Chambre magmatique du Kilauea : les leçons de l’éruption de 2018 // Kilauea’s magma chamber : the lessons of the 2018 eruption

Les personnes qui visiteront le Kilauea Overlook (point de vue sur le Klauea) qui vient d’être ouvert au public dans le Parc National des Volcans d’Hawaï découvriront un paysage totalement nouveau, façonné par l’éruption dans la Lower East Rift Zone et l’effondrement du sommet du volcan en 2018.
Du 16 mai au 2 août 2018, la caldeira de Kilauea a connu une série de 62 événements d’effondrement. Au terme de ces événements, la partie la plus profonde de Halema’uma’u s’était affaissée de 500 m, plus que suffisant pour y loger l’Empire State Building.
Beaucoup de gens se demandent maintenant si le système magmatique sous le sommet du Kilauea se comportera comme avant. Avant 2018, les données géophysiques montraient un système complexe de chambres magmatiques sous le sommet. L’une des plus importantes était une chambre superficielle, située à environ 1,6 km de profondeur sous la caldeira du Kilauea. Ce réservoir était relié à la surface via un conduit qui donnait naissance à l’Overlook Crater et alimentait le lac de lave sommital.
Le premier indice sur la situation du réservoir superficiel est apparu en octobre 2018 lorsque les inclinomètres installés au sommet ont détecté un événement de déflation-inflation (événement DI). Avant l’effondrement de 2018, de tels événements DI se produisaient régulièrement; ils pouvaient être observés à partir des données inclinométriques au sommet et les variations de hauteur du lac de lave. Cet ensemble de données a clairement montré que le réservoir superficiel sous l’Halema’uma’u se dégonflait et se regonflait à plusieurs reprises.
Alors que les événements DI étaient clairement observables au sommet du Kilauea, ils étaient également enregistrés par les inclinomètres près du Pu’uO’o, avec un léger décalage dans le temps. Le fait que les variations de pression observées lors de la déflation et de l’inflation du réservoir sommital soient transmises aussi rapidement au Pu’uO’o était une indication du lien étroit entre l’East Rift Zone et le système magmatique sommital.
Les caractéristiques de l’événement DI post-éruptif d’octobre 2018 étaient très semblables aux événements DI qui avaient précédé l’éruption. Cela montrait que les caractéristiques du réservoir superficiel sous l’ Halema’uma’u n’étaient probablement pas très différentes de ce qu’elles étaient avant l’éruption. De plus, les inclinomètres installés sur l’East Rift Zone ont fait apparaître une faible trace d’un événement DI peu de temps après l’événement d’octobre. Cela confirme qu’il existe toujours une connexion étroite entre le réservoir superficiel sous l’Halema’uma’u et l’East Rift Zone.
Depuis cette époque, une analyse plus poussée a été effectuée afin d’obtenir plus d’indications sur le réservoir situé sous l’Halema’uma’u. Dans un article publié en décembre 2019 dans le magazine Science, des scientifiques de l’USGS ont expliqué comment les données de déformation provenant de la forte déflation des chambres magmatiques au sommet du Kilauea pendant les premières semaines de l’éruption de 2018 ont permis de calculer la quantité totale de magma stockée dans le réservoir de l’Halema’uma’u avec plus de précision que précédemment. Compte tenu de l’incertitude naturelle des données, les scientifiques ont constaté que le volume probable de ce réservoir était d’un peu moins de 4 kilomètres cubes. En prenanat en compte le volume d’effondrement de 0,8 kilomètre cube, cela signifie qu’environ 20% seulement du réservoir s’est vidangé lors de l’éruption de 2018 et que 80% du magma se trouve toujours dans le réservoir sommital. En conclusion, bien que la caldeira du Kilauea ait subi des modifications majeures, l’alimentation magmatique située sous cette caldeira fonctionne de la même manière que précédemment.
Source: USGS / HVO.

————————————————————-

Those who will visit the newly opened Kilauea Overlook within Hawai‘i Volcanoes National Park will discover a totally new landscape shaped by the lower East Rift Zone eruption and summit collapse in 2018.
From May 16th until August 2nd, 2018, the Kilauea caldera went through a series of 62 collapse events. At the end of these events, the deepest part of Halema’uma’u had descended 500 m, more than enough to fit the Empire State Building.
Many people wonder now whether the underlying summit magma system will ever behave the same. Prior to 2018, geophysical data showed a complex system of magma storage chambers under the Kilauea summit. One of the most prominent was a shallow chamber about 1.6 km deep under the Kilauea caldera. This reservoir was connected to the surface via a conduit that formed the Overlook Crater and supplied lava to the summit lava lake.
The first clue about the post-collapse state of the shallow reservoir came in October 2018 when summit tiltmeters picked up a deflation-inflation event (DI-event). Before the 2018 collapses, DI-events occurred regularly and could be observed from summit tiltmeter records and in the changing lava lake height. Together these data showed that the shallow Halema’uma’u reservoir was deflating and re-inflating repeatedly.
While DI-events were clearly observable at Kilauea’s summit, tiltmeters near Pu’uO’o recorded similar motions just with a slight time delay. The fact that pressure changes during the deflation and inflation of the summit reservoir could be transmitted so directly to Pu’uO’o was an indication of how closely connected the East Rift Zone was to the summit magma system.
The shape and size of the post-eruption DI-event in October 2018 was very similar to pre-eruption DI-events, indicating that the shape and size of the shallow Halema’uma’u reservoir must not be too different from its pre-eruption state. Furthermore, tiltmeters on the East Rift Zone showed a faint trace of a DI-event just following the October event. This indicated that the close connection between the shallow Halema’uma’u reservoir and the East Rift Zone still exists.
Since then, a more in-depth analysis has been done that gives more clues about the shallow Halema’uma’u reservoir. In a December 2019 article in Science magazine, USGS scientists detailed how deformation data from the intense deflation of the summit magma chambers during the first weeks of the 2018 eruption allowed them to calculate the total amount of magma in the Halema’uma’u reservoir more precisely than ever before.Taking into account the natural uncertainty of the data, they found the most likely volume of the reservoir to be just under 4 cubic kilometres. Given the collapse volume of 0.8 cubic kilometres, this means that only about 20% of the reservoir was emptied during the 2018 eruption and 80% of the reservoir’s magma is still underneath the summit. So, while the surface of the Kilauea caldera has undergone a major remodel, underneath, the magma plumbing system still works in much the same way did before.
Source : USGS / HVO.

Le cratère de l’Halema’uma’u après l’éruption de 2018 (Crédit photo : USGS)

Le mystère de l’eau sur le Kilauea (Hawaii) // The mystery of water on Kilauea Volcano (Hawaii)

Le 4 juillet 2018, un scientifique du HVO qui se trouvait à la Volcano House du Kilauea a pris une photo sur laquelle on peut voir une ligne sombre qui descend le long de la paroi de la caldeira sommitale, au-dessus du plancher de l’Halema’uma’u. (voir la photo ci-dessous). Dans le doute, elle a été baptisée «la traînée noire».
Les géologues du HVO ont déclaré qu’il y avait deux possibilités: cette trace noire pouvait être la cicatrice laissée par un effondrement le long de la pente recouverte de poussière. Ou bien, elle avait pu être creusée par l’eau.
Au cours des jours suivants, la « traînée noire » est allée et venue. Au final, les  observations ont montré que la traînée restait noire même quand une grande quantité de poussière s’élevait de Halema’uma’u. C’était la preuve qu’elle était façonnée par l’eau et non par des effondrements.
L’eau sortait d’un point situé entre 10 et 20 mètres sous la lèvre de la caldeira, au-dessus de la nappe phréatique qui alimente aujourd’hui le lac au fond du cratère (voir mes notes précédentes). La question était de savoir comment l’eau pouvait se trouver aussi haut dans cette zone.
Lorsque de fortes pluies se produisent sur le Kilauea, une rivière coule pendant environ une heure à la surface du sol entre l’extrémité sud d’Uekahuna Bluff et le Rift Sud-Ouest sur une distance de 600 à 800 mètres. Cette rivière a plusieurs mètres de largeur et quelques dizaines de centimètres de profondeur. Elle disparaît toujours avant d’atteindre le Rift SO en s’enfonçant dans le sable alluvial.

Les autres questions étaient de savoir 1) où allait cette eau, et 2) si c’était bien cette eau qui formait la traînée noire mentionnée ci-dessus. Les géologues du HVO pensent que c’était le cas. Après avoir disparu, l’eau de la rivière coule probablement sous terre mais est bloquée par des dykes sous la zone de Rift SO où elle s’accumule pour former un aquifère peu profond. La fracturation de la paroi de la caldeira lors de l’effondrement du sommet en 2018 a probablement ouvert une voie permettant à cette eau de sortir de l’aquifère et de se déverser dans la caldeira.
La « traînée noire », autrement dit la cascade d’eau, est réapparue périodiquement au cours des deux dernières années et le HVO demande au public s’il pourrait fournir d’autres photos du phénomène depuis 2018. Des images récentes montrent une cavité à la source de la cascade qui pourrait être l’ouverture d’un tunnel de lave.
La poche d’eau qui donne naissance à la cascade est l’une des deux qui existaient avant 2018. L’autre a formé une mare d’eau chaude à la surface de la caldeira, à 500 mètres au nord de l’Halema’uma’u avant l’effondrement du cratère en 2018. Une végétation abondante entourait cette mare et des micro-organismes vivaient dans l’eau. La mare s’est vidée lors de l’effondrement de l’Halema’uma’u en 2018, bien que son emplacement reste visible aujourd’hui grâce à la présence de végétation. Tandis que le cratère s’agrandissait en juin et juillet 2018, un panache de vapeur blanche s’élevait généralement au-dessus de sa partie nord-ouest, ce qui contrastait avec les panaches de poussière sombre qui envahissaient la majeure partie de l’Halema’uma’u. Il se peut que le panache de vapeur blanche ait été généré par l’ébullition de l’eau dans l’aquifère peu profond qui alimentait la mare.

Les scientifiques du HVO se demandent aujourd’hui s’il existe d’autres poches d’eau peu profondes sous le plancher de la caldeira. Il y a davantage de précipitations sur la partie nord de la caldeira que sur la partie sud. On sait que plusieurs cavités existent sous le plancher nord de la caldeira; elles émettent de la vapeur à haute température. Cette chaleur provient probablement des coulées de lave et de lacs de lave solidifiés qui existaient dans cette zone au 19ème siècle et au début du 20ème et dont la chaleur vaporise l’eau des précipitations. Cette vapeur persiste même par temps sec.

Les scientifiques du HVO aimeraient savoir s’il existe une poche d’eau plus profonde dans la zone sommitale du Kilauea. En effet, si c’est le cas, elle pourrait provoquer des explosions phréatiques au sommet du volcan.
Source: USGS / HVO.

————————————————–

On July 4th, 2018, a HVO scientist at the Volcano House Hotel took a photo showing a dark line descending the wall of Kilauea caldera above Halema’uma’u. (see the photo below). Not knowing what it was, he dubbed it the ‘black streak.’

HVO geologists said there were two possibilities: the streak could be a recent rockfall scar cutting across the dusty slope. Or the streak was made by water.

Over the next few days, the black streak came and went. Finally, observations showed that the streak stayed black during a time when a lot of dust was billowing from Halema’uma’u. This was proof positive that it was made by water, not a rockfall.

The water flowed from a point 10–20 metres below the rim of the caldera, high above the groundwater body that today feeds the deepening lake seen at the bottom of the crater (see my previous posts). The question was to know how water could be so high in this area.

During exceptionally heavy downpours, a river flows for an hour or so across the ground surface between the south end of Uekahuna Bluff and SW Rift, over a distance of 600–800 metres. This river is several metres wide and a few tens of centimetres deep. This flowing river always ends before reaching SW Rift, sinking into alluvial sand.

The other questions were to know 1) where this water went, and 2) if it was the water that formed the above mentioned black streak. HVO geologists thought the answer was yes. Beyond where it disappears, the river water probably flows underground but is dammed by dikes beneath the SW Rift area, forming a shallow perched aquifer. Faulting of the caldera wall during the 2018 summit collapse opened a pathway for this stored water to exit the aquifer and pour into the caldera.

The black streak, or water cascade, has reappeared sporadically in the past two years and HVO asks the public if they could get more photos of the phenomenon since 2018. Recent images show a cavity at the head of one cascade. It could be the opening of a lava tube.

The perched water body responsible for the water cascade is one of two such bodies existing before 2018. The other formed a tiny warm pond on the caldera floor 500 metres north of Halema’uma’u before it enlarged in 2018. Lush vegetation surrounded the pond, and microorganisms lived in the water. The tiny pond drained as Halema’uma’u widened in 2018, though its site, marked by vegetation, remains. As the crater expanded in June and July, a white steam plume generally rose above the northwestern part of the crater, contrasting with the dusty brown clouds that engulfed most of the crater. The plume might have been generated by boiling of water in the same shallow aquifer that supported the pond.

HVO scientists wonder whether other shallow water bodies exist unseen beneath the caldera floor. More rain falls on the northern part of the caldera than on the southern. Several caves are known to exist below the northern caldera floor; they emit steam and are very hot. Most likely the heat comes from solidified lava flows and lakes active in this area in the 19th and early 20th centuries, and it heats rainfall to steam. The steam persists even in dry weather. HVO scientists would like to know if there is a deeper water body in the summit area of Kilauea. Indeed, if such shallow water existed, it could trigger phreatic explosions at the summit of the volcano.

Source: USGS / HVO.

Vue de la “traînee noire” sur la paroi de la caldeira. Elle mesure une cinquantaine de mètres et un panache de vapeur (en bas à droite) s’élève de la partie NO de l’Halema’uma’u. La photo a été prise depuis la Volcano House le 4 juillet 2018. La configuration des lieux a beaucoup changé depuis cette date. (Source : USGS).

Première bougie pour le lac au fond de l’Halema’uma’u (Hawaii) // Halema’uma’u’s lake (Hawaii) is one year old

Le 25 juillet 2020 a marqué le premier anniversaire du petit lac qui est apparu ce même jour de 2019 au fond du cratère de l’Halema’uma’u, au sommet du Kilauea. Au cours des douze derniers mois, l’Observatoire des Volcans d’Hawaii (HVO) a scruté cette surprenante étendue d’eau qui, après avoir été une petite mare est devenue un petit étang puis un véritable lac, le premier observé dans la caldeira du Kilauea depuis au moins 200 ans.
Le HVO observe et analyse attentivement ce lac en utilisant plusieurs méthodes. Des caméras classiques et thermiques suivent l’évolution de la couleur et de la température à la surface du lac. La couleur est changeante et la température de surface se situe généralement entre 70°C et 85°C. Les mesures effectuées au télémètre laser permettent de suivre l’évolution du niveau du lac qui s’élève régulièrement d’environ 75 centimètres chaque semaine. De plus, deux missions d’échantillonnage de l’eau ont été effectuées à l’aide d’un drone.

On observe de nombreux lacs de cratère sur les volcans de la planète, mais très peu d’entre eux se trouvent sur des volcans basaltiques comme le Kilauea. Le cratère de l’Halema’uma’u, qui s’est effondré lors de l’éruption de 2018, est si profond (environ 500 m) que le plancher se trouve en dessous de la nappe phréatique. En tant que tel, il offre au HVO une fenêtre unique sur une partie du volcan normalement invisible.
Les eaux souterraines n’ont pas rempli tout de suite le cratère de l’Halema’uma’u. C’est normal car il faut du temps pour que l’eau pénètre lentement à travers les pores et les fissures de la roche environnante, et aussi parce que la chaleur du volcan peut faire s’évaporer les eaux souterraines comme elle le fait avec les eaux de surface. Avec le temps, les eaux souterraines ont réussi à se frayer un chemin et le sous-sol s’est refroidi suffisamment pour que l’eau puisse rester à l’état liquide. De la sorte, l’eau peut maintenant s’infiltrer dans le cratère qui continuera à se remplir jusqu’à ce qu’un point d’équilibre soit atteint.
Pendant les premiers mois, l’origine de cette eau est restée un mystère. Les scientifiques du HVO ne savaient pas si elle provenait des eaux souterraines, elles-mêmes alimentées par les précipitations, ou si elle provenait de la condensation de la vapeur d’eau émise par le         magma. La réponse a été apportée par les missions d’échantillonnage à l’aide du drone. L’analyse des isotopes a indiqué que l’eau était d’origine météorique, et provenait donc des précipitations. Alors qu’une petite quantité de pluie tombe directement dans le cratère de l’Halema’uma’u, la majeure partie de l’eau provient des eaux souterraines (des précipitations qui ont percolé à travers le sol) qui s’infiltrent jusqu’au niveau où la nappe phréatique rencontre le cratère.
Avec le temps, les minéraux et les gaz volcaniques se dissolvent dans l’eau et la chimie du lac évolue. Au début, lorsque le lac s’est formé, l’eau était de couleur bleu-vert clair, une couleur que l’on peut encore voir dans certaines zones du lac où l’apport d’eau est le plus important. La surface du lac montre aujourd’hui surtout des nuances d’orange et de marron, probablement en raison des minéraux sulfatés dissous qui sont riches en fer. L’eau n’est pas brassée uniformément et des poches de couleurs, de chimie et de température différentes circulent à l’intérieur du lac.
En plus d’être rare en raison de son existence même, ce lac montre la particularité d’avoir une faible acidité, avec un pH d’environ 4,0, tandis que la plupart des lacs volcaniques sont soit fortement acides (comme le Kawah Ijen en Indonésie, dont le pH est voisin de 0), soit fortement alcalins. A titre de comparaison, le jus d’orange est également légèrement acide avec un pH de 3,5. Il se peut que l’acidité de l’eau soit modérée à ce stade précoce du développement du lac et qu’elle augmentera par la suite.
Au bout d’une année d’existence, le lac couvre désormais une superficie de plus de 2,5 hectares et atteint une profondeur de plus de 40 m.
Source: USGS / HVO.

—————————————

July 25th, 2020 was the first anniversary of the water pond that appeared on that same day of 2019 at the bottom of Halema‘uma‘u at the summit of Kilauea Volcano. Over the past twelve months, the Hawaiian Volcano Observatory (HVO) has watched this surprising body of water grow from a tiny pond into a real lake, the first ever observed within the Kilauea caldera in at least 200 years.

HVO closely monitors the lake using a variety of methods. Visual and thermal cameras track the lake’s surface colour and temperature. Colour is variable and the lake surface temperature is hot, usually between 70°C and 85°C. Laser rangefinder measurements track the surface level, which has risen steadily by about 75 centimetres each week. Moreover, two water-sampling missions have been flown using unoccupied aircraft systems.

Crater lakes occur at volcanoes around the world, but very few of those crater lakes occur at basaltic volcanoes like Kilauea. Halema‘uma‘u, which collapsed and deepened during Kilauea’s 2018 eruption, is so deep (about 500 m) that the bottom is actually below the local water table, providing HVO with a unique window into a realm that is normally hidden from direct view.

Groundwater did not rush in and fill the crater immediately because it takes time for water to squeeze through the pores and cracks of the surrounding rock, and because volcanic heat can evaporate groundwater just as it does surface water. With time, the surrounding groundwater slowly squeezed through the voids, and the subsurface cooled enough for water to be able to remain in liquid form and accumulate within this newly exposed subaerial space. Water will continue to flow into the crater, and the lake will continue to get deeper until a point of equilibrium is reached.

For the first few months, the source of the water was not known. HVO scientists did not know whether it came from groundwater, in turn, fed by rainfall, orif it came from the condensation of water vapour released directly from magma. Thee answer was brought by the water sampling missions. Analysis of the isotopes in the water indicated that it was meteoric in origin, meaning that it originally came from rainfall. While a small amount of rain falls directly into the crater, most of the water is coming from groundwater (that started off as rainfall that percolated into the ground) seeping in where the water table intersects the crater.

With time, minerals and volcanic gases dissolve into the water and the lake’s chemistry changes. When the lake first formed it was light blue-green in colour, a colour that is still seen in parts of the lake where there is a higher influx. The surface water is mostly shades of orange and brown now, likely due to dissolved iron-rich sulfate minerals. The water within the lake is not uniformly mixed, and cells of water with different colours, chemistry and temperature are seen to circulate.

Besides being uncommon because of its very existence, this lake is unique in that it is only mildly acidic, with a pH of about 4.0, while most volcanic lakes are either strongly acidic or strongly alkaline. For reference, orange juice is also mildly acidic with a pH of 3.5. The water’s acidity is likely to be moderated at this early stage of development, and it may become more acidic in the future.

Following a year of steady growth, the lake now covers an area of more than 2.5 hectares and reaches a depth of more than 40 m.

Source: USGS / HVO.

Graphique montrant l’évolution du niveau de l’eau dans le lac au cours de l’année écoulée. Les mesures par télémètre laser ont été effectuées 2 à 3 fois par semaine. Les photos permettent de comparer le lac entre le 27 août 2019, alors qu’il avait une profondeur d’environ 7 mètres, et le 7 juillet 2020, jour où il présentait une profondeur d’environ 40 mètres. (Source: USGS).

L’éruption du Kilauea (Hawaii) en 1952

Dans l’un de ses Volcano Watch, l’USGS / HVO revient sur l’éruption du Kilauea en 1952. Elle pourrait avoir des points communs avec la prochaine éruption du volcan après la pause actuelle qui fait suite à l’événement de 2018.
Le 27 juin 1952, une éruption a commencé au sommet du Kilauea, mettant fin à une période de repos de près de 18 ans. Pendant près de deux décennies de calme après l’éruption sommitale de 1934, on a observé plusieurs périodes d’activité sismique intense et de déformation au niveau du sommet. Cependant, aucun de ces événements n’a entraîné d’éruption.
Au début du mois d’avril 1952, une série de séismes a été enregistrée le long de l’East Rift Zone du Kilauea et sous le sommet. Les séismes, accompagnés d’une inflation sommitale, ont persisté en mai et juin.
En fin de soirée le 27 juin, une éruption a commencé au sommet, avec une forte incandescence et des grondements en provenance du cratère de l’Halema’uma’u ..
Quelques minutes après le début de l’éruption, une fontaine de lave a jailli dans la partie sud-ouest du cratère et s’est élevée à près de 250 mètres au-dessus de la lèvre. La fontaine a rapidement décliné et la lave s’est accumulée le long d’une fissure qui parcourait tout le plancher de l’Halema’uma’u.
Le HVO explique que le lac de lave ainsi formé avait à sa surface des plaques de croûte refroidie espacées par des fissures qui permettaient de voir la lave ci-dessous, un peu comme sur le petit lac de lave qui est apparu de 2008 à 2018 dans l’« Overlook Crater» de l’Halema’uma’u. Le jaillissement de la lave donnait naissance à des vagues à la surface du lac. On pouvait voir parfois des tourbillons à la surface du lac ; ils projetaient des morceaux de croûte, parfois d’un mètre de diamètre, à plusieurs mètres de hauteur. Ce même phénomène a été observé en 2018 sur le chenal de lave issu de la Fracture n°8.
Après les premières heures de l’éruption, les fontaines de lave ont commencé à se calmer. Après un peu plus de quatre heures d’éruption, seul le quart nord-est de la fissure était actif et on pensait que l’éruption allait peut-être se terminer. Peu de temps après, cependant, la partie sud-ouest de la fissure s’est réactivée avec de petits bouillonnements de lave. A ce moment-là, on estime que le cratère de l’Halema’uma’u contenait un lac de lave d’environ 15 mètres de profondeur.
Le 11 juillet, la partie active de la fissure avait fortement diminué. Deux fontaines ont continué à être actives et ont édifié un grand cône à l’intérieur du lac de lave. Des ouvertures dans les flancs du cône permettaient à la lave de se répandre et d’alimenter le lac dont la surface était maintenant considérablement réduite.
À la fin du mois d’août, la majeure partie de la lave produite par l’éruption était contenue dans le grand cône à l’intérieur duquel deux bouches actives construisaient de plus petits cônes de projection. Entre ces deux cônes de projection, il y avait une petite mare de lave d’une trentaine de mètres de diamètre.
L’éruption a continué de la même manière pendant les mois suivants, avant de se terminer, après 136 jours d’activité, le 10 novembre 1952
Un volume d’environ 60 millions de mètres cubes de lave s’est accumulé dans le cratère de l’Halema’uma’u. Avec l’éruption, le plancher de l’Halema’uma’u s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère. À titre de comparaison, le plancher du cratère avant l’effondrement sommital de 2018 se trouvait à environ 80 mètres sous la lèvre.
Source: USGS / HVO.

————————————————-

In one of its Volcano Watch, the USGS / HVO describes the 1952 eruption of Kilauea which might have similarities with the volcano’s next eruption after the current pause that followed the 2018 event.

On June 27th, 1952, an eruption started at the summit of Kilauea, ending a period of quiescence that had lasted nearly 18 years.

During the nearly two decades of quiet following a summit eruption in 1934, there were several periods of increased earthquake activity and deformation beneath the summit. However, none of these phases of unrest resulted in an eruption.

Early in April 1952, a series of earthquakes began along Kilauea’s East Rift Zone and beneath the summit. The earthquakes, accompanied by summit inflation, persisted through May and June.

Late in the evening on June 27th, an eruption started at the summit, with a loud roaring and bright glow emanating from Halema‘uma‘u Crater..

Within minutes of the eruption onset, a lava fountain erupted on the southwestern edge of the Halema‘uma‘u Crater floor, nearly 250 metres higher than the crater rim. The fountain quickly waned and lava pooled along a fissure that crossed the entire floor of Halema’uma’u crater.

HVO explains that the lava lake had plates of cooled crust on its surface separated by cracks that provided views of the incandescent molten lava below,  much like the smaller 2008 to 2018 lava lake within the Halema‘uma‘u “Overlook crater.” The fountaining lava created waves over the surface of the lake. Observers also noted seeing occasional whirlwinds on the lake surface that threw pieces of crust, up to a metre across, several metres into the air. This same phenomenon was observed in 2018 over the fissure 8 lava channel.

After the initial hours of the eruption, the lava fountains began to subside. After a little more than four hours, only the northeastern quarter of the fissure was active, and observers thought that the eruption could be ending. Shortly after, however, the southwestern end of the fissure reactivated with low bubbling fountains, and by that time Halema‘uma‘u Crater was estimated to have been filled with a lake of lava approximately 15 metres deep.

By July 11th, the active length of the fissure had shortened to approximately 120 metres. Two main fountains persisted and began to build a large cinder and spatter cone within the lava lake. Gaps within the cone wall allowed lava to spill out and feed the surrounding lava lake, whose surface had been considerably reduced.

By the end of August, most of the erupted lava was contained within the large cone, where two active vents were building smaller spatter cones. Between the two spatter cones, there was a small lava pond that had an average diameter of about 30 metres.

The eruption continued in the same way for the next few months until it ended after 136 days on November 10th, 1952

A volume of about 60,000,000 cubic metres of erupted lava was confined within Halema‘uma‘u Crater. The eruption raised the floor of Halema’uma’u Crater from 230 metres to 140 metres below the rim. For comparison, the Halema‘uma‘u Crater floor prior to the 2018 summit collapse was approximately 80 metres below the rim.

Source: USGS / HVO.

Vue du cratère de l’Halemaumau le 26 juin 1952, veille du début de l’éruption (photo du haut), et de ce même cratère (photo du bas) quatre semaines plus tard. Comme indiqué dans la description de l’éruption, le plancher s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère.  (Crédit photo: National Park Service).

Découverte de la Fracture n°8 de l’éruption de 2018 du Kilauea (Hawaii) // Discovery of Fissure 8 of the 2018 Kilauea eruption (Hawaii)

Voilà une vidéo comme je les aime. Elle n’est certes pas parfaite d’un point de vue technique mais elle présente une très bonne approche de la Fracture n°8, un des hauts lieux de l’éruption de 2018 sur la Lower East Rift Zone du Kilauea.

Bien que les ayant arpentés à plusieurs reprises, je suis toujours impressionné par l’immensité des champs de lave hawaiiens où il est facile de se perdre, même si le GPS apporte aujourd’hui une aide précieuse à la randonnée. Il y a quelques jours, beaucoup de gens ouvraient de grands yeux devant la quantité de lapilli qui a recouvert les abords du Piton Voulvoul sur le Piton de la Fournaise (Ile de la Réunion) pendant l’éruption du mois d’avril, mais à Hawaii on se trouve à une autre échelle de grandeur.

En visionnant les images de ces immensités de lapilli, j’avais en tête les impressionnantes fontaines et rivières de lave émises par la Fracture n°8. Malheureusement, l’éruption s’est déroulée à huis clos car le public n’a pas été autorisé à admirer le spectacle. La plateforme d’observation promise par les autorités hawaiiennes n’a jamais vu le jour.

Grâce à sa grande fluidité, il a fallu très peu de temps à la lave pour atteindre l’océan. Quelques gros plans confirment que cette lave est très pauvre en silice et on voit également qu’elle a donné naissance à une grande quantité de cheveux de Pélé.

Le gouffre laissé par l’éruption est impressionnant lui aussi. On remarquera les nuages de vapeur qui s’échappent toujours des coulées deux ans après l’éruption. La lave est un excellent auto-isolant et je pense qu’il ne faudrait pas gratter très profond pour atteindre des températures très élevées et peut-être même voir de l’incandescence car les coulées sont épaisses à leur source.

J’imagine aussi que de longs tunnels de lave se cachent sous la surface car ce sont eux qui ont acheminé la lave depuis l’Halema’uma’u et le Pu’uO’o.

La vidéo donne envie d’accompagner son auteur qui appartient  à l’agence ApauHawaiiTours ou est un client de cette agence.

Attention, ces champs de lave sont sur des terres privées et il est préférable d’avoir l’autorisation des propriétaires avant de s’y aventurer.

https://www.youtube.com/watch?v=CA-9V4n7fzA&fbclid=IwAR2TzgBUBXbYdYNPlMV-REjxY8qztve7KTnQu4mRTQ8rUFwL5Utp2KYTbrI

——————————————–

Here is a video that I like. It is certainly not technically perfect but it presents a very good approach to Fissure n° 8, one of the highlights of the 2018 eruption on Kilauea’s Lower East Rift Zone.
Although I have walked across them several times, I am still impressed by the immensity of the Hawaiian lava fields where it is easy to get lost, even if the GPS now provides a precious hiking assistance. A few days ago, many people opened their eyes wide in front of the quantity of lapilli showered over the area around Piton Voulvoul on Piton de la Fournaise (Reunion Island) during the April eruption, but at Hawaii the scale of magnitude is different.
While viewing the images of the lapilli, I had in mind the impressive fountains and rivers of lava emitted by Fissure n°8. Unfortunately, the eruption took place behind closed doors because the public was not allowed to admire the show. The observation platform promised by the Hawaiian authorities never saw the light of day.
Thanks to its great fluidity, it took the lava very little time to reach the ocean. A few close-ups confirm that this lava is very poor in silica and we can also see that it gave birth to a large amount of Pele’s hair.
The abyss left by the eruption is also impressive. One can notice the vapour clouds that are still emitted by the flows two years after the eruption. The lava is an excellent self-insulator and I think we don’t need to scrape very deep to reach very high temperatures and maybe even see incandescence because the flows are thick at their source.
I also imagine that long lava tunnels are hiding beneath the surface because they are the ones that carried the lava from Halema’uma’u and Pu’uO’o.
On the video, you accompany its author who belongs to the ApauHawaiiTours agency or is one of its patrons..
One should keep in mind that these lava fields are on private land and it is advisable to have the authorization of the owners before venturing there.

https://www.youtube.com/watch?v=CA-9V4n7fzA&fbclid=IwAR2TzgBUBXbYdYNPlMV-REjxY8qztve7KTnQu4mRTQ8rUFwL5Utp2KYTbrI

Vue aérienne de la Fracture n°8 et des volumineuses coulées de lave qui s’en échappent (Crédit photo : USGS / HVO)

Les émissions de SO2 du Kilauea pendant l’éruption de 2018 // Kilauea’s SO2 emissions during the 2018 eruption

L’éruption du Kilauea dans la Lower East Rift Zone (LERZ) en 2018 a libéré d’énormes quantités de dioxyde de soufre (SO2) et l’ensemble de l’archipel hawaïen a parfois été envahi par le brouillard volcanique, ou vog.
Pour mesurer les émissions de SO2, les volcanologues utilisent un spectromètre. L’instrument est généralement installé à bord d’un véhicule ou un avion qui passe sous le panache de SO2 et mesure l’absorption de lumière par le gaz. Plus il y a de SO2, moins la lumière ultraviolette (UV) atteint le spectromètre. En 2018, il y avait tellement de SO2 que le spectromètre pouvait à peine détecter cette lumière, ce qui n’a guère facilité les mesures.
Le spectromètre mesure la lumière UV sur une gamme de longueurs d’onde. Normalement, avec de faibles émissions de SO2, on examine les longueurs d’onde où l’absorption de SO2 est importante, ce qui permet de détecter de très faibles quantités de gaz. En 2018, la situation a été beaucoup plus compliquée car aucune lumière UV n’atteignait l’instrument. Les scientifiques du HVO ont alors examiné une partie du spectre UV où l’absorption de SO2 est 500 fois plus faible, de sorte qu’une certaine quantité de lumière UV restait détectable.
Après avoir traité les mesures dans la nouvelle gamme de longueurs d’onde, les données ont révélé que pendant la majeure partie du mois de juin et début juillet 2018, les fractures dans la LERZ ont émis près de 200 000 t / j (tonnes / jour) de SO2. Ce sont les niveaux d’émission les plus élevés jamais mesurés sur le Kilauea avec le spectromètre UV qui a commencé à être utilisé vers la fin des années 1970. Il se peut que les premières fontaines de lave du Pu’uO’o en 1983, et peut-être l’éruption du Mauna Loa en 1984, aient montré des niveaux de SO2 similaires, mais ces mesures ont probablement souffert de la même sous-estimation que les premières mesures effectuées par le HVO en 2018. Elles avaient alors révélé des émissions de 15000 t / j (tonnes / jour). Malheureusement, les données fournies par le spectromètre des années 1980 ne peuvent pas être traitées de la même manière que les données de 2018.
Les scientifiques du HVO estiment que l’éruption de 2018 a émis plus de 10 Mt (mégatonnes, ou millions de tonnes) de SO2 entre mai et début août. Au cours de ces trois mois, le Kilauea a émis cinq fois plus de SO2 que pendant la seule année 2017. Peu d’éruptions récentes sur Terre ont émis autant de SO2, et lorsqu’elles l’ont fait, il s’agissait généralement d’éruptions explosives majeures sur des stratovolcans.
L’éruption fissurale de l’Holuhraun (Islande) en 2014 également émis environ 10 Mt de SO2, mais en 6 mois, et non 3 comme le Kilauea. À titre de comparaison, la plus grande éruption volcanique du siècle dernier, celle du Pinatubo (Philippines) en 1991, n’a émis que deux fois plus de SO2 que celle du Kilauea en 2018, mais de manière explosive en une seule journée.
Depuis la fin de l’éruption de 2018, le Kilauea a émis beaucoup moins de SO2. Fin 2018, les émissions étaient d’environ 30 t / j au sommet et sur le Pu’uO’o, et presque nulles dans la LERZ. Début 2019, le Pu’uO’o a retrouvé des niveaux proches de zéro. Bien que du SO2 se dissolve dans l’eau du lac dans le cratère de l’Halema’uma’u, les niveaux d’émission de SO2 en ce moment sont les plus bas observés sur le Kilauea depuis plus de 30 ans.
Source: USGS / HVO.

———————————————–

Kilauea’s Lower East Rift Zone (LERZ) eruption in 2018 released huge amounts of sulphur dioxide (SO2) and the whole Hawaiian archipelago was sometimes invaded by the volcanic fog, or vog.

To measure SO2 emission rates, volcanologists use a spectrometer. The instrument is mounted to a vehicle or aircraft, which passes under the SO2 plume and measures the absorption of sunlight by SO2 overhead. The more SO2, the less ultraviolet (UV) light reaches the spectrometer. In 2018, there was so much SO2 that the spectrometer could barely detect any UV light at all, which made it difficult to determine the exact amount of gas overhead.

The spectrometer measures UV light over a range of wavelengths. Normally, with low SO2 emissions, one examines wavelengths where SO2 absorption is significant, which allows to detect even very small amounts of gas. But 2018 was different as nearly no light was reaching the instrument. HVO scientists examined a part of the UV spectrum where SO2 absorption is 500 times weaker, so some UV light would still be detectable.

After re-processing all measurements in the new wavelength range, the data revealed that for much of June and early July of 2018, fissures in the LERZ emitted nearly 200,000 t/d (tonnes/day)of SO2. These are the highest SO2 emission rates measured at Kilauea using the UV spectrometer technique, which began in the late 1970s. Early Pu’uO’o high lava fountains, and perhaps Mauna Loa’s 1984 eruption, may have had similar emission rates, but those measurements likely suffered from the same underestimation as HVO’s initial 2018 analyses which revealed emissions of 15,000 t/d (tonnes/day). Unfortunately, because of older spectrometer technology, data from the 1980s cannot be reprocessed in the same way as 2018 data.

HVO scientists now estimate that the 2018 eruption emitted over 10 Mt (megatonnes, or millions of tonnes) of SO2 between May and early August. In those three months alone, Kilauea emitted five times the SO2 it emitted in the year 2017. Few recent eruptions on Earth have released that much SO2, and when they do, they are generally large explosive eruptions at stratovolcanoes.

Most similar to Kilauea’s eruption was the 2014 Holuhraun fissure eruption in Iceland, which also emitted about 10 Mt of SO2, though in 6 months rather than just 3. For comparison, the largest volcanic eruption of the past century, Mount Pinatubo in the Philippines in 1991, only released about twice the SO2 mass of Kilauea’s 2018 eruption, albeit explosively on a single day.

Since the extremely high emissions in 2018 ended, Kilauea has been releasing far less SO2. By late 2018, SO2 emissions were about 30 t/d at the summit and Pu’uO’o, and near-zero in the LERZ. By early 2019, Pu’uO’o had dropped to near-zero levels as well. Though some additional SO2 is dissolving into the new lake in Halema‘uma‘u Crater, current emission rates are the lowest that have been observed at Kilauea in over 30 years of measurements.

Source: USGS / HVO.

Emissions de SO2 au sommet du Kilauea et sur l’East Rift Zone (Photos : C. Grandpey)

Le mois de mai sur le Kilauea (Hawaii) // May on Kilauea Volcano (Hawaii)

Le mois de mai est particulièrement riche en éruptions sur le Kilauea. Plusieurs d’entre elles ont débuté, évolué ou pris fin au cours de ce mois. Dans son dernier « Volcano Watch », le HVO a examiné quelques uns des événements les plus marquants entre le 19ème et le 21ème siècle.

La première éruption du Kilauea décrite par des missionnaires occidentaux a eu lieu en 1823. Une fracture de 10 kilomètres de long baptisée «The Great Crack» a donné naissance à la coulée de Keaiwa dans la Lower Southwest Rift Zone (zone de fracture SO) au début de l’été de cette même année. À l’époque, les Hawaïens ont raconté que «Pélé était sortie d’une caverne souterraine et avait débordé dans la plaine… L’apparition de la lave a été soudaine et violente, a brûlé un canot et en a emporté quatre autres dans la mer. À Mahuku [Bay], le puissant torrent de lave est entré dans la mer… »

L’éruption de 1840 a commencé le 30 mai dans la partie inférieure du District de Puna et a duré 26 jours. Il existe peu de témoignages oculaires de cet événement qui a montré l’importance du travail sur le terrain pour déterminer la chronologie des événements. La cartographie géologique révèle que l’éruption de 1840 a probablement ressemblé à celle de 2018.

En 1922, dix ans après la création de l’Observatoire des Volcans d’Hawaii (le HVO), une éruption fissurale a commencé le 28 mai vers 21 heures au niveau des cratères Makaopuhi et Napau sur l’East Rift Zone (zone de fracture E) du Kilauea.

Il a fallu aux scientifiques du HVO 30 minutes de voiture, puis trois heures de marche pour atteindre le Makaopuhi Crater. Le lendemain, une autre équipe scientifique s’est approchée par le côté est et a observé de faibles projections dans le Napau Crater avant d’atteindre le Makaopuhi. Les deux équipes ont dû traverser des zones de végétation dense et difficile pendant plusieurs heures avant d’atteindre les sites éruptifs.

L’éruption explosive de l’Halema’uma’u en 1924 a duré 17 jours et a pris fin le 28 mai. Un volumineux panache de cendre s’est échappé du cratère pendant cette éruption qui a tué une personne le 18 mai 1924, le même jour de mai que la célèbre éruption du Mont St. Helens.

Une éruption fissurale de trois jours et demi a commencé le 31 mai 1954 dans le cratère de l’Halema’uma’u. Cette éruption a été l’une des premières du Kilauea à avoir été annoncée grâce au réseau de surveillance géophysique. Les scientifiques du HVO avaient observé des signes d’augmentation de la pression magmatique sous le sommet et déclaré que «dans de telles conditions, une éruption pourrait survenir avec sans prévenir longtemps à l’avance». Le premier séisme a réveillé la population à 3 h 42, le tremor est apparu à 4 h 09 et une lueur rouge a été observée dans le ciel à 4 h 10.

L’éruption dans la partie basse du District de Puna en 1955 s’est terminée le 26 mai après 88 jours d’activité dans la même zone que l’éruption de 2018. Cette éruption a dévasté des terres agricoles et isolé le village de Kapoho.

Le 24 mai 1969, le Mauna Ulu est entré en éruption dans l’Upper East Rift Zone du Kilauea. Cet événement a fait suite à une décennie de brèves éruptions fissurales. Les scientifiques du HVO pensaient que cette nouvelle éruption allait durer entre une semaine et un mois. Ce ne fut pas le cas. L’activité s’est concentrée sur une bouche unique entre les cratères Alae et Alo aujourd’hui recouverts par la lave, et s’est poursuivie presque continuellement pendant quatre ans et demi ! Cette longue éruption a permis aux volcanologues du HVO d’étudier et de comprendre les processus volcaniques. L’éruption a permis d’analyser comment se comportent les coulées de lave, les fluctuations de leur vitesse en fonction de la pente, le phénomène de gas pistoning, et la formation des laves en coussins (pillow lavas) lorsque la lave entre dans l’océan.

Lors de l’éruption de 2018 dans la Lower East Rift Zone, la Fracture n°8 s’est réactivée une dernière fois le 24 mai, brièvement accompagnée le 27 mai par l’ouverture de la Fracture n°24. Dans la soirée du 27 mai, la principale coulée de lave issue de la Fracture n°8 a commencé a progresser vers l’océan. Cette éruption est sans aucun doute celle qui a été le mieux documenté sur le Kilauea.
Source: USGS / HVO.

————————————————

The month of May has been quite rich on Kilauea, with several notable eruption beginnings, changes, and endings. In its latest “Volcano Watch”, HVO examined a few significant events that marked the last three centuries.

The first eruption of Kilauea documented by western missionaries occurred in 1823. A 10-kilometre-long fissure called “the Great Crack” produced the Keaiwa Flow on the Lower Southwest Rift Zone sometime in the early summer. At the time, local Hawaiians explained that “Pele had issued from a subterranean cavern and overflowed the lowland … The inundation was sudden and violent, burnt one canoe, and carried four more into the sea. At Mahuku [Bay], the deep torrent of lava bore into the sea…”

The 1840 eruption in lower Puna began on May 30th and lasted for 26 days. Few eyewitness accounts exist of this eruption, which emphasized the importance of geological fieldwork to reconstruct the chronology of events that occurred. Geologic mapping indicated 1840 may have been similar to the 2018 eruption.

In 1922, ten years after the Hawaiian Volcano Observatory (HVO) was founded, a fissure eruption began around 9 p.m. on May 28th in Makaopuhi and Napau craters on Kilauea’s East Rift Zone. HVO scientists drove for 30 minutes and then hiked three hours to reach Makaopuhi. The next day, another field party approached from the east and saw weak spattering in Napau Crater before reaching Makaopuhi Crater. Both teams endured hours of jungle bushwhacking to reach the eruption sites.

The explosive 1924 eruption of Halema’uma’u lasted 17 days and ended activity on May 28th. The crater unleashed a large ash cloud that killed one person on May 18th, 1924, a day later associated with the famous Mount St. Helens eruption.

A 3.5-day-long fissure eruption started on May 31st, 1954 in Halema’uma’u crater. This eruption was one of the first at Kilauea to be “anticipated” through geophysical monitoring. HVO scientists had noted signs of increasing pressurization at the summit and stated that “under such conditions, an eruption might come with very little forewarning.” The first earthquake woke residents at 3:42 a.m., seismic tremor started at 4:09 a.m., and at 4:10, there was red glow in the sky.

The 1955 lower Puna eruption ended on May 26th after 88 days of activity in the same area as the recent 2018 eruption. This eruption devastated farmland and isolated Kapoho Village.

Mauna Ulu began erupting on Kilauea’s Upper East Rift Zone on May 24th, 1969. It followed a decade of short-lived fissure eruptions and HVO staff suspected it would be another week-to-month-long event. However, activity focused at a single vent between the now buried ‘Alae and Alo’i craters and continued there almost continuously for 4.5 years. This sustained activity allowed HVO staff to document, study and understand volcanic processes in great detail. The eruption advanced understanding of how lava flows advance and inflate, the effect of lava velocity and slope on flow textures, gas-pistoning behaviour, and the formation of pillow basalts when lava flows into the ocean.

During the 2018 Lower East Rift Zone eruption, fissure 8 reactivated for a final time on May 24th and was joined briefly on May 27th by the final fissure (#24) opening. In the evening of May 27th, the main fissure 8 lava flow began its advance towards the ocean. This eruption was arguably the best-documented eruption at Kilauea yet.

Source : USGS / HVO.

L’éruption de l’Halema’uma »u en 1924 (Source : USGS / HVO)

Eruption 2018 : coulée issue de la Fracture n°8 (Crédit photo : HVO)