changes were more gradual.

The sort of data being gathered by ESA satellite is essential to feed the complex models that allow scientists to estimate what will happen in the climate of the future. Ten years ago there was more or less an idea of how an entire area evolved, Today with satellite data glaciologists can really say how each glacier evolved in past years, and then they can calibrate their model to know what will happen in the future.

Scientists agree that in almost all parts of the world, glaciers will continue retreating in coming decades as the planet warms. Many will disappear regardless of how humanity reins in emissions. If we manage to keep global warming below 2º Celsius compared to pre-industrial times—the target of the Paris Agreement in 2015—only between 724 and 1,484 of the roughly 4,000 glaciers in the Alps today will remain.

Source: Bloomberg Green.

Que ce soit en Alaska (Columbia), en Islande (Vatnajökull) ou dans les Alpes (Mer de Glace), les glaciers sont une espèce en voie de disparition.

Photos: C. Grandpey

 

Le sang des glaciers // Glacier blood

On peut lire ces jours-ci dans la presse de nombreux articles sur les couleurs étranges prises par la neige dans les Alpes au printemps. Certaines zones montrent des couleurs vives telles que rouge foncé, orange rouille ou rose. Pour les montagnards, il s’agit du « sang des glaciers. » D’autres personnes préfèrent l’expression « neige de pastèque ». En réalité, toutes ces nuances sont dues à une prolifération d’algues, un phénomène observé ces dernières années dans tous les habitats alpins de la planète.

La prolifération d’algues en milieu alpin est encore mal comprise, mais le seul fait que ces algues apparaissent n’est probablement pas une bonne nouvelle. Les chercheurs ont commencé à établir un recensement des algues dans les Alpes pour mieux comprendre quelles espèces y vivent, comment elles survivent et ce qui les pousse à une telle hémorragie de couleurs. Les premiers résultats de cette étude ont été publiés dans la revue Frontiers in Plant Science.

Minuscules mais très vivaces, les algues sont à la base de tous les écosystèmes. Grâce à leurs prouesses photosynthétiques, elles produisent une grande quantité de l’oxygène que nous respirons et sont à la base de la plupart des réseaux trophiques. Cependant, leur multiplication est parfois excédentaire, jusqu’à provoquer un déséquilibre. C’est alors que peuvent se produire des marées rouges toxiques : le « sang des glaciers ».

Même si on ignore ce qui provoque vraiment les prolifération d’algues, ont sait que leur couleur, souvent rouge, mais parfois verte, grise ou jaune, provient de pigments et d’autres molécules que les algues utilisent pour se protéger des rayons ultraviolets. En effet, ces teintes absorbent plus de lumière du soleil, ce qui accélère la fonte de la neige sous-jacente. Cela peut modifier la dynamique des écosystèmes et accélérer le recul des glaciers, (NDLR : il s’agit d’un phénomène que l’on a déjà observé au Groenland.)

Dans l’étude de leur prolifération, les chercheurs de plusieurs instituts alpins ont décidé de laisser de côté les espèces d’algues qui se développent dans des habitats éloignés et de donner la priorité à celles vivant dans un environnement proche. Comme de très nombreux types d’algues peuvent vivre et proliférer dans les montagnes, les chercheurs ont commencé par effectuer un recensement dans certaines parties des Alpes françaises pour savoir quels types y poussent et dans quels endroits. Ils ont prélevé des échantillons de sol sur cinq sommets répartis à différentes altitudes, et recherché l’ADN des algues. Ils ont découvert que de nombreuses espèces ont tendance à préférer des altitudes spécifiques et ont très probablement évolué dans les conditions qui s’y trouvent. Par exemple, une espèce-clé, la Sanguina, ne pousse qu’au-dessus de 1 950 mètres.

Les chercheurs ont également collecté certaines espèces pour étudier en laboratoire les possibles déclencheurs de leur prolifération. On sait depuis longtemps que les proliférations d’algues se produisent naturellement. Cependant, certains facteurs d’origine humaine peuvent favoriser ces proliférations et les rendre plus fréquentes. On sait aussi que les conditions météorologiques extrêmes, les températures anormalement élevées pour la saison et les apports de nutriments provenant du ruissellement agricole et des eaux usées jouent également un rôle dans les proliférations d’algues d’eau douce et océaniques.

Pour voir s’il en va de même pour le « sang des glaciers », les chercheurs ont soumis les algues à des excès de nutriments, tels que l’azote et le phosphore. Bien qu’ils n’aient rien remarqué de significatif jusqu’à présent, ils prévoient de poursuivre cette ligne de tests. Dans les années à venir, les scientifiques suivront l’évolution de la répartition des espèces au fil du temps, ce qui pourrait donner des indications intéressantes sur la santé globale de l’écosystème. Ils essaieront également d’établir si les modèles de température sont en corrélation avec les proliférations d’algues, et ils commenceront à comparer les compositions des espèces dans les milieux de neige blanche et colorée. En procédant ainsi, ils espèrent percer le mystère du « sang des glaciers. ».

Adapté d’un article publié dans le New York Times.

————————————–

These days, one can read many articles in the newspapers about the strange colours assumed by the snow in the Alps in spring. Parts of the snow take on bright colours: deep red, rusty orange, lemonade pink. Locals call this “sang des glaciers,” or “glacier blood,” visitors sometimes use the expression “watermelon snow.” In reality, these blushes come from an algae bloom, a phenomenon observed in recent years all over alpine habitats around the world.

While snow-algae blooms are poorly understood, the fact they are happening is probably not a good sign. Researchers have begun surveying the algae of the Alps to better grasp what species live there, how they survive and what might be pushing them over the bleeding edge. Some of their initial findings were published in the journal Frontiers in Plant Science.

Tiny yet powerful, the algae are the basis of all ecosystems. Thanks to their photosynthetic prowess, algae produce a large amount of the world’s oxygen and form the foundation of most food webs. However, they sometimes overdo it, multiplying until they throw things out of balance. This can cause toxic red tides, and puzzling glacier blood.

While it is unclear exactly what spurs the blooms, the colour, often red, but sometimes green, grey or yellow, comes from pigments and other molecules that the snow algae use to protect themselves from ultraviolet light. These hues absorb more sunlight, causing the underlying snow to melt more quickly. This can change ecosystem dynamics and hasten the shrinking of glaciers.

In their study of the phenomenon, researchers at several alpine institutes have decided to turn their attention from algae species in far-flung habitats to those “that grow next door.”

Because so many different types of algae can live and bloom in the mountains, the researchers began with a census in parts of the French Alps to find out what grows where. They took soil samples from five peaks, spread over various altitudes, and searched for algal DNA.

They found that many species tend to prefer particular elevations and have most likely evolved to thrive in the conditions found there. One key genus, named Sanguina, grows only above 1,950 metres.

The researchers also brought some species back to the lab to investigate their potential bloom triggers. It has been known for a long time that algae blooms occur naturally. However, human-generated factors can worsen such outbursts and make them more frequent. Extreme weather, unseasonably warm temperatures and influxes of nutrients from agricultural and sewage runoff all play a role in freshwater and ocean algae blooms.

To see if the same was true for glacier blood, the researchers subjected the algae to surpluses of nutrients, such as nitrogen and phosphorus. While they have not found anything significant so far, they plan to continue this line of testing.

In the coming years, the researchers will keep track of how species distributions shift over time, which may shed light on the overall health of the ecosystem. They will also try to establish whether temperature patterns correlate with blooms, and begin to compare species compositions in white versus colourful snow. Eventually, they hope to decipher the blood-red message.

Adapted from an article published in The New York Times.

Gros plan sur un type d’algues rouges (Chlamydomonas nivalis) en Antarctique (Source : Wikipedia)

Fonte des plateformes glaciaires en Antarctique // Melting of ice shelves in Antarctica

Comme je l’ai écrit plusieurs fois sur ce blog, si les plates-formes glaciaires de l’Antarctique occidental fondent et disparaissent, elles ne retiendront plus les glaciers qui se trouvent en amont. Si ces glaciers atteignent l’océan, ils contribueront à l’augmentation du niveau de la mer dans le monde entier. Au cours des dernières années, les scientifiques ont attiré l’attention du public sur les glaciers Thwaites et Pine Island, deux immenses rivières de glace de l’Antarctique occidental.

Selon une étude publiée le 11 juin 2021 dans la revue Science Advances, la plateforme qui retient le glacier de Pine Island se désintègre beaucoup plus vite qu’auparavant et laisse échapper d’énormes icebergs. Sa fonte s’est accélérée en 2017 et fait craindre aux scientifiques qu’avec le réchauffement  climatique, la fonte du glacier se produise plus rapidement que les siècles mentionnés dans les prévisions.

La plateforme glaciaire devant le Pine Island a reculé d’environ 20 kilomètres entre 2017 et 2020. Cette situation a été confirmée en visionnant en accéléré les images collectées par un satellite européen qui prend des photos tous les six jours.

Entre 2017 et 2020, il y a eu trois grands événements de dislocation de la plateforme glaciaire, avec vêlage de monstres de glace de plus de 8 kilomètres de long et 36 kilomètres de large qui se sont ensuite morcelée en icebergs plus petits. On a également observé beaucoup de petits vêlages.

Les scientifiques craignent que la plateforme glaciaire dans son ensemble lâche prise et disparaisse en quelques années. Ils ont observé le comportement de deux repères sur le glacier principal et ont découvert qu’ils avaient accéléré leur progression de 12% à partir de 2017. Comme je l’ai écrit plus haut, le glacier de Pine Island est l’un des deux glaciers de l’Antarctique occidental que les glaciologues craignent de voir disparaître à brève échéance. L’autre glacier est le Thwaites. Si le Pine Island fondait dans sa totalité, cette eau entraînerait une élévation du niveau de la mer de 50 centimètres. Le glacier est responsable d’environ un quart de la perte de glace sur ce continent. Tous les modèles montrent que si le Pine Island et le Thwaites disparaissent, le reste de l’Antarctique occidental suivra, car tous les glaciers de cette partie du continent sont interconnectés.

Source : Yahoo News.

—————————————-

As I put it several times before, if the ice shelves in West Antarctica melt and collapse, they will no longer hold back the glaciers that are pushing behind them. Should these glaciers reach the ocean, they will contribute to increasing sea level rise around the globe. In the past years, scientists have drawn public attention to the Thwaites and Pine Island glaciers, two massive rivers of ice in West Antarctica.

According to a study published on June 11th, 2021 in the journal Science Advances, the ice shelf that holds back the Pine Island glacier is breaking up much faster than before and spawning huge icebergs. Its melting accelerated in 2017, causing scientists to worry that with climate change the glacier’s collapse could happen quicker than the many centuries predicted.

That ice shelf has retreated by about 20 kilometres between 2017 and 2020. The confirmation of this event was given by a time-lapse video from a European satellite that takes pictures every six days.

Between 2017 and 2020, there were three large breakup events, creating icebergs more than 8 kilometres long and 36 kilometres wide, which then split into lots of smaller pieces. There also were many smaller calvings.

Scientists fear that the whole shelf could give way and go within a few years. They have tracked two points on the main glacier and found they were moving 12% faster toward the sea starting in 2017.

As I put it above, the Pine Island Glacier is one of two side-by-side glaciers in western Antarctica that ice scientists worry most about losing on that continent. The other is the Thwaites Glacier. Should Pine Island melt, this water would lead to a 50-centimetre sea level rise. The glacier is responsible for about a quarter of the continent’s ice loss.

All model show that if Pine Island and Thwaites fall apart, the rest of West Antarctica will follow as all glaciers in that part of the Antarctic continent are interconnected.

Source : Yahoo News.

 

Source : National Snow and Ice Data Center (NSIDC)