Hawaii: Coronavirus et pas d’éruption! // COVID-19 and no eruption !

Comme l’Europe, Hawaï est infectée par le coronavirus. Le Parc National des Volcans reste ouvert, mais modifie son fonctionnement pour favoriser la distanciation sociale. Le Visitor Center du Kilauea est fermé, mais les toilettes sont ouvertes. L’hôtel de la Volcano House ainsi que les restaurants sont fermés.
Tous les sentiers et points d’observation restent ouverts. La plupart des sentiers et campings à l’intérieur du Parc sont ouverts. Les permis doivent être récupérés en personne par une fente dans la porte du bureau qui les délivre.
Les visites de groupes sont limitées à 10 personnes ou moins et les guides doivent appliquer des procédures de distanciation entre les personnes.
L’entrée dans le Parc des Volcans est actuellement gratuite. .

Voici quelques nouvelles sur l’activité volcanique. Pas grand-chose à se mettre sous la dent d’un point de vue volcanique car le Kilauea n’est pas en éruption. Pas de lac ou de coulée de lave! Le HVO indique qu’il n’y a guère eu de changements géologiques depuis la fin de l’activité éruptive en septembre 2018. Les émissions de SO2 sont faibles au sommet et inférieurs aux limites de détection sur le Pu’uO’o et dans la Lower East Rift Zone. La pièce d’eau au fond de l’Halema’uma’u continue de prendre lentement du volume. Ses dimensions sont d’environ 100 mètres sur 200 mètres. Actuellement, la profondeur est d’environ 28 mètres.
Le HVO ajoute que même s’il n’y a pas d’éruption en ce moment, il reste des zones où la température au sol reste élevée, avec des émissions de gaz résiduelles à proximité des fissures qui se sont ouvertes en 2018 dans la Lower East Rift Zone. Les coulées de lave de l’éruption de 2018 sont pour la plupart sur des propriétés privées. Les visiteurs sont priés de ne pas y pénétrer et de ne pas y garer leurs véhicules. .
Depuis le 25 juin 2019, le niveau d’alerte du Kilauea est : Normal / Vert.
Source: HVO et journaux locaux.

——————————————

Like Europe, Hawaii has been infected by COVID-19 coronavirus. Volcanoes National Park remains open, but is modifying operations to promote social distancing. Kilauea Visitor Center is closed, but restrooms are open. Volcano House hotel, restaurants are closed.

All previously open trails and overlooks are open. Most of the backcountry is open for hiking and camping. Backcountry permits are retrieved in person through a slot in the backcountry office door.

Commercial tours are limited to 10 people or less and guides must enforce social distancing procedures.

All entrance fees are temporarily suspended until further notice.

 

Here is some news about volcanic activity. There is not much to be seen from a volcanic point of view as Kilauea is not erupting. No lava lake and no lava flow! HVO indicates that there have been minor geologic changes since the end of eruptive activity in September 2018. SO2 emission rates are low at the summit and are below detection limits at Pu’uO’o and the lower East Rift Zone. The water pond at the bottom of Halema’uma’u continues to slowly expand and deepen. Its dimensions are approximately 100 metres by 200 metres. The current depth is about 28 metres.

HVO adds that although not currently erupting, areas of persistently elevated ground temperatures and minor release of gases are still found in the vicinity of the 2018 lower East Rift Zone fissures. Lava flows and features created by the 2018 eruption are primarily on private property and persons are asked to be respectful and not enter or park on private property.
Since June 25th, 2019, Kilauea’s alert level has been at Normal / Green.

Source: HVO and local newspapers.

Attention! Photo souvenir qui ne reflète en rien la réalité actuelle sur le Kilauea! (Photo: C. Grandpey)

Les mesures GPS à Hawaii // GPS measurements in Hawaii

Le Global Positioning System (GPS) est un système américain de navigation par satellite conçu à l’origine pour des applications militaires, mais qui est devenu extrêmement populaire et largement utilisé. En plus de la constellation américaine, il existe trois autres systèmes de navigation par satellite (GNSS) dans le monde : GLONASS (Russie), Galilée (Europe) et BeiDou (Chine). Les nouveaux récepteurs GNSS peuvent suivre simultanément plusieurs constellations de satellites, ce qui améliore la précision.
À Hawaii, le HVO exploite un réseau GNSS de 67 stations réparties sur toute l’île, mais avec priorité aux zones de déformation telles que les zones de rift. Ces stations GNSS de haute précision fournissent des données aux scientifiques 24 heures sur 24 et 7 jours sur 7.
Le principe de fonctionnement est le suivant : les satellites GNSS émettent des ondes radio qui se déplacent à la vitesse de la lumière et transmettent des informations sur la position exacte du satellite et l’heure actuelle. L’antenne au sol prend en compte les signaux radio de plusieurs satellites et les transmet au récepteur qui calcule l’emplacement exact selon un processus appelé trilatération. Un système GNSS de haute précision peut déterminer un emplacement avec une marge d’erreur de seulement quelques millimètres.

Actuellement, la constellation GPS américaine compte 33 satellites opérationnels en orbite à une altitude de 20 000 km. Pour localiser avec précision l’emplacement d’une station GNSS, le récepteur doit recevoir en continu des données pendant six heures au moment où les satellites traversent l’horizon en vue de la station. Quatre satellites sont nécessaires pour calculer un emplacement 3D, mais généralement un récepteur GNSS en suit huit ou plus pour calculer une position plus précise.
Plusieurs facteurs peuvent affecter le signal GNSS et la précision des emplacements qui en dépendent. L’ionosphère et la troposphère, couches de l’atmosphère à travers lesquelles se déplacent les ondes radio, peuvent retarder les signaux radio, mais cela peut être corrigé avec des modèles atmosphériques. Il est important que les antennes GNSS fonctionnent dans un environnement bien dégagé,  sans interférence d’objets comme des arbres ou des bâtiments.
Pour obtenir une vue globale des déformations d’un volcan, le HVO effectue également chaque année des mesures sur le terrain sur le Mauna Loa et le Kilauea. Au cours de ces missions, le personnel du HVO place des récepteurs GPS temporaires et des antennes sur des supports – des disques de laiton qui ont été arrimés au sol – et les scientifiques laissent l’équipement en place pendant quelques jours sur chaque site. Le support du récepteur montre généralement une croix à l’intérieur d’un triangle qui sert de point de référence pour le centrage de l’antenne.
Au cours de chaque mission de mesures, le personnel du HVO revient sur les sites de mesures afin de collecter les données et déterminer si la station a bougé. Les données ainsi collectées permettent de calculer à la fois la position horizontale et verticale – comme on le fait pour la latitude, la longitude et l’altitude – et ainsi d’évaluer les variations par rapport aux relevés précédents.
Des campagnes de levés GPS sont conduites sur le Mauna Loa et le Kilauea depuis le milieu des années 1990. Elles fournissent des données extraordinairement précises sur la déformation de ces volcans. En plus du Mauna Loa et du Kilauea, le Hualalai et l’Haleakala sont inspectés périodiquement (tous les trois à cinq ans) dans le cadre du programme de surveillance des volcans par le HVO.
Source: USGS / HVO.

———————————————–

The Global Positioning System (GPS) is a US satellite-navigation system originally designed for military use but now an extremely popular and widely used technology. In addition to the US constellation, there are three other Global Navigation Satellite Systems (GNSS): GLONASS (Russia), Galileo (European) and BeiDou (China). New GNSS receivers can simultaneously track multiple constellations of satellites , which provides improved accuracy.

In Hawaii, HVO operates a 67-station GNSS network spread out across the island but concentrated near persistent deforming features like rift zones. These high-precision GNSS stations give scientists a 24/7 record.

GNSS satellites send out radio waves that travel at the speed of light and transmit information about the exact position of the satellite and the current time. The antenna on the ground listens to the radio signals from multiple satellites and passes them to the receiver which calculates the exact location using a process called trilateration. High-precision GNSS equipment and analysis can determine a location down to less than a centimetre.

Currently, the American GPS constellation has 33 operational satellites orbiting at an altitude of 20 000 km. To accurately pinpoint the location of a high-precision GNSS station, the receiver must continuously receive data for six hours as satellites arc across the horizon in view of the station. Only four satellites are needed to calculate a 3-D location, but typically a GNSS receiver will track eight or more to calculate a more precise position.

There are several factors that affect the GNSS signal and accuracy of derived locations. The ionosphere and troposphere, layers of the atmosphere through which the radio waves travel, introduce delays in the radio signals that can be corrected with atmospheric models. It is important for GNSS antennas to have enough clear “sky view” without object interference suchas trees or buildings.

To get a more complete view of the deforming volcano, HVO also conducts yearly campaign surveys on Mauna Loa and Kilauea. During these surveys, HVO staff place temporary GPS receivers and antennas on benchmarks – permanent brass disks that have been drilled into the ground – and leave the equipment in place for a couple of days at each site. The benchmark typically has a cross inside a triangle that serves as a reference point for centering of the antenna.

During each survey, HVO staff returns to these benchmarks to collect data and determine how the point has moved. Data collected allow to calculate both a horizontal and vertical location, similar to latitude, longitude, and altitude and thus to evaluate the change from prior surveys.

Campaign of GPS surveys have been conducted on both Mauna Loa and Kilauea since the mid-1990s, providing extraordinary records of volcano deformation. Along with Mauna Loa and Kilauea, Hualalai and Haleakala are surveyed periodically (every three to five years) as part of HVO’s volcano monitoring program.

Source : USGS / HVO.

Station GPS sur le flanc sud du Kilauea (Crédit photo : USGS)

Réouverture du Thurston Lava Tube (Hawaii) // Reopening of the Thurston Lava Tube (Hawaii)

Confirmant ce que j’écrivais sur ce blog le 2 février 2020, le Thurston Lava Tube a officiellement rouvert au public dans le Parc National des Volcans d’Hawaii, après l’éruption du Kilauea qui a obligé à sa fermeture pendant plus d’un an.
Ce tunnel de lave très touristique, également connu sous le nom de Nāhuku, était fermé depuis le 4 mai 2018, suite à un séisme de M 6,9 et quatre mois d’activité éruptive et sismique du Kilauea.
Le tunnel de lave sera ouvert 24h / 24 et sera éclairé de 8h à 20h. Les touristes doivent apporter une lampe de poche et prévoir des piles supplémentaires s’ils visitent le site avant 8 h ou après 20 h.
Pendant l’éruption, plusieurs gros blocs se sont détachés du plafond du tunnel et de nouvelles fissures sont apparues. Deux détecteurs de fissures ont été installés et un bloc qui dépasse de la voûte a été marqué à la peinture pour éviter que les gens se cognent et se blessent. Le système d’évacuation de l’eau stagnante sur le sol a été amélioré et la ligne électrique qui alimente les toilettes a été remplacée.
Le parking de Nāhuku a également été endommagé lors de l’éruption et a dû être modifié. Le stationnement est désormais limité à 30 minutes. Les visiteurs peuvent également se garer sur d’autres sites, notamment les parkings de la Devastation Trail et du belvédère du Kilauea Iki.
Pendant la fermeture, de longues racines d’ohi’a (arbustes actuellement menacés par une maladie) ont traversé la plafond du tunnel et touchent le sol dans certaines zones. Il y a également des colonies de matière microbienne qui laissent des taches blanches sur les parois du tunnel. Il est demandé aux touristes de ne pas toucher les parois du tunnel ou les racines. Ces caractéristiques naturelles uniques ont probablement réapparu en raison de l’absence de visiteurs depuis plus d’un an.
Le tunnel de lave a été découvert en 1913 par Lorrin Thurston, un éditeur de journaux locaux et un ardent défenseur de la création du parc national. Son nom hawaïen, Nāhuku, signifie «les protubérances» ; il fait peut-être référence aux stalactites de lave qui ornaient autrefois la voûte du tunnel mais qui ont malheureusement disparu à cause des collectionneurs de souvenirs. Gare à la malédiction de Pele !
Source: Journaux hawaïens.

————————————————-

Confirming what I wrote in a post released on February 2nd, 2020, Thurston Lava Tube in Hawaii Volcanoes National Park has officially reopened to the public after the eruption of Kilauea shut it down for over a year.

The popular lava tube, also known as Nāhuku, had been closed since May 4th, 2018, following an M 6.9 earthquake and four months of eruptive and seismic activity at Kilauea Volcano.

The lava tube will be open 24 hours a day, and will be lit from 8 a.m. to 8 p.m. Visitors must bring a flashlight and extra batteries if visiting before 8 a.m. or after 8 p.m.

During the eruption, several large rocks were dislodged from the lava tube’s ceiling, and new cracks appeared. Two crack monitors were installed, and a low-hanging rock is visibly marked off to prevent head injuries. Drainage was improved to reduce standing water on the cave’s floor, and the electrical line to the bathroom was replaced.

The parking lot at Nāhuku was also damaged during the eruption and had to be modified. Parking is now limited to 30 minutes. Visitors can also park at alternate sites, including Devastation Trail and Kilauea Iki Overlook.

During the closure, long, delicate roots from ohi’a trees (currently threatened with a disease) that grow on top of the lava tube grew down through the ceiling to touch the floor in some areas. There are also large colonies of white microbial matter on the lava tube walls. Visitors are urged not to touch the lava tube walls or the roots. These unique natural features have likely reappeared due to the absence of people for more than a year.

The lava tube was discovered in 1913 by Lorrin Thurston, a local newspaper publisher and advocate for the establishment of the national park. Its Hawaiian name, Nāhuku, means “the protuberances,” which possibly refers to the lava stalactites that once covered its ceiling. Unfortunately, those have disappeared due to souvenir collectors. Beware of Pele’s curse !

Source : Hawaiian newspapers.

Vue du Thurston Lava Tube (Crédit photo: Wikipedia)

Mesure et analyse des gaz sur le Kilauea (Hawaii) // Measurement and analysis of gases on Kilauea Volcano (Hawaii)

Après les géodésistes, l’Observatoire des Volcans d’Hawaii(HVO) explique le rôle joué par les géochimistes dans l’analyse du comportement du Kilauea.
Les gaz donnent des indications précieuses sur les processus volcaniques, même quand le volcan n’est pas en éruption. Les ratios de gaz émis, comme le dioxyde de carbone (CO2) et le dioxyde de soufre (SO2), peuvent renseigner les scientifiques sur la profondeur à laquelle se trouve le magma. La quantité de SO2 émise par le volcan reflète également la quantité de magma ou de lave en cours de dégazage.
Les géochimistes du HVO utilisent diverses méthodes pour contrôler les émissions de gaz du Mauna Loa et du Kilauea, avec des mesures directes et des techniques à distance. L’une des mesures les plus fréquentes concerne les émissions de SO2, afin de savoir combien de tonnes sont émises par jour. Pour cela, les géochimistes se rendent sous le panache de gaz avec un spectromètre ultraviolet. Le SO2 absorbe la lumière ultraviolette, donc lorsqu’il y a une plus grande quantité de SO2 dans le panache éruptif, une plus faible quantité de lumière ultraviolette atteint le spectromètre. Ces mesures sont actuellement effectuées toutes les 2 à 4 semaines. Par contre, pendant l’éruption de 2018, elles étaient effectuées au minimum tous les deux jours. Lorsque le lac de lave s’agitait au sommet de Kilauea, le HVO avait un réseau de spectromètres qui calculait les émissions de SO2 toutes les quelques secondes.
Les géochimistes s’appuient également sur le rapport entre le CO2 et le SO2. Les rapports de quantités de ces gaz donnent des informations sur la profondeur à laquelle se trouve le magma. Le CO2 n’absorbe pas la lumière ultraviolette comme le SO2 ; les scientifiques mesurent donc directement le CO2. Pour ce faire, ils utilisent des capteurs placés directement dans le panache de gaz volcanique. Par exemple, le capteur «MultiGas» pompe le gaz et détermine les concentrations de CO2, SO2, H2S et de vapeur d’eau. Le travail consiste ensuite à calculer leurs ratios et à contrôler les fluctuations qui pourraient indiquer une augmentation du magma dans le volcan.
Il existe trois types de capteurs MultiGas au HVO: 1) des stations permanentes sur le Kilauea et le Mauna Loa qui envoient des données au HVO en temps réel: 2) un MultiGas portable, de la taille d’une grande mallette qui permet de contrôler la chimie des gaz dans de nombreux endroits; 3) un MultiGas miniaturisé monté sur un drone pour mesurer le gaz dans des sites dangereux ou inaccessibles.
Il y a d’autres gaz présents en faibles quantités dans les panaches volcaniques. Eux aussi peuvent fournir des informations préciueses sur le comportement d’un volcan. Pour mesurer ces gaz mineurs tels que le chlore, le fluor et l’hélium, les géochimistes utilisent des méthodes à distance et sur le terrain.
De nombreux gaz volcaniques absorbent le rayonnement infrarouge ; en conséquence, pendant les éruptions, le HVO peut utiliser la télédétection de l’énergie infrarouge émise par la lave. Un spectromètre infrarouge à transformée de Fourier (IRTF) détecte différentes longueurs d’onde infrarouge et mesure leur absorption par de nombreux gaz simultanément. Cela fournit de nombreux ratios de gaz qui aident à comprendre les processus de dégazage lors des éruptions.
Une autre façon de mesurer plusieurs gaz volcaniques à la fois est de les collecter dans une bouteille de l’envoyer au laboratoire pour analyse. Pour cela, les scientifiques utilisent une bouteille spéciale [NDLR : avec le vide à l’intérieur] équipée s »un tube que l’on introduit dans une fumerolle. Ce type d’échantillonnage est actuellement effectué une fois tous les trois mois au niveau des Sulphur Banks dans le Parc National des Volcans d’Hawaï pour contrôler sur le long terme l’évolution de la chimie du gaz.
Ce travail suppose l’utilisation d’un grand nombre d’instruments. C’est pour ce la que l’équipe de géochimistes travaille en étroite collaboration avec les techniciens du HVO et les informaticiens pour s’assurer que tout  cetéquipement fonctionne correctement.
Source: USGS / HVO.

———————————————

After the geodesists, the Hawaiian Volcano Observatory (HVO) esplians the part played by geochemists in analysing the behaviour of Kilauea Volcano.

Volcanic gases give clues about volcanic processes, even when no lava is erupting. Ratios of escaped gases like carbon dioxide (CO2) and sulphur dioxide (SO2) can tell scientists about magma depth. The total amount of SO2 released also reflects the amount of magma or lava that is degassing.

HVO geochemists use a variety of methods to track gas emissions from Mauna Loa and Kilauea, including direct measurements and remote techniques. One of the most frequent measurements is the SO2 emission rate, in order to know how many tonnes are emitted per day. For this, geochemists drive or walk under the gas plume with an ultraviolet spectrometer. SO2 absorbs ultraviolet light, so when more SO2 is present overhead, less ultraviolet light reaches the spectrometer. These measurements are currently made once every 2-4 weeks, whereas during the 2018 eruption, they were made at least every other day. When Kīlauea’s summit lava lake was present, HVO had a network of spectrometers that calculated the SO2 emission rate every few seconds.

Another measurement geochemists rely on is the ratio of CO2 to SO2. The relative amounts of those gases give information about the depth of magma. CO2 does not absorb ultraviolet light like SO2, so scientists measure CO2 directly. To do this, they use sensors placed right in the volcanic gas. For instance, an instrument called “MultiGas” pumps in gas and determines concentrations of CO2, SO2, H2S and water vapour. The job is then to calculate their ratios and track changes that might indicate magma rising within the volcano.

There are three types of MultiGas at HVO: 1) permanent stations on Kilauea and Mauna Loa that send data to HVO in real-time: 2) a portable MultiGas, which is the size of a large briefcase and allows to check gas chemistry in many places; 3) a miniaturized MultiGas mounted on a drone to measure gas in hazardous or inaccessible sites.

There are additional gases in volcanic plumes that are not present in large amounts but still provide information about volcanic behaviour. To measure those minor gases, including chlorine, fluorine, and helium, geochemists use remote and direct methods.

Many volcanic gases absorb infrared radiation, so during eruptions HVO can use remote sensing of infrared energy emitted by lava. A Fourier Transform Infrared (FTIR) spectrometer detects different wavelengths of infrared and measures absorption by numerous gases simultaneously. This provides many gas ratios that help to understand degassing processes during eruptions.

Another way to measure multiple volcanic gases at once is to collect a bottle of gas and send it to the lab for chemical analysis. For this, scientists use a special glass bottle with tubing inserted into a fumarole. This kind of sampling is currently done once every three months at Sulphur Banks in Hawaii Volcanoes National Park to track long-term changes in gas chemistry.

That’s a lot of instrumentation, so the gas geochemistry team works closely with HVO technicians and IT specialists to make sure that all the equipment functions properly.

Source: USGS / HVO.

Panache de gaz au-dessus du lac de lave du Kilauea

Sulphur Banks, dans le Parc des Volcans d’Hawaii

(Photos: C. GRandpey)

 

La géodésie en volcanologie // Geodesy in volcanology

L’analyse du comportement d’un volcan met en oeuvre plusieurs paramètres, et donc plusieurs types d’instruments. Un article récemment mis en ligne par l’Observatoire des Volcans d’Hawaii (HVO) explique le rôle joué par la géodésie pour mesurer les déformations du sol provoquées par les mouvements du magma dans les profondeurs de la Terre.
Les résultats des levés effectués après le séisme de magnitude M 7,9 à San Francisco en 1906, avec les bouleversements subis par les clôtures et les limites de propriété, ont fait comprendre l’importance de la géodésie pour interpréter les mouvements des failles, et favorisé son entrée dans les sciences de la terre.
Aujourd’hui, un géodésiste s’appuie essentiellement sur le système GPS, sans oublier pour autant les inclinomètres de forage et l’interférométrie radar (InSAR).
La géodésie sur un volcan consiste à effectuer plusieurs levés pour détecter les déplacements éventuels de points de repère. Lors de l’ascension du magma à l’intérieur d’un édifice volcanique, la roche environnante est logiquement poussée vers le haut. Toutefois, lorsque les scientifiques mesurent la position des points de repère, ils se rendent également compte que ces points s’écartent de la source magmatique. Aujourd’hui, les instruments installés en permanence sur un volcan contrôlent en permanence les points de repère afin de pouvoir détecter le moindre  mouvement du sol en quelques minutes.
Le développement et la maintenance du réseau permanent est l’un des travaux les plus importants de l’équipe géodésique du HVO. Ce réseau permanent comprend plus de 60 stations GPS et 16 inclinomètres. Les données fournies sont essentielles pour l’évaluation des risques. En particulier, les inclinomètres, qui sont ides instruments extrêmement sensibles, sont souvent les premiers à indiquer l’inflation de l’édifice volcanique lors de sa mise sous pression par le magma.
L’équipe géodésique du HVO est responsable de l’analyse et de l’interprétation des données fournies par les instruments qui fonctionnent parfaitement grâce à d’autres membres du personnel de l’Observatoire. Les ingénieurs construisent, installent et entretiennent les instruments utilisés sur le terrain. Les informaticiens s’assurent que les ordinateurs communiquent correctement avec les sites éloignés à partir desquels les données sont transmises et que tout fonctionne normalement pour analyser les données.
Outre le réseau géodésique permanent, des campagnes sont organisées chaque année pour collecter des données de référence supplémentaires à l’aide de stations GPS temporaires. Quelque 80 repères sont contrôlés chaque année pendant 2 ou 3 jours pour déterminer leurs variations annuelles de position. Dans certaines zones, ces levés permettent au HVO de déterminer plus précisément les variations de déformation sur plusieurs années.
Pour mieux interpréter les données, les géodésistes utilisent des modèles informatiques qui prévoient de manière simplifiée – avec des sphères ou des ellipsoïdes – le mouvement de la surface de la terre en fonction de l’expansion ou de la contraction des corps magmatiques. On utilise ces formes simples car elles correspondent convenablement aux données et sont moins longues à calculer que les corps de forme irrégulière. Le temps est important car plusieurs milliers de calculs sont utilisés pour tester différents modèles.

Le modèle le mieux adapté montre aux scientifiques la zone la plus probable où se déplace le magma, l’endroit où il s’accumule et donc le lieu où  il est proche de la surface et susceptible de déclencher une éruption. Cependant, les seules données géodésiques ne suffisent pas à donner une image complète d’un volcan. Elles doivent être interprétées conjointement avec des données géologiques, sismiques et gazières. C’est pour cela que les différentes équipes du HVO se réunissent pour élaborer des hypothèses sur l’activité du moment, le niveau de danger et les scénarios futurs.
Source: USGS / HVO.

———————————————

Analysing the behaviour of a volcano involves several parameters, and so several types of instruments. A recent article released by the Hawaiian Volcano Observatory (HVO) explains the part played by geodesy to measure ground movements and deformation caused by magma in the depths on the Earth.

Results from surveys after the 1906 M 7.9 San Francisco earthquake, which offset fence lines and property boundaries, had a profound impact on researchers’ understanding of how faults move and favoured the entrance of geodesy into the earth sciences.

Today, a geodesist relies essentially on Global Positioning System (GPS) instruments, without forgetting borehole tiltmeters and satellite radar (InSAR).

Geodesy on a volcano consists in performing multiple surveys to determine how benchmark positions have changed. As magma moves into a volcano, the surrounding rock is pushed outward. When scienntists measure positions of benchmarks on the surface of the volcano, they also realise that they have also been pushed away from the magma source. Today, permanently installed instruments constantly monitor benchmark positions so that ground motion can be detected within minutes.

Growing and maintaining HVO’s permanent geodetic instrument network is one of the deformation group’s most important jobs. This permanent network consists of over 60 GPS stations and 16 tiltmeters, and data from it are critical for hazard assessment. In particular, tiltmeters, which are incredibly sensitive to changes in ground slope, are often the first indicator of inflation as a volcano pressurizes.

While HVO’s deformation group is responsible for analyzing and interpreting the data, it takes many others to keep the network running. HVO’s field engineers build, install, and maintain the field instruments. Information Technology staff ensure that computers can communicate with remote sites from which data are transmitted and that everything is OK to analyze the data.

Beside the permanent geodetic network, annual campaigns are organised to collect additional benchmark data using temporary GPS stations. Around 80 benchmarks are surveyed each year for 2-3 days to determine yearly changes in position. These surveys provide a higher density of measurements in certain areas, enabling HVO to more precisely determine deformation patterns over many years.

To help interpret the data, geodesists use computer models that calculate the expected motion at the earth’s surface due to expansion or contraction of magma bodies with simplified shapes, such as spheres or ellipsoids. Simple shapes are used because they adequately match the data and are less time-consuming to calculate than irregularly shaped bodies. Time is important because many thousands of calculations are used to test different models.

The best-fitting model shows scientists the most likely place that magma is moving into or out of the volcano, as well as where magma is accumulating and how close it is to the surface. However, no single type of data gives the whole picture of a volcano, so geodetic data needto be interpreted along with geologic, seismic and gas data. HVO’s different teams come together as a whole to develop sound hypotheses for current activity, hazard levels, and future scenarios.

Source : USGS / HVO.

Exemple d’utilisation d’une station GPS temporaire pour mesurer les déformations du Kilauea (Source : USGS / HVO)

Lacs et légendes sur le Kilauea (Hawaii) // Lakes and legends on Kilauea Volcano (Hawaii)

Après la dernière éruption du Kilauea en 2018, un lac d’eau souterraine est apparu au fond du cratère de l’Halema’uma’u et a remplacé le lac de lave qui existait depuis plusieurs années. Le HVO explique qu’il s’agit du premier lac d’eau souterraine observé au fond du cratère depuis près de 200 ans. Afin d’en savoir plus sur de tels lacs dans l’histoire du volcan, le personnel du HVO s’est tourné vers les légendes hawaiiennes susceptibles de faire état d’un lac de cratère, et a essayé de comprendre si un tel lac était associé à des éruptions explosives.
L’existence d’un lac n’est pas mentionnée explicitement dans les légendes hawaiiennes, mais les Hawaiiens racontent des histoires où Pelehonuamea redoutait la noyade de ses épanchements de lave sur le Kilauea.

Dans l’une des légendes, Pele et sa sœur Namakaokaha’i, l’aînée d’une famille de nombreux frères et sœurs, étaient dotées de pouvoirs différents; Pele régnait sur les volcans et les éruptions alors que Namakaokaha’i régnait sur les mers et les plages.
Namaka, comme ses amis l’appelaient, détestait quand Pele répandait de la lave sur les plages et pénétrait dans l’océan. Pele n’appréciait pas non plus que Namaka essaie de retirer la lave des côtes. Elles se battaient fréquemment. Même aujourd’hui, on peut voir ces deux sœurs continuer à se battre au travers des explosions spectaculaires chaque fois que la lave pénètre dans l’océan.

Kamapua’a, la divinité porcine d’O’ahu, qui s’est rendue un jour sur le Kilauea pour courtiser Pele et la prendre pour épouse, est au centre d’une autre légende dans laquelle l’eau est présente. Pele a constamment rejeté les avances de Kamapua’a, l’insultant et essayant même de le tuer. L’empressement de Kamapua’a s’est transformé en colère et le porc a inondé d’eau le cratère de Pele, dans l’espoir d’y éteindre le feu du volcan. Heureusement, le frère de Pele avait caché les bâtons de feu et les a utilisés pour faire réapparaître la lave.

Certaines versions de cette légende décrivent Pelé en train de poursuivre Kamapua’a jusqu’à la mer sous la forme d’une coulée de lave ou d’une projection de roches incandescentes; d’autres récits font se terminer le conflit par un bref mariage.

Une légende plus connue est celle qui fait entrer Hi’iakaikapoliopele, la plus jeune sœur de Pele. Il s’agit d’une longue histoire en grande partie centrée sur le voyage de Hi’iaka entre le cratère du Kilauea et Kaua’i où elle avait l’intention de retrouver Lohi’au, l’amant de Pele et de le prendre pour époux. En chemin, Hi’iaka est devenue une femme puissante.
Le voyage a été long et Pelé craignait que Lohi’au lui soit infidèle. Elle avait raison de ressentir cette crainte. Quand Hi’iaka est arrivée au bord du cratère du Kilauea en compagnie de Lohi’au, son nouveau mari, Pele est entrée dans une colère noire et a ordonné à ses frères et sœurs de tuer Lohi’au en guise de punition. Hi’iaka s’est mise elle aussi en colère et elle a décidé de récupérer l’esprit de son époux pour le ramener à la vie ; Elle décida aussi de se venger et de détruire Pele en inondant le cratère du Kilauea avec de l’eau.
Hi’iaka est entrée sur le plancher du cratère et, ne trouvant pas l’esprit de son mari, elle a violemment frappé le sol du pied, faisant s’ouvrir la première couche du Kilauea. Elle regarda dans l’ouverture qui s’était formée et, ne voyant toujours pas son mari, elle frappa de nouveau le sol. Elle traversa plusieurs couches sans trouver l’esprit de Lohi’au. Les secousses produites par les piétinements répétés de Hi’iaka pour s’enfoncer à l’intérieur du cratère ressemblent étrangement à la forte activité sismique qui a accompagné l’effondrement de l’Halema’uma’u en 2018. Hi’iaka a finalement atteint la cinquième couche, celle qui retenait l’eau qui, si elle était libérée, inonderait le cratère et transformerait le Kilauea en un lac qui éteindrait à jamais le feu de Pelé. Au dernier moment, Hi’iaka a décidé de ne pas mettre à exécution son projet destructeur et elle s’est finalement réconciliée avec sa sœur.
Hi’iaka cherchait l’eau souterraine, la même que l’on peut voir aujourd’hui au fond de l’Halema’uma’u. Des études géophysiques au cours des 30 à 40 dernières années ont montré la présence d’une nappe phréatique à environ 600-800 mètres au-dessus du niveau de la mer, sous le plancher de la caldeira. Les scientifiques du HVO sont persuadés que le lac actuellement en formation est alimenté par cette eau souterraine qui revient à son ancien niveau après l’effondrement sommital de 2018.
Les géologues du HVO pensent que la légende de Hi’iaka et de Pele peut avoir été inspirée par un effondrement de la caldeira du Kilauea vers l’année 1500. Bien que dans la plupart des versions de ces légendes – que ce soit le déluge de Kamapua’a qui n’a pas provoqué d’explosions, ou la courroux d’Hi’iaka qui n’a jamais fait déferler d’eau souterraine – l’’étude géologique des dépôts de matériaux après l’effondrement de l’Halema’uma’u laisse supposer qu’il y a eu au moins une fois la présence intermittente d’un lac dans le cratère.

Ces légendes ne sont que quelques exemples de la richesse de la littérature hawaïenne sur Pelehonuamea et ses volcans. Parallèlement aux études géologiques, ces récits peuvent aider à mieux comprendre le paysage volcanique en constante évolution sur le Kilauea.
Source: USGS / HVO.

——————————————–

After Kilauea’s last eruption in 2018, a groundwater lake appeared at the bottom of Halema’uma’u Crater and replaced the lava lake that existed for several years. HVO explains it is the first lake of groundwater observed on the crater floor in nearly 200 years. In order to know more about similar lakes in the volcano’s history, HVO staff looked to Hawaiian chants for mention of a crater lake and tried to understand whether it was associated with explosive eruptions.

A lake is not mentioned explicitly in Hawaiian legends, but Hawaiians did tell a few stories where Pelehonuamea faced the threat of water drowning her volcanic fires at Kilauea.

In one of the legends, Pele and her older sister Namakaokaha’i, the eldest in a family of many siblings, were imbued with different powers; Pele reigned over volcanoes and eruptions wheras Namakaokaha’i ruled the seas and beaches.

Namaka, as her friends used to call her, hated when Pele spread lava over beaches and intruded land into the ocean. Pele did not appreciate either Namaka trying to remove lava from the coasts. They fought frequently. Even today, we can see these two sisters continuing to fight with spectacular explosive displays each time lava enters the ocean.

Another Pele story involving water features Kamapua’a, the pig deity from O’ahu, who travelled to Kilauea to woo Pele and take her for his wife. Pele persistently spurned his advances, insulting him and even trying to kill him. Kamapua’a’s infatuation turned into anger, and the pig-man flooded Pele’s crater with water to put out her volcanic fires.

Fortunately, Pele’s brother hid her firesticks and used them to reignite the volcanic flames. Some versions of this story describe Pele chasing Kamapua’a to the sea as either a lava flow or ejected hot rocks; other versions resolve the conflict in a brief marriage.

A better-known story is the saga of Hi’iakaikapoliopele, Pele’s youngest sister. It’s a long story mostly focused on Hi’iaka’s journey from Kilauea Crater to Kaua’i to retrieve Pele’s lover, Lohi’au. Along the way, Hi’iaka developed into a powerful woman.

The journey was long, and Pele became suspicious that Lohi’au was being unfaithful to her.

When Hi’iaka arrived at the Kilauea Crater rim with her new husband, Lohi’au, Pele was incensed and ordered her siblings to kill him as punishment. This enraged Hi’iaka and she decided to retrieve Lohi’au’s spirit to revive him, and to seek revenge and destroy Pele by flooding Kilauea Crater with water.

Hi’iaka jumped down to the crater floor, and not finding the spirit of her husband, stomped her feet and the first layer of Kilauea cracked open. She looked down, but still not seeing her husband, she stomped again. She continued stomping through several layers without finding her husband’s spirit. The described effects of Hi’iaka repeatedly stomping to get deeper beneath the crater floor are eerily like the continuous strong shaking of the 2018 collapse events. Hi’iaka finally got down to the fifth layer that was holding back water, which, if released, would rise and flood the crater, turning Kilauea into a lake and putting out Pele’s fires forever. At the last instant, Hi’iaka was dissuaded from her destructive task and reconciled with her sister.

Hi’iaka was seeking groundwater like that which can be seen in Halema’uma’u today. Geophysical studies over the past 30-40 years showed the presence of a water table, elevated about 600-800 m above sea level, beneath the caldera floor. HVO scientists hypothesize that the currently growing lake is an exposure of this groundwater returning to its former level following the 2018 summit collapse.

HVO geologists think this Hi’iaka story may have been inspired by an earlier Kilauea caldera collapse about 1500 CE. Although in most versions of the story Kamapua’a’s deluge did not result in explosions and Hi’iaka never unleashed subterranean water, geologic study of post-collapse explosive deposits suggests at least an intermittent presence of a lake.

These legends are but a few from the rich Hawaiian literature on Pelehonuamea and her volcanoes. Along with geologic studies, they can provide insight to understanding the ever-changing volcanic landscape of Kilauea.

Source: USGS / HVO.

Photos: C. Grandpey

Eruptions phréatiques // Phreatic eruptions

Une éruption phréatique se produit lorsque le magma porte à très haute température l’eau souterraine ou l’eau de surface. La température très élevée du magma provoque une vaporisation quasi instantanée de l’eau. La surpression de la vapeur déclenche une explosion avec émission de gaz et projections de boue, de cendre, de roches et de bombes volcaniques. En consultant les archives volcaniques, j’ai découvert plusieurs éruptions phréatiques au 20ème siècle. Les plus meurtrières sont décrites dans mon livre Killer Volcanoes.

Une éruption phréatique a été observée dans le cratère de l’Halema’uma’u du Kilauea (Hawaï) en mai 1924. Une série d’explosions a propulsé des colonnes de cendresà 6 km de hauteur et projeté des blocs pesant parfois plusieurs tonnes jusqu’à 800 mètres du cratère. L’intensité des explosions a culminé le 18 mai. Un homme a été mortellement blessé par la chute d’un bloc lorsqu’il s’est aventuré trop près pour photographier le cratère entre les explosions, malgré les mises en garde.

À 7h15 (GMT) le 14 novembre 1963, des explosions phréatiques – ou phréatomagmatiques – ont généré des colonnes de cendre noire cypressoïdales au large de la côte sud de l’Islande. À 11 heures le même jour, la colonne éruptive atteignait plusieurs kilomètres de hauteur. Au début, les éruptions ont eu lieu sur trois bouches indépendantes le long d’une fissure orientée NE / SW, mais dans l’après-midi, les colonnes éruptives ont fusionné en une seule le long de la fissure éruptive. L’éruption a duré jusqu’au 5 juin 1967. Ce fut la naissance de Surtsey, du nom de Surtr, un géant symbolisant le feu dans la mythologie nordique.

Une éruption phréatomagmatique modérément violente a secoué le Taal (Philippines) du 28 au 30 septembre 1965. Les principales explosions phréatiques ont ouvert un nouveau cratère de 1,5 km de long et 0,3 km de large du côté sud-ouest de Volcano Island dans le lac Taal. Les projections vomies par l’éruption ont couvert une zone d’environ 60 kilomètres carrés avec une épaisseur de cendre de plus de 25 centimètres. L’éruption a tué quelque 200 personnes.

En 1976 une grande activité sismique a précédé une éruption phréatique à la Soufrière de la Guadeloupe. Elle a provoqué l’évacuation de 73 600 habitants. Il n’y a eu aucune victime, mais l’événement a été marqué par une violente confrontation très médiatisée entre Claude Allègre et Haroun Tazieff sur l’opportunité d’une évacuation. Par prudence, le préfet a finalement décidé d’évacuer, mais aucune éruption majeure n’a eu lieu.

Une éruption phréatique a secoué le Mont Tarumae (Japon) en 1982.

Le 27 septembre 2014, le Mont Ontake (Japon) est entré brusquement en éruption. Il n’y a pas eu de sismicité significative pour avertir les autorités qu’une éruption phréatique allait se produire. Soixante-trois personnes ont été tuées; cinq corps n’ont pas été retrouvés.

Une éruption phréatique a été observée sur le Mayon (Philippines) le 7 mai 2013. Le volcan a expulsé un nuage de cendre et de blocs. L’explosion a surpris un groupe de randonneurs sur le volcan. Quatre touristes allemands et leur guide ont été tués. Au moins sept autres randonneurs ont été blessés lors de l’éruption, qui a duré à peine plus d’une minute. Une vingtaine de personnes s’approchaient du sommet lorsque l’éruption s’est produite.

White Island (Nouvelle-Zélande) est la première éruption phréatique du 21ème siècle. Elle a tué 18 touristes et blessé des dizaines d’autres. 47 personnes visitaient le cratère lorsque l’événement a eu lieu.

°°°°°°°°°°

L’observation de ces archives appelle plusieurs réflexions. S’agissant de la prévision, les bilans des dernières éruptions phréatiques confirment que nous ne savons toujours pas prévoir ces phénomènes éruptifs particulièrement soudains. S’agissant de la prévention, on constate que ce sont les derniers événements, ceux qui impliquent le plus de touristes, qui ont les bilans les plus lourds. Une conclusion logique serait de dire qu’il faut interdire aux touristes l’accès de ces volcans dangereux. Prenant l’exemple de la la dernière éruption de White Island, je ne suis pas certain que l’accès au volcan sera interdit pendant plusieurs années ou même plusieurs mois. Le tourisme de masse fait entrer tellement d’argent dans les caisses qu’il sera difficile de résister à la pression des agences et autres structures touristiques pour lesquelles le fric passe avant la sécurité des gens, malgré le risque de se retrouver sur le banc des accusés en cas de pépin.

°°°°°°°°°°

La police néo-zélandaise a déclaré que les corps des deux personnes disparues – un guide local et un touriste australien – après l’éruption de White Island pourraient ne jamais être retrouvés. Le mauvais temps a entravé les recherches qui vont désormais être réduites. La police pense que les deux corps ont été emportés dans la mer par un cours d’eau généré par l’éruption. Par respect pour les proches de ces deux personnes et les implications culturelles autour de la présence probable de tūpāpaku [personnes décédées] dans la moana [l’océan], le rāhui [l’interdiction] mise en place sur les lieux de pêche au large de la côte de White Island sera maintenue  jusqu’à nouvel ordre, malgré les protestations des pêcheurs pour lesquels l’interdiction représente une perte financière. .

Source : New Zealand Herald.

————————————–

 A phreatic eruption occurs when magma heats ground water or surface water. The very high temperature of the magma causes near-instantaneous evaporation of water to steam whose overpressure triggers an explosion of gas, mud, ash, rock, and volcanic bombs. Looking at the volcanic archives, I discovered a few phreatic explosions in the 20th century. The most deadly ones are described in my book Killer Volcanoes.

A phreatic eruption was observed at Kilauea’s Halema’uma’u Crater (Hawaii) in May 1924. A series of explosions sent ash columns 6 km into the air and hurled boulders weighing sometimes several tons as far as 800 metres from the crater. The intensity of the explosions peaked on May 18th, when the largest ones occurred. A man was fatally injured by a falling boulder when he ventured too close to photograph the crater between bursts, despite warnings of an impending explosion.

At 07:15 (UTC) on November 14th, 1963, phreatic – or phreatomagmatic – explosions generated black cypressoid columns of ash off the south coast of Iceland By 11:00 the same day, the eruption column had reached several kilometres in height. At first the eruptions took place at three separate vents along a NE/SW trending fissure, but by the afternoon the separate eruption columns had merged into one along the erupting fissure. The eruption lasted until June 5th 1967. This was the birth of Surtsey, named after Surtr, a fire giant from Norse mythology.

A moderately violent phreatomagmatic eruption of Taal Volcano (Philippines) occurred from September 28th to 30th, 1965. The main phreatic explosions opened a new crater 1.5 km long and 0.3 km wide on the southwest side of Volcano Island in Lake Taal. The eruption covered an area of about 60 square kilometres with a blanket of ash more than 25 centimetres thick and killed approximately 200 persons.

In 1976 a large amount of seismic activity that led to a phreatic eruption at Soufrière Volcano (Guadeloupe). It caused a mass evacuation of 73,600 residents. There were no fatalities but a bitter, and well-publicized, controversy between scientists Claude Allègre and Haroun Tazieff on whether an evacuation should occur. The prefect finally decided to evacuate, erring on the side of prudence. However, no major eruption took place.

A phreatic eruption shook Mount Tarumae (Japan) in 1982.

On September 27th, 2014, Mount Ontake (Japan) duddenly erupted. There was no significant seismicity to warn the authorities that a phreatic eruption was about to happen. Sixty-three people were killed; five bodies remain un-recovered.

A phreatic eruption was observed at Mount Mayon (Philippines) on May 7th, 2013. The volcano sent a cloud of ash and rocks into the sky. The explosion caught a group climbing the mountain. Four German hikers and their guide were killed. At least seven other climbers were hurt in the eruption, which lasted for just over a minute. Twenty people were approaching the summit of the mountain when the eruption occurred.

White Island (New Zealand) is the first phreatic eruption of  the 21st century. It killed 18 tourists and injured tens of others. 47 people were visiting the crater when the eruption took place.

°°°°°°°°°°

The observation of these archives calls for several conclusions. With regard to prediction, the results of the last phreatic eruptions confirm that we are still unable to predict these sudden eruptive phenomena. As far as prevention is concerned, we can see that the latest events, those which involve the most tourists, lead to the heaviest death tolls. A logical conclusion would be to say that tourists should be denied access to these dangerous volcanoes. Taking the example of the last White Island eruption, I’m not sure that access to the volcano will be denied for several years or even months. Mass tourism brings so much money into the coffers that it will be difficult to resist the pressure of agencies and other tourist structures for which money comes before the safety of people, despite the risks of going to court if something goes wrong.

°°°°°°°°°°

The NZ police has said that the bodies of the two missing persons – a local guide and an Australian tourist – after the White Island eruption may never be found. Days of bad weather have hampered search efforts that are beginning to be scaled down. Police believe that the two missing bodies may have been washed out to sea after slipping into a stream on the volcano and being carried down to the water.

Out of continued respect for those yet to be returned to their loved ones, and the cultural implications around the likely presence of tūpāpaku [deceased] in the moana [ocean], the rāhui [ban] placed on the fishing grounds off the coast of White Island will remain in place until further notice, despite complaints from commercial fishermen.

Source: New Zealand Herald.

Vue de l’éruption phréaromagmatique de Surtsey en 1963