A propos des séismes lents // About slow-slip earthquakes

Dans une note intitulée « Les séismes lents du Kilauea, publiée le 28 mars 2018, j’expliquais que des séismes sont enregistrés périodiquement sur le flanc sud du Kilauea. Le HVO les attribue au glissement lent de l’édifice volcanique dans l’Océan Pacifique. Les Anglosaxons les ont baptisés « slow-slip earthquakes », « séismes lents » en français. Ces événements ne sont pas l’apanage du Kilauea ; on les observe ailleurs dans le monde.

Les scientifiques néo-zélandais de GNS Science (à l’origine Institute of Geological and Nuclear Sciences) surveillent un événement sismique lent qui a débuté fin mars 2019 près de Gisborne, au large de la côte est de l’Ile du Nord. Une séquence sismique semblable a déjà été observée dans ce même secteur en mars 2010.
Les séismes lents sont assez fréquents dans cette partie de la Nouvelle-Zélande, en raison de la subduction de la Plaque Pacifique qui se déplace vers l’ouest et plonge sous la Plaque Australienne.

En cliquant sur le lien ci-dessous, vous aurez des explications sur les séismes lents. Le document est en anglais. Vous trouverez ci-dessous une traduction en français pour vous aider à comprendre cet important chapitre de la sismologie.

https://youtu.be/xgk2zBvdOgw

—————————————–

In a post entitled « Kilauea Volcano Slow Earthquakes, published on March 28th, 2018, I explained that earthquakes are recorded periodically on the southern flank of Kilauea. HVO attributes them to the slow slide of the volcanic edifice in the Pacific Ocean. Anglosaxons called them « slow-slip earthquakes », « séismes lents » in French. These events are not exclusive to Kilauea; they are observed elsewhere in the world.

GNS scientists are monitoring a slow-slip event that started at the end of March 2019 near Gisborne, off the east coast of North Island, New Zealand. A similar seismic event was observed in the same area in March 2010.

Slow-slip events are quite common in this part of New Zealand, due to the subducting Pacific Plate moving westward under the Australian Plate,

By clicking on this link, you will learn more about slow-slip earthquakes :

https://youtu.be/xgk2zBvdOgw

°°°°°°°°°°°°°°°°°°°°

Définition d’un séisme lent.

En Nouvelle Zélande, les plaques tectoniques Pacifique et Australienne entrent en contact le long d’une série de lignes de failles. Au niveau de l’Ile du Nord, dans un processus de subduction, la plaque Pacifique plonge en direction de l’ouest sous la côte orientale de l’Ile du Nord, au niveau de la Fosse et Zone de Subduction de Hikurangi qui constitue la faille la plus importante et la plus active de Nouvelle Zélande. Les deux plaques tectoniques se déplacent l’une vers l’autre le long de cette faille. Dans la partie la plus profonde de la Zone de Subduction de Hikurangi, les roches sont plus chaudes et les deux plaques peuvent se déplacer l’une contre l’autre lentement et de manière continue. En revanche, à des profondeurs moindres, les plaques ont des bords moins réguliers et leur frottement provoque par moment des blocages. Les contraintes s’accumulent alors dans la zone de blocage. Au bout de quelques années, la situation se débloque pour un temps et c’est alors que se produit un séisme lent avec libération des contraintes et de l’énergie qui s’étaient accumulées.

Un séisme lent ressemble à un séisme classique dans la mesure où il y a libération d’énergie le long d’une zone de faille, mais cette libération d’énergie se fait sur des semaines ou des mois, alors que pour un séisme classique c’est une affaire de secondes. Les systèmes GPS renseignent sur le déplacement du sol.

Les séismes sur les zones de subduction.

Parfois, le mouvement des plaques n’est pas lent, mais soudain et rapide, ce qui provoque des séismes. De puissants séismes peuvent se produire après que deux plaques soient restées bloquées pendant longtemps, des siècles ou des millénaires. Au cours de ce laps de temps de blocage très long, il s’accumule suffisamment de contraintes et d’énergie le long de la faille jusqu’au moment où une rupture se produit. Les plaques se déplacent alors rapidement l’une contre l’autre en provoquant un séisme.

Un déplacement lent des plaques peut-il provoquer un séisme majeur ?

Les déplacements lents des plaques tectoniques se produisent souvent en limite de plaques dans des zones où se déclenchent les séismes classiques. Les scientifiques cherchent à savoir dans quelle mesure un déplacement lent des plaques peut contribuer à augmenter les contraintes dans la zone de blocage entre deux plaques et si cela peut avoir une influence sur les ruptures de plaques qui déclenchent les puissants séismes.

Le jour où les scientifiques parviendront à comprendre la relation entre le déplacement lent des plaques et le déclenchement des séismes, un grand pas aura été franchi dans le domaine de la prévision sismique. Il est utile de noter que de nombreux déplacements lents de plaques en Nouvelle Zélande n’ont pas déclenché de puissants séismes.

Sur le document, au bout de 2’58’’, on nous montre sur une carte une importante zone de blocage qui recouvre la partie centrale et inférieure de l’Ile du Nord de la Nouvelle Zélande. C’est là que s’accumulent les contraintes et l’énergie susceptibles de provoquer un nouveau séisme à l’avenir. A proximité de cette zone, on peut en voir une autre où se produit un déplacement lent des plaques.

C’est le rôle de GNS Science d’étudier ces phénomènes qui se produisent en Nouvelle Zélande, mais aussi ailleurs dans le monde.

Capture d’écran de trois images de la vidéo. Elles illustrent le frottement des plaques tectoniques, leur blocage, et l’accumulation de contraintes et d’énergie (Source : GNS Science).

Volcans du monde // Volcanoes of the world

Voici quelques nouvelles de la situation volcanique dans le monde :

Selon l’Agence Météorologique Japonaise (JMA), un épisode éruptif a été observé sur l’Aso le 16 avril 2019. Les nuages ​​de cendre sont montés brièvement jusqu’à 200 mètres au-dessus du cratère. Une augmentation de la sismicité accompagnée de volumineuses émissions de gaz volcanique avait été observée le 14 avril. L’accès au volcan est interdit à moins de 1 km du cratère.
Le volcan ne s’était pas manifesté depuis le 8 octobre 2016. Le niveau d’alerte a été relevé à 2 le 14 avril.
Source: JMA.

°°°°°°°°°°

Comme je l’ai déjà mentionné dans une précédente note le 30 mars 2019, on observe actuellement une augmentation de la sismicité et de la température de l’eau dans le lac Taal aux Philippines. 10 séismes d’origine volcanique ont été enregistrés le 14 avril et 6 autres le 15 avril 2019.
La température de l’eau dans le secteur E du cratère principal est passée de 31,7 à 31,9°C, avec une baisse du niveau de l’eau de 0,41 m. à 0,31 m. et une diminution de l’acidité (pH de 2,67 à 2,95).
Les mesures de déformation du sol effectuées du 18 au 27 mars 2019 ont révélé un léger gonflement de l’édifice, ce qui confirme les dernières mesures obtenues avec les données GPS en continu.
Le niveau d’alerte est maintenu à 1.
Source: PHIVOLCS.

°°°°°°°°°°

Il va falloir garder un œil sur le Pico Viejo sur l’île Canarie de Tenerife. En effet, depuis quelque temps, on observe une certaine recrudescence de activité sismique. Le dernier épisode a eu lieu le 17 avril 2019 avec 3 secousses sur les pentes du Pico Viejo. Elles avaient des magnitudes de M 1,0, M 0,9 et M 1,3, à des profondeurs entre 12 et 17 km.

Source : GEVolcan.

°°°°°°°°°°

Volcans du Guatemala :

L’activité du Pacaya se limite à un dégazage modéré d’une cinquantaine de mètres. De faibles explosions stromboliennes projettent des matériaux incandescents jusqu’à une quinzaine de mètres au-dessus du cratère Mackenney. On observe une coulée de lave qui se dirige vers le nord.
Le dégazage du Fuego atteint une hauteur de 4 400 m d’altitude.  On observe de 13 à 18 explosions modérées par heure, avec des colonnes de cendre d’une hauteur de 4300 à 4700 mètres d’altitude. La nuit et tôt le matin, une incandescence est visible au-dessus du cratère. Des avalanches de matériaux continuent à dévaler les ravines Seca, Taniluyá, Ceniza et Trinidad. Des explosions faibles et modérées s’accompagnent d’ondes de choc qui font vibrer les vitres dans les localités proches du volcan. Des retombées de cendre sont observées dans plusieurs localités.
Les panaches de dégazage du Santiaguito montent jusqu’à une altitude de 2900 mètres avant de se disperser vers le sud-ouest. On enregistre en moyenne deux explosions de faible intensité par heure. Elles génèrent des colonnes de cendre qui s’élèvent à une hauteur d’environ 3 200 mètres. De petites avalanches de matériaux s’écoulent le long du flanc sud-est vers la base du dôme de Caliente, et vers le flanc sud-ouest du volcan Santa María.

Source : INSIVUMEH.

°°°°°°°°°°

Volcans indonésiens :

Le VAAC de Darwin a signalé qu’à la mi-avril, le panache de cendre du Bromo (Indonésie) atteignait une altitude de 3 km. Le niveau d’alerte reste à 2 (sur une échelle de 1 à 4) et il est demandé aux visiteurs du volcan de rester en dehors d’un rayon de 1 km du cratère.
Source: VAAC Darwin.

Deux éruptions ont eu lieu sur l’Anak Krakatau les 14 et 15 avril 2019, bien qu’aucun panache de cendre n’ait été observé lors du deuxième événement. Le niveau d’alerte reste à 3 (sur une échelle de 1 à 4). Il est demandé à la population de rester en dehors de la zone de danger d’un rayon de 5 km autour du cratère.
Le dôme de lave du Merapi continue de croître lentement. Les matériaux extrudés s’écoulent dans la ravine de la rivière Gendol. Le niveau d’alerte reste à 2 (sur une échelle de 1 à 4) et la population est priée de rester en dehors de la zone d’exclusion de 3 km.
Le 11 avril 2019, une explosion sur l’Agung a généré un panache de cendres dense qui s’est élevé à 2 km au-dessus du cratère. Le niveau d’alerte reste à 3 (sur une échelle de 1 à 4) avec une zone d’exclusion d 4 km de rayon.
Source: CVGHM.

°°°°°°°°°°

Le Villarica (Chili) est très actif ces jours-ci. À la mi-avril, des fontaines de lave s’élevaient à 70 mètres au-dessus de la lèvre du cratère. La sismicité était faible.
Source: POVI.

°°°°°°°°°°

Il est clair que les scientifiques hawaïens du HVO supportent mal de ne pas avoir réussi à prévoir la fin de la dernière éruption du Kilauea (Hawaii). Hier, dans la presse hawaïenne, on pouvait lire ce titre surprenant: «Le Kilauea entrera de nouveau en éruption». Quel scoop! C’est comme si l’on disait que l’Etna (Sicile) ou le Piton de la Fournaise (Ile de la Réunion) vont à nouveau entrer en éruption. Tout le monde le sait!
Voici la mise à jour du HVO le 16 avril 2019.
«Le Kilauea n’est pas en éruption. Les données de surveillance des huit derniers mois montrent des niveaux relativement faibles de sismicité, de déformation et d’émission de gaz au sommet et dans l’East Rift Zone, y compris dans la zone de l’éruption de 2018. Un séisme de magnitude M 5,3 (dont le Kilauea n’est pas responsable) s’est produit à 17h09.le samedi 13 avril 2019, et a été ressenti à travers l’île.
Depuis le 26 mars, le niveau d’alerte du Kilauea est NORMAL / VERT. Malgré cette classification, le Kilauea reste un volcan actif et il va à nouveau entrer en éruption. Bien que l’on s’attende à observer des signes annonciateurs du retour de l’éruption, le délai d’alerte peut être court. Les habitants de l’île d’Hawaï doivent donc se tenir au courant de la carte à risque du Kilauea et savoir comment être informés de l’activité du volcan.
Observations: La semaine dernière, aucun changement significatif n’a été observé dans  l’activité volcanique. De faibles niveaux de sismicité persistent sur le volcan ; les secousses se produisant principalement dans la région sommitale et sur le flanc sud du volcan. Les données envoyées par les stations GPS et les inclinomètres vont dans le sens d’un remplissage du réservoir magmatique profond sous l’East Rift Zone. Les émissions de dioxyde de soufre au sommet et sur le Pu’uO’o restent faibles. Ces émissions sont stables depuis plusieurs mois.»
Lorsque Kilauea entrera de nouveau en éruption, il ne serait pas surprenant que le HVO affirme qu’il s’agit d’une continuation de l’événement de 1983 et que l’absence d’activité, même si elle a duré plusieurs mois, n’était qu’une pause dans l’éruption!

————————————————–

Here is some news of volcanic activity around the world :

According to the Japan Meteorological Agency JMA), Mount Aso went through an eruptive episode on April 16th, 2019. The ash clouds briefly rose up to 200 metres above the crater. An increase in seismicity accompanied by voluminous emissions of volcanic gas had been observed on April 14th.. Access to the volcano is forbidden within 1 km of the crater.

The volcano had been quiet since October 8th, 2016. The alert level was raised to 2 on April 14th.

Source: JMA.

°°°°°°°°°°

As I already put it in a previous post on March 30th, 2019, an increase in seismicity and water temperature is currently observed at Lake Taal in the Philippines. 10 volcanic earthquakes were recorded on April 14th and 6 more on April 15th, 2019.

The water temperature in the eastern sector of the Main Crater Lake increased from 31.7 to 31.9 °C, together with a decrease in water level from 0.41 m. to 0.31 m., and a decrease in acidity from pH 2.67 to pH 2.95.

Ground deformation measurements from March 18th to 27th, 2019 indicated slight inflation of the edifice consistent with recent results from continuous GPS data.

The alert level is kept at 1.

Source: PHIVOLCS.

°°°°°°°°°°

One should keep an eye on Pico Viejo on the Canary Island of Tenerife. Indeed, for some time, there has been a certain upsurge in seismic activity. The last episode took place on April 17th, 2019 with 3 quakes on the flanks of Pico Viejo. They had magnitudes of M 1.0, M 0.9 and M 1.3, at depths between 12 and 17 km.
Source: GEVolcan.

°°°°°°°°°°

Villarica (Chile) is quite active these days. By mid April, lava fountains were seen rising as high as 70 metres above the crater rim. Seismicity was low.

Source : POVI.

°°°°°°°°°°

Guatemala volcanoes:
The activity of  Pacaya consists of a moderate degassing of about fifty metres. Small strombolian explosions project incandescent materials up to about fifteen metres above the Mackenney crater. There is a lava flow going north.
The degassing of Fuego reaches a height of 4,400 m above sea level. There are 13 to 18 moderate explosions per hour, with ash columns from 4300 to 4700 metres a.s.l.. At night and early in the morning, an incandescence is visible above the crater. Avalanches of material continue to travel down the Seca, Taniluyá, Ceniza and Trinidad drainages. Small and moderate explosions are accompanied by shock waves that vibrate the windows in the municipalities near the volcano. Ashfall is observed in several villages.
The degassing plumes of Santiaguito rise to an altitude of 2900 metres before drifting southwest. On average, there are two low-intensity explosions per hour. They generate ash columns that rise to a height of about 3,200 metres. Small avalanches of material travel along the southeast flank, down to the base of the Caliente dome, and toward the southwest flank of the Santa María volcano.
Source: INSIVUMEH.

°°°°°°°°°°

Indonesian volcanoes

The Darwin VAAC has reported that in mid April ash plumes from Bromo rose to 3 km a.s.l. The Alert Level remains at 2 (on a scale of 1-4), and visitors are warned to stay outside a 1-km radius fromthe crater.

Source: VAAC Darwin.

Two eruptions occurred at Anak Krakatau on April.14th and 15th, 2019, though no ash plume was visible during the second event. The Alert Level remains at 3 (on a scale of 1-4). Residents are warned to remain outside the 5-km radius hazard zone from the crater.

The lava dome at Merapi continues to grow slowly, with extruded material channelled into the Gendol River drainage. The alert level remains at 2 (on a scale of 1-4), and residents are warned to remain outside the 3-km exclusion zone.

On April 11th, 2019, an explosion at Agung produced a dense ash plume that rose 2 km above the crater. The alert level remains at 3 (on a scale of 1-4) with the exclusion zone set at a 4-km radius.

Source: CVGHM.

°°°°°°°°°°

It seems clear Hawaiian scientists at HVO are still disappointed for having failed at predicting the end of Kilauea’s last eruption. One could read yesterday in the Hawaiian press this surprising headline: “Kilauea will erupt again”. What a scoop! This like saying the Mount Etna (Sicily) or Piton de la Fournaise (Reunion Island) will erupt again. Everybody knows this!

Here is HVO’s update for April 16th, 2019.

« Kilauea Volcano is not erupting. Monitoring data over the past eight months have shown relatively low rates of seismicity, deformation, and gas emission at the summit and East Rift Zone (ERZ) including the area of the 2018 eruption. A magnitude 5.3 earthquake (not from Kilauea) occurred at 5:09 p.m. on Saturday, April 13th, 2019, and was felt across the island.

As of March 26th, Kilauea Volcano is at NORMAL/GREEN. Despite this classification, Kilauea remains an active volcano, and it will erupt again. Although we expect clear signs prior to a return to eruption, the time frame of warning may be short. Island of Hawaii residents should be familiar with the long-term hazard map for Kilauea Volcano and how to stay informed about Kilauea activity.

Observations: This past week saw no significant change in monitoring data or volcanic activity. Low rates of seismicity continue across the volcano, with earthquakes occurring primarily in the summit and south flank regions. GPS stations and tiltmeters continue to show motions consistent with refilling of the deep East Rift Zone magma reservoir. Sulfur dioxide emission rates from the summit and from Pu’uO’o remain low. These rates have been steady over the past several months. »

When Kilauea erupts again, I would not be surprised if HVO said that it is a continuation of the 1983 event and that the absence of activity – even though it lasted several months – was just a pause in the eruption!

Vues du Pico Viejo sur l’île de Tenerife. Sa dernière éruption a eu lieu du 9 juin au 14 septembre 1798. (Photo: C. Grandpey)

Hawaii : Pas d’éruption en vue sur le Mauna Loa ! // Hawaii : No eruption of Mauna Loa in the short term !

Comme je l’ai écrit dans l’une de mes dernières notes, le séisme enregistré le 13 avril 2019 dans la région du Hualalai sur la Grande Ile d’Hawaii n’a eu aucun effet sur l’activité des volcans hawaïens. Aucune nouvelle activité éruptive n’a été observée sur le Kilauea depuis la fin de l’éruption en août dernier. Selon le HVO, «les données de surveillance des huit derniers mois ont montré des niveaux relativement bas de sismicité, de déformation et d’émission de gaz au sommet et dans l’East Rift Zone, y compris dans le secteur de l’éruption de 2018».
Depuis la fin de l’éruption du Kilauea, des articles de presse ont laissé entendre que la pression exercée par le magma sur la chambre pourrait se déplacer vers le Mauna Loa et augmenter le risque éruptif sur ce volcan. La dernière éruption du Mauna Loa remonte à 1984.
Pour le moment, il ne semble pas que Mauna Loa soit sur le point d’entrer en éruption. La dernière mise à jour du HVO (4 avril 2019) indique qu ‘«aucun changement significatif dans l’activité sismique du Mauna Loa n’a été détecté en mars. De petits séismes, généralement inférieurs à M 2,0, se sont poursuivis dans des zones où on les enregistre habituellement, notamment sous le flanc nord-ouest, la zone sommitale et le flanc est. Le séisme le plus important survenu sur le Mauna Loa le mois dernier a été un événement de M 3,3 le 31 mars, à une profondeur d’environ 2,7 km sous le niveau du sol et près du sommet. Les données GPS sur le Mauna Loa indiquent une lente inflation du réservoir magmatique sommital. Les niveaux de déformation sont inférieurs à ceux observés pendant la période d’activité plus intense de 2014-2017. Les données concernant les gaz et la température, fournies par une station située dans la zone de rift sud-ouest et dans la caldeira sommitale, n’ont révélé aucun changement significatif au cours du mois écoulé. ”
Un scientifique de l’USGS a déclaré: « Une éruption du Mauna Loa pourrait se produire dans des mois, voire des années, mais nous savons que ce n’est pas une affaire de jours ou de semaines. »
Source: USGS / HVO.

———————————————–

As I put it in a previous post, the earthquake that was recorded on April 13th, 2019, in the Hualalai area did not have any effect on the activity of Hawaiian volcanoes. No new eruptive activity has been observed on Kilauea since the end of the eruption last August. HVO indicates that “monitoring data over the past eight months have shown relatively low rates of seismicity, deformation, and gas emission at the summit and East Rift Zone (ERZ) including the area of the 2018 eruption.”

Since the end of the Kilauea eruption, some press articles have suggested that the pressure exerted by magma on the magma chamber could be diverted toward Mauna Loa and increase the risk of an eruption at this volcano. Mauna Loa’s last eruption dates back to 1984.

For the moment, it does not look as if Mauna Loa is ready to erupt. HVO’s latest update (April 4th, 2019) about the volcano says that “no significant changes in Mauna Loa’s seismic activity were detected in March. Small earthquakes, mostly less than M 2.0, continued in long-active areas including beneath the northwest flank, summit region, and east flank. The largest earthquake for Mauna Loa in the past month was an M 3.3 event, at a depth of approximately 2.7 km below ground level, near the summit on March 31st.  Data from GPS instruments on Mauna Loa indicate slow inflation of the summit magma reservoir system. The rates of deformation are lower than during the period of more intense unrest from 2014-2017. Gas and temperature data from a station on the Southwest Rift Zone and within the summit caldera showed no significant changes over the past month.”

Said a USGS scientist: “ »An eruption of Mauna Loa could be anywhere from months to years away. But we do know that it’s not days or weeks away. »

Source: USGS / HVO.

Le Mauna Loa, un superbe volcan bouclier, vu depuis le désert de Ka’u (Photo: C. Grandpey)

Vue aérienne du sommet du Mauna Loa (Crédit photo: USGS)

Vue de Mokuaweoweo, la caldeira sommitale du Mauna Loa (Photo: C. Grandpey)

Coulées de lave sur le versant sud-ouest du mauna Loa (Photo: C. Gra,dpey)

Système d’alerte sur le versant sud-ouest du Mauna Loa (Photo: C. Grandpey)

La pollution du Kilauea à Hawaii // The pollution of Kilauea Volcano in Hawaii

La fin de l’éruption du Kilauea en septembre 2018 s’est accompagnée d’une diminution considérable de la quantité de dioxyde de soufre (SO2) émis par le volcan. Cela a permis de pouvoir bénéficier à nouveau d’un ciel magnifique au-dessus de la Grande Ile d’Hawaï, en particulier dans sa partie ouest où la pollution volcanique connue sous le nom de vog avait été régulièrement observée au cours des dernières années.
Au plus fort de l’éruption dans la Lower East Rift Zone (LERZ) en 2018, alors que les émissions de gaz volcaniques et la pollution étaient à leur plus haut niveau, une équipe scientifique a travaillé en relation avec le HVO et les services sanitaires de l’État d’Hawaï pour étudier le niveau de pollution de l’air générée par l’éruption.
Les chercheurs ont échantillonné des particules volcaniques et des gaz le long de la LERZ, en particulier au niveau de la Fracture n°8, de l’entrée de la lave dans l’océan et sur divers sites sous le vent. Pour déterminer la nature et la composition de la pollution volcanique, des échantillons ont été prélevés par aspiration de l’air à travers des filtres, au niveau du sol et de l’air, et à l’aide de drones.
Les particules minuscules déposées sur les filtres ont ensuite été analysées en laboratoire pour en déterminer la composition chimique et ont été observées à l’aide d’un puissant microscope électronique à balayage (MEB) pour déterminer la composition des particules individuelles. D’autres instruments ont déterminé le nombre ou le poids de particules de différentes tailles que l’on associe à différents impacts sur la santé dans des études sur la pollution d’origine humaine. Les échantillons ont été analysés pour en déterminer le pH et les principaux composants, notamment le sulfate, le fluorure et le chlorure, ainsi que des métaux traces, tels que le plomb et l’arsenic.
Ces analyses ont ciblé les espèces chimiques présentes dans les panaches volcaniques. Le panache du Kilauea est composé principalement de vapeur d’eau, de dioxyde de carbone (CO2), de dioxyde de soufre (SO2) et de quantités plus faibles d’autres gaz, notamment de chlorure d’hydrogène (HCl) et de fluorure d’hydrogène (HF). Le SO2 réagit dans l’atmosphère au fil du temps pour former de minuscules particules de sulfate acides et neutres, qui constituent un élément majeur de la pollution volcanique à Hawaii. De petites quantités de métaux toxiques ont également été trouvées dans les panaches de gaz volcaniques émis par les bouches éruptives du Kilauea.
La campagne d’échantillonnage de gaz et de particules effectuée au cours de l’été 2018 a permis d’examiner dans quelle mesure les éléments traces, tels que les métaux, varient avec la distance, dans le panache du Kilauea. Il a été constaté que la quantité de ces éléments était très variable et ne dépendait pas uniquement de la distance entre le panache et la source de l’éruption. La plupart des particules avaient un diamètre inférieur à 2,5 microns, une taille suffisamment petite pour pénétrer profondément dans les poumons.
Les résultats de l’étude corroborent également les observations précédentes concernant la transformation chimique du SO2 gazeux en particules. Les zones éloignées de la source des émissions gazeuses, comme la côte de Kona, sur la Grande Ile d’Hawaii, présentaient de fortes concentrations de particules, car une grande partie du SO2 s’était transformée en particules en se déplaçant sous le vent. Les normes de qualité de l’air ambiant concernant le SO2 et les particules ont été dépassées à divers endroits sur l’île au cours des trois mois de l’éruption dans la LERZ.
Contrairement à l’été 2018 et la forte intensité de l’éruption, le calme qui rège actuellement sur le Kilauea offre une excellente occasion d’étudier la qualité de l’air ambiant. Cela va permettre aux scientifiques mesurer la différence entre la pollution anthropique, telle que les gaz d’échappement des véhicules, et la pollution volcanique. Comprendre la contribution de la pollution d’origine humaine est important sur une île où la population ne cesse d’augmenter.
Pour étudier cette pollution anthropique, l’équipe scientifique envisage de revenir pendant l’été 2019 échantillonner l’air dépourvu de la contribution volcanique, en utilisant le même équipement et les mêmes sites d’échantillonnage. Les mesures effectuées «avant» et «après» l’éruption permettront d’isoler l’empreinte chimique des particules volcaniques. Cela améliorera notre compréhension des effets potentiels des panaches volcaniques sur la santé, l’environnement et les écosystèmes.
Source: USGS / HVO.

—————————————————

The end of Kilauea’s 2018 eruption this past September was accompanied by an enormous decrease in the amount of sulphur dioxide (SO2) emitted from the volcano. This has led to beautifully clear skies above the Island of Hawaii, especially on the west side, where the volcanic pollution known as vog was regularly observed in past years.

During the peak of the 2018 Lower East Rift Zone (LERZ) eruption, when the volcanic emissions and vog were both much stronger, a team of academic researchers worked with the Hawaiian Volcano Observatory and the Hawaii State Department of Health to study the intense air pollution generated by the eruption.

The researchers sampled volcanic particles and gases at the LERZ Fissure 8 vent, the ocean entry, and various downwind sites. To determine the nature and composition of the volcanic pollution, samples were collected by pumping air through filters, from the ground and from the air using drones.

The tiny particles captured on the filters were then analyzed in the laboratory for chemical composition and imaged using a powerful Scanning Electron Microscope (SEM) to determine the composition of individual particles. Other instruments determined the number or weight of particles of various sizes, which are associated with different health impacts in studies of human-caused pollution. The samples were analyzed for pH, major components including sulphate, fluoride, and chloride; and trace metals, such as lead and arsenic.

These analyses targeted chemical species that are present in volcanic plumes.  Kilauea’s plume is composed primarily of water vapour, carbon dioxide (CO2), sulphur dioxide (SO2), along with smaller amounts of other gases, including hydrogen chloride and hydrogen fluoride. SO2 reacts in the atmosphere over time to form tiny acidic and neutral sulphate particles, which are a major component of volcanic pollution in Hawaii. Small amounts of toxic metals have also been found in the volcanic gas plumes emitted from Kilauea’s vents.

The summer 2018 gas and particle sampling campaign was the first effort to look at how trace elements, such as metals, change over distance in the Kilauea plume. It was found that the amount of these elements was highly variable but was not solely predicted by the distance of the plume from the vent. Most of the particles were less than 2.5 micron in diameter, small enough to penetrate deep into the lungs.

The study’s findings also support previous observations regarding the chemical conversion of SO2 gas to particles. Areas far from the gas source, such as along Hawaii Island’s Kona coast, had high particle concentrations since much of the SO2 gas had converted to particles as it travelled downwind. Ambient air quality standards for both SO2 gas and particles were exceeded at various locations on the island during the three months of the LERZ eruption.

In contrast to the summer 2018, Kilauea’s current lull in activity provides an excellent opportunity to study background air quality. This can help scientists distinguish between anthropogenic pollution, such as traffic exhaust, and volcanic pollution. Understanding the contribution of human-made pollution is important on an island with a growing population.

To address the characterization of anthropogenic pollution, the same research team plans to return this coming summer to sample the background air without the volcanic contribution, using the same equipment and sampling sites. The “before” and “after” snapshots will help to isolate the chemical fingerprint of the volcanic particles. This will improve our understanding of the potential health, environmental, and ecosystem effects of volcanic plumes.

Source : USGS / HVO.

Emissions gazeuses dans l’Halema’uma’u pendant l’éruption du Kilauea (Photos: C. Grandpey)

Le HVO sur l’île d’Oahu (Hawaii)? // HVO on Oahu Island (Hawaii)?

Des rumeurs circulent depuis quelque temps sur un possible transfert de l’Observatoire Volcanologique des Volcans d’Hawaii (le célèbre HVO) de Big Island vers l’île d’Oahu. Pour ceux qui, comme moi, connaissent et ont visité le HVO, une telle décision semble une erreur. L’Observatoire domine la caldeira du Kilauea depuis plus d’un siècle et offre une vue imprenable sur le cratère de l’Halema’uma’u. Grâce à cette position privilégiée, les scientifiques ont pu, au cours des dernières années, observer le comportement du lac de lave dans l’Overlook Crater.
Le HVO a confirmé la semaine dernière qu’Oahu était l’une des options envisagées pour implanter une nouvelle structure Cette relocalisation aurait lieu en raison des lourds dégâts subis par l’Observatoire lors de la dernière éruption du Kilauea. L’intense activité sismique a rendu le bâtiment inhabitable.
Une autre option que l’île d’Oahu consisterait à installer l’Observatoire à l’intérieur du Parc National des Volcans d’Hawaii, ou bien sur le campus de l’Université d’Hawaï à Hilo. Il est bien évident que la première solution serait la plus adaptée.
Le responsable de la Protection Civile du comté d’Hawaï pense, lui aussi, que l’Observatoire doit rester sur la Grande Ile pour « contrôler toute activité liée à la lave ». Janet Babb, porte-parole du HVO, a déclaré qu’elle ne pouvait commenter l’éventualité d’un déménagement, car des discussions sont en cours à Washington, DC. Le HVO est géré par l’USGS, qui dépend du Département de l’Intérieur aux États-Unis.
Le transfert du HVO à Oahu serait justifié par le fait qu’il existe déjà des installations fédérales sur cette île. OK, mais ce serait vraiment très loin de toute activité volcanique sur la Grande Ile. Affaire à suivre. Je tiendrai au courant de l’évolution de la situation.
Source: Journaux américains.

————————————————-

There have been rumours for some time about a possible relocation of the Hawaiian Volcano Observatory (HVO) from Hawaii Big Island to Oahu. For those who, like me, have visited HVO, such a decision would be a mistake. The Observatory has been located at the Kilauea caldera rim for more than a century and offers a great view on Halema’uma’u Crater. For several years, scientists could observe the behaviour of the lava lake in the Overlook Crater. .

The Observatory confirmed last week that Oahu is one option under consideration for a new home. The reason for the relocation is the heavy damage undergone by HVO during Kilauea’s last eruption. The intense seismic activity has made the structure uninhabitable.

Other options than Oahu include a new site within the National Park or on the University of Hawaii at Hilo campus.

The head of Hawaii County Civil Defence thinks that the Observatory needs to stay on the island “to help with the response to any lava activity”. I do think he is perfectly right. Observatory spokeswoman Janet Babb said she can’t comment on the likelihood of a move because discussions are ongoing in Washington, D.C. The observatory falls under the U.S. Geological Survey, which is part of the U.S. Department of Interior.

A potential move to Oahu as a preferred option would be justified by the fact there are existing federal facilities. OK, but it would be very far from any volcanic activity on the Big Island. I will keep informed about the evolution of the situation.

Source: U.S. newspapers.

Le bâtiment du HVO offrait une vue imprenable sur la caldeira d Kilauea (Photos: C. Grandpey)

Mesure de l’épaisseur des coulées de lave // How to measure the thickness of lava flows

Au cours des premières années de l’éruption du Kilauea au niveau du Pu’uO’o, les scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) ont mesuré l’épaisseur des coulées de lave en effectuant des relevés manuels en bordure de chaque coulée. Le volume de la coulée était ensuite calculé en multipliant sa surface par son épaisseur moyenne. Le débit éruptif était égal à ce volume divisé par la durée de l’éruption en secondes. Pendant la première année d’activité du Pu’uO’o en 1983, le débit éruptif a été estimé entre 15 et 65 mètres cubes par seconde. Cependant, cette méthode ne tenait pas compte de toutes les variations d’épaisseur des coulées à travers le champs de lave. Par exemple, de nombreuses coulées a’a, comme la coulée de lave émise par la Fracture n° 8 en 2018, abritent un chenal ou une cavité vide. En conséquence, si l’on suppose que la coulée présente une épaisseur constante, on surestime le volume de la lave ainsi que le débit éruptif.
En 1993, les scientifiques ont utilisé un radar aéroporté et survolé Kilauea à un peu moins de 8 km d’altitude. Le radar pouvait élaborer une image des coulées de lave avec une précision de 1 à 2 mètres. Il était également en mesure de fournir des milliers de points de hauteur de la surface de chaque coulée de lave, et pas seulement l’épaisseur en bordure de coulée, comme cela se faisait auparavant. Le volume d’une coulée calculé de cette manière (hauteur de la surface du sol avant la éruption soustraite de la hauteur de la lave de 1993) était légèrement supérieur à celui calculé avec la méthode classique de mesure manuelle en bordure des coulées.

Un progrès dans la mesure de l’épaisseur des coulées est intervenu avec l’arrivée du LIDAR [Light (ou Laser Imaging) Detection And Ranging], appareil qui émet un faisceau laser et en reçoit l’écho (comme le radar), ce qui permet de déterminer la distance d’un objet. Le LIDAR a été embarqué à bord d’avions ou d’hélicoptères et a envoyé des milliards d’impulsions laser en direction du sol. On a ainsi obtenu une foule de données précises (à quelques centimètres près) sur l’épaisseur des coulées de lave.
Au cours des dernières années, les géologues ont obtenu des résultats semblables en hélicoptère, en prenant des photos numériques superposées du sol, avec pour chaque cliché les coordonnées GPS de l’appareil photo. Les logiciels informatiques utilisant la “Surface-from-Motion” (SfM) technique – Surface à partir du Mouvement – peuvent identifier automatiquement les emplacements communs sur des photos adjacentes et réaliser une image 3 D des hauteurs du sol à partir de centaines de photos. Un autre avantage est que les photos peuvent être assemblées pour produire une carte haute résolution, en mosaïque de photos, de la zone observée.
Lors de l’éruption dans l’East Rift Zone du Kilauea en 2018, des appareils photo ont été embarqués sur des drones. A partir de quelque 2 800 photographies aériennes, le logiciel SfM a calculé 1,5 milliard de points communs qui ont été connectés pour créer un modèle altimétrique numérique à l’échelle du centimètre de la coulée de lave dans le district de Puna. Un modèle pré-éruptif obtenu avec le LIDAR a été soustrait du modèle réalisé avec la technique SfM du drone pour produire une carte d’épaisseur des coulées de lave. Une première version de cette carte, publiée sur le site web du HVO le 19 février 2019, est visible ci-dessous. (https://volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps.html)

En utilisant cette première ébauche de la carte, on peut obtenir une estimation approximative du volume total de lave émis au cours de l’éruption : environ 0,8 kilomètre cube. En tenant compte des cavités dans la lave et en divisant par la durée de l’éruption, on obtient un débit éruptif minimum d’environ 50 à 200 mètres cubes par seconde. Ce débit éruptif est nettement supérieur à la plupart de ceux enregistrés lors des précédentes éruptions du Kilauea.

Source: USGS / HVO.

———————————————–

During the first few years of Kilauea Volcano’s eruption at Pu’uO’o, Hawaiian Volcano Observatory (HVO) scientists measured thicknesses using hand levels at multiple locations along the edges of each lava flow. The flow volume was then calculated as the product of the flow area multiplied by the average flow thickness. The eruption rate equalled this volume divided by the duration of the eruption in seconds. For the first year of Pu’uO’o activity in 1983, calculated eruption rates were 15-65 cubic metres per second. However, this method did not rale into account all the variations of lava flow thicknesses across flows. For example, many a’a flows, like Kilauea’s fissure 8 lava flow in 2018, host an empty lava channel. If they assumed that the flow was uniformly as thick as the height of its edges, scientists would overestimate the lava flow volume as well as the eruption rate.

In 1993, scientists used an airborne radar flown over Kilauea at an altitude of just under 8 km. The radar could image a lava flow with accuracies of 1-2 metres and determine thousands of surface elevations for each lava flow, not just a few thicknesses along its edge. Flow volumes calculated this way (pre-eruption elevations of the ground surface subtracted from the 1993 elevations of a lava flow) were slightly higher than those calculated with the simpler method of measuring thicknesses along flow edges.

The next improvement in measuring flow thickness was the development and use of Light Detection and Ranging (LIDAR). Specialized equipment was flown over an area by airplane or helicopter, from which billions of laser pulses showered down to the ground. This produced details on lava flow surface elevations accurate to a few centimetres.

Over the last few years, similar results have been obtained by geologists in helicopters snapping overlapping digital photos of the ground, each tagged with the camera’s GPS coordinates. Computer software, using the “Surface-from-Motion” (SfM) technique, can automatically identify common locations in adjacent photos and assemble a 3-dimensional image of ground elevations from hundreds of photos. A bonus is that the photos can be stitched together to produce a single, high-resolution, photo mosaic map of the area.

During Kilauea’s 2018 lower East Rift Zone eruption, cameras on drones did the photography. Using about 2,800 aerial photographs, the SfM software calculated 1.5 billion common points that were connected to create a centimetre-scale digital elevation model of the Puna lava flow. A pre-eruption LIDAR digital elevation model was subtracted from the drone SfM digital elevation model of the erupted flows to produce a lava flow thickness map. A preliminary version of this map was posted on the HVO website on February 19, 2019 and can be seen here below. (https://volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps.html)

Using the preliminary map, one can calculate a rough estimate of the total volume of lava erupted and added to the land surface: about 0.8 cubic kilometres. When corrected for voids in the lava and divided by the duration of the eruption, this yields a minimum eruption rate of about 50-200 cubic metres per second. This eruption rate is significantly larger than most known Kilauea eruption rates.

Source : USGS / HVO.

Source: USGS / HVO

La Fracture n°8 a émis d’énormes quantité de lave dans l’East Rift Zone  en 2018 (Crédit photo : USGS /HVO)

Quelques nouvelles d’Hawaii // Some news from Hawaii

L’éruption a été déclarée définitivement terminée par le HVO et tout est actuellement calme sur le Kilauea. Il n’y a aucune lave active sur la Grande Ile d’Hawaii. Aucun changement majeur n’a été observé sur le Pu’uO’o. Un récent survol en hélicoptère a permis de constater que la morphologie du cratère vide se modifie lentement suite à des effondrements de ses parois. Le magma a quitté le Pu’uO’o le 30 avril 2018 et a fait surface quelques jours plus tard dans la Lower East Rift Zone. Après cette évacuation de la lave, le cratère présentait une profondeur d’environ 356 mètres. Des matériaux provenant d’effondrements des parois du cratère ont, depuis cette époque, recouvert son plancher qui se trouve aujourd’hui à 286 mètres de profondeur.

Un modèle 3D du cratère du Pu’uO’o a été réalisé à partir d’images thermiques obtenues lors du récent survol. Les zones blanches montrent les points chauds dans le cratère. La forme du cratère continue de changer suite à de petits effondrements qui se produisent de temps à autre. Une station GPS sur le flanc nord du Pu’uO’o montre un affaissement constant de la lèvre du cratère. Ce mouvement est dû au glissement du rebord instable du cône.
Voici une courte vidéo du survol:
https://volcanoes.usgs.gov/observatories/hvo/multimedia_uploads/multimediaFile-2662.mp4

Dans ses dernières mises à jour, le HVO indique que les paramètres relatifs à la déformation du sol sont à mettre en relation avec le remplissage du réservoir magmatique profond du Kilauea. Les émissions de SO2 dans l’East Rift Zone et au sommet du Kilauea restent faibles.
Source: USGS / HVO.

——————————————–

With the eruption definitely declared over by HVO, everything is currently quiet on Kilauea Volcano. There is currently no active lava to be seen on the Big Island. No major changes have been observed at Pu’uO’o. A recent helicopter overflight allowed to see that the empty crater is slowly being altered by small rockfalls within it. Magma drained from beneath Pu’uO’o on April 30th, 2018 and erupted a few days later in the lower East Rift Zone. After the magma drained, the crater was roughly 356 metres deep. Collapses on the crater walls have since filled the deepest part of the crater with rockfall debris. Today, the deepest portion of the crater is 286 metres.

A 3D model of the Pu’uO’o crater was constructed from thermal images taken during the recent overflight. White areas show warm spots in the crater. The shape of the crater continues to change through occasional small collapses. A GPS station on the north flank of Pu’uO’o has been showing steady slumping of the craters edge. This motion is due to the sliding of the unstable edge of the cone.

Here is a short video of the overflight:

https://volcanoes.usgs.gov/observatories/hvo/multimedia_uploads/multimediaFile-2662.mp4

In its latest updates, HVO indicated that deformation signals are consistent with the refilling of Kilauea Volcano’s deep East Rift Zone magma reservoir. SO2 emission rates on the East Rift Zone and at Kilauea’s summit remain low.

Source: USGS / HVO.

Voici deux images montrant le cratère du Pu’uO’o le 11 mai 2018 et le 18 mars 2019. On se rend parfaitement compte de la remontée du plancher suite aux effondrements des parois du cratère.

  (Source : USGS / HVO)