En attendant « The Big One » // Getting ready for « The Big One »

drapeau-francais« The Big One » est une expression souvent associée à la ville de San Francisco qui s’attend, à plus ou moins long terme, à un séisme majeur provoqué par un caprice de la Faille de San Andreas. Toutefois, le nord-ouest des États-Unis est également sous la menace d’un séisme majeur causé par la subduction de la plaque tectonique Juan de Fuca sous la plaque nord-américaine. Les sismologues affirment qu’une rupture de cette faille qui s’étire sur 1 045 km de longueur depuis le nord de la Californie jusqu’en Colombie-Britannique, suivie d’un tsunami, pourrait se produire de notre vivant. C’est pourquoi les responsables de la Protection Civile sont en train de se préparer pour le pire. Il ne faudrait pas oublier non plus que la subduction a donné naissance à la Chaîne des Cascades avec un bon nombre de volcans actifs comme le Mont St Helens, le Mont Rainier ou le Mont Adams. Nous ne savons pas quel effet un séisme majeur pourrait avoir sur ces volcans
C’est la raison pour laquelle les autorités étatiques et militaires travaillent ensemble pour élaborer des stratégies à mettre en place lorsque le « Big One » se produira. S’il se produisait, on estime que plus de 14 000 personnes mourraient, 30 000 seraient blessées, des milliers d’autres seraient sans-abri. L’économie de la région serait perturbée pendant des années, voire des décennies. Pour faire face à un tel désastre, les planificateurs envisagent un déploiement de personnel et d’équipement civils et militaires d’une ampleur encore jamais vue aux Etats-Unis pour faire face à une catastrophe naturelle. Il y aurait des ballets d’avions-cargos, d’hélicoptères et de navires, ainsi que des dizaines de milliers de soldats, des fonctionnaires, des équipes d’urgence mortuaire, des policiers, des pompiers, des ingénieurs, du personnel médical et d’autres spécialistes.
Depuis 2013, les autorités s’efforcent de mettre en place un plan d’intervention militaire pour l’État de Washington. Le plan d’intervention pour l’Oregon a été baptisé Cascadia Playbook. Le séisme et le tsunami de M 9 qui a dévasté certaines régions du Japon en 2011 a montré ce que le Pacifique Nord-Ouest doit faire pour se préparer à une catastrophe similaire.

Le plan prévoit l’instauration d’un système à plusieurs niveaux susceptible de fournir du personnel, des équipement et des fournitures à la région dévastée:
– De gros avions-cargos atterriraient dans les aéroports ou les bases aériennes capables de les accueillir. Ensuite, des avions plus petits seraient utilisés pour acheminer du personnel et des fournitures dans les aérodromes proches des zones dévastées.
– Les hélicoptères joueraient un rôle crucial, en particulier dans les zones côtières qui seraient probablement inaccessibles par la route en raison de la destruction des ponts et des routes.
– Des navires seraient probablement nécessaires pour permettre la livraison de fournitures d’urgence et aider à l’évacuation des personnes déplacées et des blessés.
– Des installations médicales d’urgence pour soigner les blessés seraient mises en place car les hôpitaux de la côte seraient probablement trop endommagés pour être utilisés. Les hôtels, motels, dortoirs de collèges, centres sportifs, etc. seraient utilisés comme abris temporaires pour les personnes évacuées.
– Des ingénieurs militaires et civils seraient envoyés pour commencer à réparer les infrastructures qui pourraient avoir subi des dégâts. Le pire des scénarios montre que plus de 1000 ponts dans l’Oregon et l’État de Washington s’effondreraient ou seraient tellement endommagés qu’ils seraient inutilisables.
– Le séisme et le tsunami feraient subir de gros dégâts aux infrastructures sur les principaux axes routiers comme la Route 101 ou l’autoroute n°5. Le trafic serait probablement dérouté en raison de grandes fissures dans la chaussée.
– Des systèmes de purification d’eau et des unités de communication d’urgence seraient déployés.
– Seattle, Portland et d’autres zones urbaines pourraient subir des dégâts considérables, tels que l’effondrement d’édifices construits avant que les normes parasismiques soient entrées en vigueur pour faire face à un séisme majeur. Des équipes de recherche et de secours en milieu urbain, spécialement formées, seraient envoyées pour rechercher des survivants dans les décombres des bâtiments détruits.
Source: Alaska Dispatch News.

————————————

drapeau anglais“The Big One” is often connected with San Francisco which expects, sooner or later, a major earthquake caused by the San Andreas Fault. However, north-western U.S. is also under the threat of a major earthquake caused by the subduction of the Juan de Fuca tectonic plate beneath the North American plate. Seismologists say a full rupture of the 1045-km-long offshore fault running from Northern California to British Columbia and an ensuing tsunami could come in our lifetime, and emergency management officials are busy preparing for the worst. We should not forget either that the subduction gave birth to the Cascade Range with quite a good number of active volcanoes, Mt St Helens, Mt Rainier and Mt Adams among other. We do not know what effect a major earthquake might have on these volcanoes
That’s why Federal, state and military officials have been working together to draft plans to be followed when the « Big One » happens. Should it occur, it is estimated that upward of 14,000 people would die, 30,000 would be injured, thousands would be left homeless and the region’s economy would be disrupted for years, if not decades. As a response, what planners envision is a deployment of civilian and military personnel and equipment that would eclipse the response to any natural disaster that has occurred thus far in the U.S. There would be waves of cargo planes, helicopters and ships, as well as tens of thousands of soldiers, emergency officials, mortuary teams, police officers, firefighters, engineers, medical personnel and other specialists.
Since 2013, authorities have been working at setting up a military response plan for Washington state. Oregon’s response plan is called the Cascadia Playbook. The M 9.0 earthquake and tsunami that devastated parts of Japan in 2011 gave greater clarity to what the Pacific Northwest needs to do to improve its readiness for a similar catastrophe.

The plans call for using a tiered system for delivering personnel, gear and supplies into the devastated region:
– Large cargo planes would land at airports or air bases capable of handling them, and then progressively smaller aircraft would be used to get personnel and supplies to smaller airfields close to devastated areas.
– Helicopters would play a crucial role, especially in coastal communities, which would likely be unreachable by road because of destroyed bridges and roads.
– Ships would likely be needed to assist with the delivery of emergency supplies and to assist with the evacuation of displaced and injured people.
– Emergency medical facilities to treat the injured would be set up because hospitals on the coast would probably be too damaged to use. Hotels, motels, college dorms, sports arenas, etc. would be used as temporary shelters for evacuees.
– Military and civilian engineers would be sent in to begin repairing an infrastructure that could be shattered. Worst-case scenarios show that more than 1,000 bridges in Oregon and Washington State could either collapse or be so damaged that they are unusable.
– Infrastructure on the main roadways like U.S. Route 101 or Interstate 5 would suffer heavy damage from the quake and from the tsunami. Traffic would likely have to be rerouted because of large cracks in the pavement.
– Transportable water purification systems and emergency communications units would be deployed.
– Seattle, Portland and other urban areas could suffer considerable damage, such as the collapse of structures built before codes were updated to take into account a mega-quake. Specially trained urban search and rescue teams would be sent to look for survivors in the ruins of destroyed buildings.
Source : Alaska Dispatch News.

Rainier avion

Seattle et le Mont Rainier à l’arrière -plan (Crédit photo: Wikipedia)

Nouvelle éruption du Karymsky (Kamchatka / Russie)

drapeau-francaisLe Karymsky a connu un nouvel épisode explosif le 1er février 2016, avec un panache de cendre jusqu’à 3.000 mètres de hauteur. La couleur de l’alerte aérienne est passée à l’Orange.
Source: KVERT.
L’événement a eu lieu moins de 48 heures après un séisme de M 7,3 dans la région, suivi d’une série d’au moins sept répliques. Plusieurs médias se demandent s’il pourrait y avoir un lien entre l’explosion et le séisme. C’est très difficile à dire car les éruptions explosives se produisent assez fréquemment sur le Karymsky. De plus, comme je l’ai écrit précédemment, le lien entre séismes et éruptions n’a jamais été vraiment établi.

———————————-

drapeau anglaisKarymsky volcano went through another explosive episode on February 1st 2016, with an ash plume up to 3,000 metres. The aviation colour code was raised to Orange.
Source: KVERT.
The event came less than 48 hours after an M 7.3 earthquake struck the region, followed by a series of at least seven aftershocks. Several news media wonder whether there might be a link between the explosion and the earthquake. This is very difficult to say as explosive eruptions occur quite frequently at Karymsky. Besides, as I put it previously, the link between earthqkes and eruptions has never been really proved.

Vidéo de l’éruption du volcan Big Ben (Ile Heard / Australie) // Video of the eruption of Big Ben volcano (Heard Island / Australia)

drapeau-francaisBig Ben n’est pas le volcan le plus connu au monde. Ces deux mots sont en général associés à l’horloge du Parlement britannique à Londres. Cependant, un volcan porte ce nom sur l’île Heard, un territoire australien qui se trouve 4100 kilomètres au sud-ouest de Perth et à 1750 kilomètres au nord de base australienne Davis en Antarctique. Le volcan est la plus haute montagne sur le territoire australien et on sait qu’il est entré en éruption au moins trois fois au cours des 15 dernières années. Les îles McDonald à proximité abritent également un volcan actif.
Les scientifiques à bord du navire de recherche Investigator ont eu l’occasion de filmer une éruption du volcan Big Ben lors d’une mission sur le Plateau de Kerguelen. L’éruption a été téléchargée sur YouTube et peut être vue en utilisant le lien ci-dessous. On peut voir une coulée de lave qui descend sur le flanc du volcan, tandis qu’un panache de gaz s’échappe du sommet.

Le but de la mission australienne est d’étudier le lien entre les volcans actifs sur les fonds marins et de la mobilisation du fer qui est essentiel à la vie dans l’Océan Austral. Les conclusions contribueront à une meilleure connaissance du système et du changement climatique sur Terre.
Source: ABC News.

————————————–

drapeau anglaisBig Ben is not the most popular of the world’s volcanoes. These two words are most often associated with the clock of the British Parliament in London. However, there is a volcano with this name on Heard Island, an Australian territory that lies 4,100 kilometres south west of Perth and 1,750 kilometres north of Australia’s Antarctic base at Davis Station. It is the highest mountain on Australian territory and is known to have erupted at least three times in the past 15 years. The neighbouring McDonald Islands are also home to an active volcano.
Scientists on board the research vessel Investigator have taken a video footage of an eruption of the Big Ben volcano during a mission to the Kerguelen Plateau. The eruption was uploaded to YouTube and can be seen using the following link. One can see a lava flow travelling down the volcano’s flank while a gas plume is escaping from the summit.

The purpose of the mission is to study the link between active volcanoes on the seafloor and the mobilisation of iron, which supports life in the Southern Ocean. Their findings will become part of a greater understanding of the Earth’s climate system and climate change.
Source: ABC News.

Big Ben

Capture d’écran de la vidéo diffusée sur YouTube, avec la coulée de lave et le panache sommital

Chaleur et explosivité du magma // Magma heat and explosivity

drapeau-francaisUn article intitulé « Vésiculation thermique lors des éruptions volcaniques» et publié dans la revue Nature a récemment démontré le «rôle essentiel des variations de chaleur pendant l’ascension du magma ». L’article est l’aboutissement d’une étude menée par des chercheurs de l’Ecole des Sciences de l’Environnement, dans l’enceinte de l’Université de Liverpool en Angleterre.

Il est bien connu que les volcans connaissent des éruptions explosives lorsque le magma chargé de gaz atteint la surface de la Terre. Plusieurs techniques sont utilisées pour expliquer la formation et la croissance des bulles de gaz au sein du magma. Par exemple, certains scientifiques examinent attentivement de minuscules cristaux pour mesurer des quantités infimes de gaz dissous à l’intérieur, tandis que d’autres utilisent la spectroscopie pour mesurer les panaches de gaz émis par une bouche volcanique. D’autres volcanologues font fondre les roches volcaniques et y insufflent des gaz.
Le magma stocké dans les profondeurs d’un volcan commence son ascension lentement et accélère quand il s’approche de la surface de la Terre. En effet, au cours de l’ascension, il échappe à la surpression, ce qui permet à des bulles de se développer.
Au début, quand le magma commence à monter sous l’édifice volcanique, il est soumis à près d’un millier de fois la pression atmosphérique. À de telles profondeurs, le magma est un fluide visqueux avec abondance de cristaux à l’intérieur, mais il est en grande partie dépourvu de bulles. L’absence de bulles ne veut pas dire qu’il n’y a pas de gaz, mais ce dernier est principalement dissous dans le magma. On estime qu’entre 1 et 5 % de la masse de magma à cette profondeur est composée de gaz piégé à l’intérieur.
Le magma, même dépourvu de bulles, monte en raison de la flottabilité. Il est moins dense que la roche encaissante plus froide qui l’entoure. Au début, il s’élève en général péniblement, mais il accélère en atteignant des profondeurs plus faibles. Des changements importants se produisent dans la masse en fusion, en même temps que la pression de confinement diminue. De plus en plus de bulles commencent à apparaître, qui font chuter la densité globale du fluide. En se dilatant, ces bulles accentuent la perte de densité, ce qui facilite l’ascension du magma. Les bulles transforment ensuite le magma en lambeaux, jusqu’à son expulsion hors du cratère.
La nouvelle étude a essayé de démontrer que si le magma dégaze effectivement durant la phase de décompression, il dégaze encore davantage sous l’effet de sa montée en chaleur. Tout d’abord, le magma dégage de la chaleur lorsque certaines parties commencent à se figer. Tout comme pour l’eau, ce « gel » produit des cristaux, qui libèrent de la chaleur au cours de leur formation. Cette chaleur ajoutée peut inciter le gaz à s’échapper du magma fluide. De plus, le magma monte en température lors de son passage le long de conduits étroits, suite au frottement le long des parois.
Une confirmation des résultats théoriques de l’étude a été obtenue sur le dôme du Santiaguito au Guatemala. Les chercheurs ont étudié des roches qui portent en elles les signes de la chaleur produite par frottement. Ils ont recueilli des roches avec des fissures qui portent en elles les passages fossiles du gaz en train de s’échapper. De retour au laboratoire, ils ont examiné les échantillons au microscope électronique. Les textures des fissures ont révélé des fragments de cendres figés sur place suite à leur transport par des courants de gaz chaud en provenance des bordures des fissures. D’autres manipulations ont appuyé cette hypothèse. Les scientifiques ont utilisé des échantillons de lave de la grosseur du poing et les ont soumis à des forces très importantes. Ils ont ensuite fait lentement tourner un échantillon de roche contre un autre. Cela a généré un frottement et une chaleur intense suffisante pour faire fondre la roche et libérer les gaz emprisonnés à l’intérieur.
Lorsqu’ils étaient sur le terrain, les chercheurs ont observé le comportement d’une partie active du dôme du Santiaguito, là même où les échantillons avaient été prélevés. Quelques secondes après le début d’une séquence éruptive, des colonnes de cendre et des panaches de gaz montaient jusque parfois à plus d’un kilomètre de hauteur. Des blocs incandescents étaient projetés vers le ciel et venaient ensuite se briser sur les flancs du volcan dont ils dévalaient les pentes. Les géophysiciens ont pu observer l’activité interne du Santiaguito en utilisant une batterie d’instruments comme des sismomètres et inclinomètres. Les capteurs ont révélé la profondeur et l’ampleur des mouvements de roche, des données que les chercheurs ont utilisées pour estimer la quantité de gaz accumulée pendant les cycles éruptifs.
Il semble que les mouvements de roches et de magma peuvent induire des gains de température de plusieurs centaines de degrés, ce qui favorise la volatilisation du magma préalablement «stable» et le dégazage violent qui s’ensuit. Les roches émises lors des éruptions du dôme du Santiaguito montrent dans quelle mesure la chaleur produite par le frottement du magma peut conduire à des explosions volcaniques.
Le comportement de Santiaguito pourrait aider à mieux comprendre les processus essentiels qui jouent un rôle dans l’activité explosive d’autres volcans semblables à travers le monde.
Source: Live Science: http://www.livescience.com/

————————————–

drapeau anglaisAn article entitled « Thermal vesiculation during volcanic eruptions » and published in the journal Nature recently demonstrated the « critical influence of heat variations in rising magmas. » The article was the result of a study led by researchers within the School of Environmental Sciences at the University of Liverpool in England.

It is well known that volcanoes erupt explosively when gas-charged magma reaches Earth’s surface. Several techniques are used to explain the formation and growth of gas bubbles within the magma. For instance, some scientists carefully examine tiny crystals to measure minuscule amounts of dissolved gas, while others use spectroscopy to measure the gas plumes escaping from a vent. Other volcanologists melt volcano rocks and infuse them with gases.
Magma deep within a volcano starts its ascent slowly, but eventually, it accelerates toward the Earth’s surface. Indeed, as magma rises, it escapes from overpressure and bubbles grow.
When magma starts rising deep beneath the volcanic edifice, it is subjected to nearly a thousand times the pressure that exists in the atmosphere. At such depths, magma is an extremely viscous fluid, often swimming with crystals, but it is largely devoid of bubbles. The absence of bubbles doesn’t mean there is no gas, but that it is mostly dissolved, within the magma. One estimates that between 1 and 5 per cent of the mass of magma at this depth is trapped gas.
Magma, even when devoid of bubbles, ascends because of buoyancy. It is less dense than the colder rock surrounding it. At first, it may rise sluggishly, but as it reaches shallower levels, it can accelerate. Significant changes occur in the melt as the confining pressure diminishes. More bubbles start to appear, and they diminish the overall density of the fluid. As these bubbles expand, the density decreases further, which facilitates a quicker ascent. This cycle continues until the bubbles rend the surrounding magma to shreds, and expel it out of the crater.
The new study tried to demonstrate that while decompressing magma is prone to degas, it further degasses when it heats up. Firstly, magma gives off heat when portions of it start to freeze. Just like in water, the freezing produces crystals, and as the crystals form, they give off heat. That added heat can induce gas to come out of the fluid magma. Secondly, magma heats up as it flows through constricted conduits, due to friction.
A confirmation of the theoretical results of the study was obtained on the dome of Santiaguito volcano in Guatemala. The researchers looked for rocks that bear testament to frictional heating. They collected rocks with cracks which would represent fossil passageways of escaping gas. Back in the laboratory, they examined the samples under an electron microscope. The textures of the cracks revealed ash shards frozen in place following their transport by currents of hot gas originating on the cracks’ margins. More lab experiments also supported the theory. The scientists took fist-size rock samples of lava and pushed them together with tremendous force, then rotated one rock sample slowly against another. This generated intense friction and heat, enough to melt rock and release abundant, previously locked-in gas.
When on the field, the researchers observed the behaviour of an active portion of Santiaguito’s dome where the samples were collected. Within seconds of an eruption’s onset, columns of ash and gas plumes rise to hundreds of meters and eventually reach more than a kilometre high. Incandescent blocks are blown skyward and then crash onto the volcano’s flanks, breaking open and cascading downward. The geophysicists captured the behaviour of Santiaguito using an array of instruments, including seismometers and tiltmeters. These sensors reveal the depth and magnitude of rock movements – data the researchers used to estimate the amount of gas that accumulates during eruptive cycles.
It seems rock and magma movements can induce temperature gains of hundreds of degrees, promoting volatilization of the previously « flat » magma and subsequent violent degassing. The dome rocks and eruptions at Santiaguito serve as en evidence of how frictional heating can lead to volcanic explosions.
Santiaguito’s behaviour might help to understand vital processes that influence volcanic explosivity at other analogous volcanoes.
Source : Live Science : http://www.livescience.com/

Santiaguito 02

Santiaguito 03

Vues du dôme Caliente du Santiaguito (Photos: C. Grandpey)