Piton de la Fournaise (Ile de la Réunion) : Eruption en vue ? // An eruption in the short term ?

18 heures (heure métropole) : La sismicité  a fait son retour sur le Piton de la Fournaise avec une crise enregistrée depuis 12h04 par l’OVPF le 28 septembre 2020. Cette crise s’accompagne d’une déformation rapide de l’édifice, ce qui signifie que le magma est en train de quitter le réservoir magmatique et se propage vers la surface. Une éruption est donc probable à brève échéance, dans les prochaines minutes ou heures… à moins que le volcan change d’avis, comme il l’a fait précédemment !

En conséquence, le préfet de La Réunion a décidé, à 12h30, de placer le Piton de la Fournaise en phase d’alerte 1  » éruption probable  »  . L’accès à la partie haute l’Enclos est donc interdit au public, que ce soit depuis le sentier du Pas-de-Bellecombe, ou depuis tout autre sentier.

++++++++++

22 heures (heure métropole) : La crise sismique débutée à 12h04 (heure locale) se poursuit. Entre 12h04 et 21h30, plus de 1300 séismes ont été enregistrés par l’OVPF. Cette sismicité est localisée sous la zone sommitale et sous le flanc E, entre 1,6 et 5,2 km de profondeur. La sismicité et les déformations montrent une migration du magma vers le flanc E du volcan. L’OVPF explique qu’au Piton de la Fournaise plus les crises sismiques sont longues, plus les fissures éruptives s’ouvrent à basse altitude. De ce fait l’ouverture de fissures éruptives à basse altitude n’est pas exclue.

Source : OVPF.

—————————————

6 p.m. (Paris time) : Seismicity is back on the Piton de la Fournaise with a crisis recorded since 12:04 pm by OVPF on September 28th, 2020. This crisis is accompanied by a rapid deformation of the edifice, which means that magma is in leaving the reservoir and ascending towards the surface. An eruption is therefore likely in the short term, in the next few minutes or hours … unless the volcano changes its mind, as it did previously!
As a result, the prefect of Reunion Island decided, at 12:30 pm, to raise the alert level to Phase 1 « probable eruption ». Access to the upper part of the Enclos is therefore prohibited, whether from the Pas-de-Bellecombe trail, or from any other trail.

++++++++++

10 p.m. (Paris time) : The seismic crisis that began at 12:04 p.m. (local time) continues. Between 12:04 p.m. and 9:30 p.m., more than 1,300 earthquakes were recorded by OVPF. This seismicity is localized beneath the summit area and under the E flank, 1.6 – 5.2 km deep. The seismicity and the deformations show a migration of magma towards the E flank of the volcano. OVPF explains that at Piton de la Fournaise the longer the seismic crises, the more the eruptive fissures open at low altitude. Therefore the opening of eruptive fissures at low altitude is not excluded.
Source: OVPF.

Déformation de l’édifice volcanique (Source: OVPF)

Enclos fermé jusqu’à nouvel ordre (Photo : C. Grandpey)

Séismes volcaniques longue période et dégazage du magma // Long period volcanic earthquakes and magma degassing

En vue d’améliorer la compréhension des processus physiques conduisant à l’apparition de séismes longue période (LP) profonds parfois considérés comme des signes précurseurs d’éruptions, une équipe internationale impliquant des chercheurs de l’Institut des Sciences de la Terre (ISTerre/OSUG – CNRS / IRD / UGA / USMB / UGE) s’est penchée sur les séismes LP profonds sous le Klyuchevskoy (Kamtchatka).

Le nouveau modèle mis au point au cours de cette étude, publiée le 6 août 2020 dans la revue Nature Communications, devrait permettre d’améliorer la surveillance volcanique mais également de surveiller les effets de ce type de phénomène sur le changement climatique.

Sous certains volcans, des séismes LP sont observés à des profondeurs de plusieurs dizaines de kilomètres, ce qui correspond plus ou moins à la limite entre la croûte terrestre et le manteau. Cette sismicité profonde est particulièrement intéressante car elle peut avoir un lien avec l’activation des racines profondes des systèmes volcaniques. En conséquence, elle peut aussi servir à identifier d’éventuels signes précurseurs à moyen et long terme. Cependant, une compréhension des processus physiques conduisant à l’apparition de tels séismes profonds est nécessaire pour pouvoir les intégrer aux schémas de surveillance.

C’est pourquoi un groupe de chercheurs a décidé de mener une étude sur les séismes longue période profonds sous le Klyuchevskoy (Kamchatka). Pour cela, ils ont utilisé une modélisation mathématique contrainte par des données sur la composition géochimique des laves, et ont comparé leurs résultats avec des observations sismologiques. Cela leur a permis de proposer un nouveau modèle physique de l’origine des séismes profonds, générés par un dégazage rapide d’eau et de CO2. La modélisation a montré que dans les magmas ayant une concentration relativement élevée de ces composants volatiles, un dégazage suffisamment intense peut commencer à une profondeur d’environ 30 km et que la croissance de bulles de gaz peut être suffisamment rapide pour que les variations de pression associées puissent générer des ondes sismiques avec des amplitudes et fréquences comparables à celles observées.

Ce nouveau modèle devrait permettre d’améliorer la surveillance volcanique, mais il devrait également permettre de surveiller les effets de ce type de phénomène sur le changement climatique. En effet, l’activité sismique profonde intense sous des volcans comme le Klyuchevskoy  peut indiquer que les magmas qui les alimentent contiennent une concentration accrue de CO2 et, par conséquent, qu’un dégazage peut contribuer de façon importante aux émissions de gaz à effet de serre.

Source : Observatoire des Sciences de l’Univers de Grenoble (OSUG).

—————————————————-

In order to improve the understanding of the physical processes leading to the appearance of deep long-period (LP) earthquakes sometimes considered as precursor signs of eruptions, an international team involving researchers from the Institute of Earth Sciences (ISTerre / OSUG – CNRS / IRD / UGA / USMB / UGE) studied the deep LP earthquakes under Klyuchevskoy Volcano (Kamtchatka).
The new model developed during this study, published on August 6th, 2020 in the journal Nature Communications, should make it possible to improve volcanic monitoring but also to monitor the effects of this type of phenomenon on climate change.

Under some volcanoes, LP earthquakes are observed at depths of several tens of kilometres, which corresponds more or less to the limit between the Earth’s crust and the mantle. This deep seismicity is particularly interesting because it may have a link with the activation of the deep roots of volcanic systems. Consequently, it can also be used to identify possible warning signs in the medium and long term. However, an understanding of the physical processes leading to the emergence of these deep earthquakes is necessary in order to be able to integrate them into surveillance schemes.

This is why a group of researchers decided to conduct a study on long-period deep earthquakes under Klyuchevskoy (Kamchatka). For this, they used a mathematical modelling constrained by data on the geochemical composition of the lava, and compared their results with seismological observations. This enabled them to come up with a new physical model of the origin of deep earthquakes, generated by rapid degassing of water and CO2. Modelling has shown that in magmas with a relatively high concentration of these volatile components, sufficiently intense degassing can begin at a depth of about 30 km, and that the growth of gas bubbles can be rapid enough for the associated pressure changes to generate seismic waves with amplitudes and frequencies comparable to those observed.

This new model should make it possible to improve volcanic monitoring, but it should also make it possible to monitor the effects of this type of phenomenon on climate change. Indeed, the intense deep seismic activity beneath volcanoes like Klyuchevskoy may indicate that the magmas that feed them contain an increased concentration of CO2 and, therefore, that degassing may contribute significantly to greenhouse gas emissions.
Source: Observatoire des Sciences de l’Univers de Grenoble (OSUG).

Vue du Klyuchevskoy (Source : KVERT)

Magma, éruptions et glissement de l’Etna // Magma, eruptions and the sliding of Mt Etna

Le lent glissement du flanc oriental de l’Etna vers la Mer Ionienne est un phénomène bien connu, confirmé par de nombreuses études. Les scientifiques pensent que ce glissement pourrait s’accélérer avec le temps et générer des tsunamis qui affecteraient toute la Méditerranée, menaçant la vie de millions de personnes.

Grâce à une approche multidisciplinaire avec utilisation de l’interférométrie radar à synthèse d’ouverture (RSO), le GPS et la tomographie sismique, une équipe de chercheurs de l’INGV et de l’Institut Supérieur de Protection et de Recherche de l’Environnement (ISPRA) a analysé les déformations du sol sur l’ Etna provoquées par l’éruption du 24 décembre 2018 et l’événement sismique enregistré deux jours plus tard. L’interférométrie RSO a permis d’obtenir des cartes de déformation du sol sur l’ensemble de l’Etna. Les mesures obtenues ont été intégrées aux données fournies par le réseau GPS qui mesure en continu les déplacements du volcan. Enfin, les méthodes de tomographie sismique, avec l’analyse des ondes sismiques, ont permis de reconstruire la structure sous l’édifice volcanique.

Cette analyse multidisciplinaire complexe met en évidence comment le glissement continu du flanc oriental de l’Etna au fil du temps favorise les intrusions magmatiques vers la zone de glissement proprement dite, en empruntant les fractures bien connues comme les Rifts Nord-Est et Sud de la zone sommitale du volcan. La géométrie et l’emplacement des volumes de magma sont cohérents avec les anciennes structures tectoniques qui disloquent la croûte sous l’édifice volcanique – ce que mettent en évidence les données de tomographie sismique – et favorisent l’ascension du magma.
L’ascension du magma, provoquée par sa pression à l’intérieur de l’édifice volcanique, provoque un étirement de quelques mètres de tout l’édifice et accélère le glissement du flanc oriental. A son tour, cette accélération a un double effet : elle provoque des événements sismiques le long des failles bordant le flanc instable (comme, par exemple, le séisme de magnitude M 4.9 survenu le 26 décembre 2018 sur la faille de Fiandaca), et l’arrêt de l’éruption suite à la dépressurisation soudaine vers le plan d’effondrement.

L’étude a été publiée dans la revue Geology sous le titre «Flank sliding: A valve and a sentinel for paroxysmal eruptions and magma ascent at Mount Etna, Italy » – Glissement latéral de l’Etna: une soupape et une sentinelle pour les éruptions paroxystiques et l’ascension du magma.

Source : INGV.

—————————————————

The slow sliding of the eastern flank of Mt Etna towards the Ionian Sea is a well-known phenomenon, confirmed by numerous studies. Scientists believe this sliding could accelerate over time and generate tsunamis that would affect the entire Mediterranean, threatening the lives of millions of people.
Thanks to a multidisciplinary approach using synthetic aperture radar interferometry (SAR), GPS and seismic tomography, a team of researchers from INGV and the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) analyzed the ground deformation on Mt Etna caused by the eruption of December 24, 2018 and the seismic event recorded two days later. RSO interferometry has made it possible to obtain soil deformation maps over the whole of Mt Etna. The measurements obtained were integrated into the data provided by the GPS network which continuously measures the movements of the volcano. Finally, seismic tomography methods, with the analysis of seismic waves, have made it possible to reconstruct the structure under the volcanic edifice.
This complex multidisciplinary analysis highlights how the continuous sliding of the eastern flank of Mt Etna over time favours magmatic intrusions towards the sliding plane proper, along well-known fractures such as the North-East and South Rifts of the summit area of ​​the volcano. The geometry and location of the magma volumes are consistent with the ancient tectonic structures that dislocate the crust under the volcanic edifice – which is highlighted by seismic tomography data – and favour the ascent of magma.
The rise of the magma, caused by its pressure inside the volcanic edifice, causes the whole edifice to stretch a few metres and accelerates the sliding of the eastern flank. In turn, this acceleration has a double effect: it causes seismic events along the faults bordering the unstable flank (such as, for example, the magnitude M 4.9 earthquake that occurred on December 26, 2018 on the Fiandaca fault), and  the cessation of the eruption for the sudden depressurization back to the collapse plane.

The study was published in the journal Geology under the title « Flank sliding: A valve and a sentinel for paroxysmal eruptions and magma ascent at Mount Etna, Italy »
Source: INGV.

Schémas montrant le déplacement de l’Etna vers l’Est (Source : INGV)

Schéma montrant le processus d’intrusion magmatique qui induit le glissement du flanc oriental de l’Etna (Source : INGV)

La sismicité sous le Mauna Kea (Hawaii) // Seismicity beneath Mauna Kea (Hawaii)

Le Mauna Kea n’a pas connu d’éruptions depuis plus de 4 500 ans, mais cela ne signifie pas que c’est un volcan éteint. En fait, depuis des décennies, il cache l’un des signaux sismiques les plus étranges jamais observés sur un volcan.
Il y a plusieurs années, les sismologues de l’USGS testaient une nouvelle méthode d’analyse de la sismicité sur le Kilauea. Elle consiste à analyser des fractions de 24 heures de données sismiques afin de détecter des signaux similaires sur plusieurs appareils. Par curiosité, ils ont décidé d’étendre leurs observations au reste de l’île d’Hawaii. Ce qu’ils ont découvert est surprenant. Une étude publiée dans la revue Science en mai 2020 explique qu’ils ont détecté des séismes profonds sous le Mauna Kea, avec une répétition toutes les 7 à 12 minutes. La pollution sonore générée par le vent et les voitures à proximité, ainsi que la faible magnitude (M 1.5) des séismes avaient empêché leur détection par le réseau sismique traditionnel. .
Ces petits séismes se produisent à des profondeurs d’environ 15 – 25 km directement sous le sommet du Mauna Kea, toutes les 7 à 12 minutes avec une régularité surprenante. En outre, ces événements répétitifs apparaissent depuis au moins l’année 1999, mais il est très probable qu’ils se produisaient bien avant cette date.
Les scientifiques se sont tout d’abord montrés prudents avant d’attribuer ces séismes à des processus volcaniques car leur régularité semblait artificielle. Ils ont pris le temps d’éliminer toutes les causes possibles, comme les activités dans la zone d’entraînement de Pohakuloa ou les travaux routiers.
Un facteur permettant d’interpréter l’origine des séismes répétés et profonds du Mauna Kea est que leurs ondes sismiques sont différentes de celles des séismes classiques. Alors que les séismes classiques donnent naissance essentiellement à des événements haute fréquence, ceux du Mauna Kea sont plus prolongés, avec des fréquences plus basses. Cela signifie qu’un décrochement sur une faille n’est pas la cause de ces événements.
Les séismes basse fréquence peuvent se produire sur les volcans, mais il n’y a aucun autre exemple de ce type de répétition ou de longévité dans le monde. Au total, on a enregistré plus d’un million de secousses sismiques sur le Mauna Kea entre 1999 et 2018. Cumulée, l’énergie ainsi libérée correspond à un séisme de M 3.0 sous le volcan chaque jour. En mettant ensemble les signaux produits par ces milliers de ces séismes, on peut examiner leur forme d’onde plus en détail. Les résultats montrent que ces événements sont probablement causés par le mouvement de fluides au-dessus d’une chambre magmatique profonde. À mesure que les fluides s’élèvent, ils pénètrent dans une fissure hermétique dans sa partie supérieure. L’arrivée continue de fluide met la fissure sous pression, ce qui finit par briser l’obturation à son sommet et déclencher un séisme. La fissure se referme ensuite, et tout recommence.
La question est de savoir d’où proviennent ces fluides. La source d’alimentation réside probablement au niveau des gaz magmatiques qui se comportent comme des fluides lorsqu’ils se trouvent dans les profondeurs de la croûte terrestre. Ces gaz se séparent du magma en se refroidissant. Les grandes poches magmatiques mettent des centaines à des milliers d’années pour se refroidir, donc ce processus génère des fluides sur le long terme, ce qui pourrait expliquer la présence des séismes profonds sous le Mauna Kea.
Selon cette interprétation, les fluides sont produits par le refroidissement du magma en place. Rien n’indique toutefois qu’il y ait une ascension du magma sous le Mauna Kea. Bien que cette étude donne un aperçu intéressant des processus en cours sous le volcan, elle ne change en rien le niveau de risque volcanique du Mauna Kea. Si une éruption devait être imminente, les scientifiques de l’USGS pensent que l’ouverture d’un nouveau conduit d’alimentation s’accompagnerait d’essaims sismiques à faible profondeur pour avertir à l’avance d’une activité éruptive imminente.
Les séismes profonds qui ont été détectés par les scientifiques de l’USGS confirment que le Mauna Kea reste un volcan potentiellement actif.
Source: USGS, HVO, AVO.

———————————————

Mauna Kea volcano hasn’t erupted in over 4,500 years, but that doesn’t mean it is quiet. In fact, for decades it has been hiding one of the most unique seismic signals seen at any volcano.

Several years ago, USGS seismologists were trying out a new method to track seismicity at Kilauea Volcano. The method scans 24-hour sections of seismometer data looking for signal similarity on many instruments. Out of curiosity, they decided to look at the rest of the Island of Hawaii to see what else they might find. What they found came as a surprise. A study published in the journal Science in May 2020 describes how they detected deep earthquakes beneath Mauna Kea that repeat every 7 to 12 minutes. Noise in the seismic records from wind and nearby cars, together with the small size of the individual earthquakes (magnitude M 1.5), had prevented these earthquakes from being detected with the regular earthquake detection system.

The small, repeating earthquakes occur at depths of about 15-25 km directly beneath Mauna Kea’s summit and happen every 7 to 12 minutes with surprising regularity. Furthermore, the repeating events can be detected going back to at least 1999, but it is very likely that the repeating earthquakes were occurring even further back in time.

Scientists were initially cautious about interpreting the earthquakes due to volcanic processes because the regularity seemed man-made. It took a long period of investigation to rule out all of the possibilities, such as activity at the Pohakuloa Training Area or road construction.

One clue to the origin of the repeating, deep Mauna Kea earthquakes is that their seismic waves look different from those of ordinary earthquakes. Where regular earthquakes produce more high frequency shaking, the Mauna Kea events are more drawn out, containing lower frequencies. This means that regular slip on a fault is not responsible for the deep Mauna Kea events.

Low-frequency earthquakes are not unusual at volcanoes, but there is no other example of this kind of repetition or longevity anywhere in the world. Ultimately, over 1 million earthquakes were found from 1999 to 2018. Summing the energy release of the earthquakes gives a total that is equivalent to an M 3.0 earthquake under Mauna Kea every day. Adding together the signals of thousands of these earthquakes allows the waveform to be examined in greater detail, and the results suggest the events are caused by the movement of fluids above a deep magma chamber. As the fluids ascend, they enter a crack that is sealed at the top. The continuous flow of fluid pressurizes the crack, eventually breaking the top seal and creating the earthquake. The crack then reseals, and everything starts over again.

The question is to know where these fluids come from. The source of the fluid dupply is likely magmatic gases that behave like fluids when they are deep within the Earth’s crust. These gases separate from the magma as it cools. Large magma bodies cool over hundreds to thousands of years, so this process provides a long-term, nearly continuous supply of fluids to repeatedly drive deep earthquakes beneath Mauna Kea.

Under this interpretation, the fluids are produced from magma cooling in place. There is no evidence that magma is rising under Mauna Kea. So while this study provides important insight into processes beneath the volcano, it does not change estimates of volcanic hazard at Mauna Kea. USGS scientists expect any opening of a new conduit will be accompanied by swarms of shallow earthquakes to provide advanced warning of impending eruptive activity.

The earthquakes nonetheless underscore that Mauna Kea is classified as an active volcano.

Source : USGS, HVO, AVO.

Photos: C. Grandpey

Agitation sismique et volcanique en Islande // Seismic and volcanic unrest in Iceland

Il semble que l’on assiste ces jours-ci à une hausse de l’activité dans la Péninsule de Reykjanes et au niveau du Grimsvötn, mais personne ne peut dire ce qui va se passer dans les prochains jours, les prochaines semaines ou les prochains mois.

L’Icelandic Met Office (IMO) indique que l’inflation a repris dans la Péninsule de Reykjanes, près de Grindavík. Il se peut que ce soulèvement du sol soit lié à une intrusion magmatique. L’IMO explique que ce serait le troisième événement de ce type depuis le début de l’année, à l’ouest du Mont Thorbjörn. L’intrusion a commencé vers la mi-mai mais l’activité sismique a commencé à augmenter seulement vers la fin de ce même mois. Quelque 2000 événements ont été détectés depuis cette époque et plusieurs d’entre eux ont été localisés à l’est du Mt Thorbjörn, à quelques kilomètres au nord de Grindavík. La secousse la plus significative s’est produite le samedi 13 juin 2020, avec une magnitude de M 3,5.
Depuis le début de l’activité en janvier 2020, le soulèvement du sol dans la région a atteint environ 12 cm. Entre les périodes d’inflation, une légère déflation a également été observée. Les volcanologues locaux pensent qu’elle est peut-être due au refroidissement du magma de l’intrusion ou à une interaction avec le système hydrothermal. Une modélisation numérique montre que cette troisième intrusion s’est produite pratiquement dans la même zone que les précédentes, à environ 1 km à l’ouest du M Thorbjörn, à une profondeur de 3-4 km, avec une largeur de quelques centaines de mètres et avec une orientation NE-SW sur une longueur d’environ 6 km. On estime que le volume de magma accumulé au cours de cette troisième intrusion est d’environ 1,2 million de mètres cubes. L’activité sismique se produit sur une zone plus grande que l’intrusion proprement dite. Cela serait dû à des variations de contrainte au niveau de la croûte terrestre sur la péninsule.
L’Iceland Geosurvey a effectué des mesures gravimétriques sur la zone de l’intrusion. Les résultats confirment la présence d’une intrusion magmatique en profondeur. De nouvelles mesures seront effectuées au milieu de l’été.
Des mesures hebdomadaires de gaz ont été effectuées sur deux sites proches de la zone d’intrusion mais «leur interprétation n’est pas encore claire. » Aucune modification chimique n’a été détectée dans la centrale géothermique de Svartsengi. Toutefois, les mesures révèlent une perméabilité et une augmentation des écoulements de fluides dans la roche environnante. Ce phénomène est peut-être lié à l’activité sismique, à l’inflation et au soulèvement du sol dans la région, avec l’ouverture de nouvelles fissures et la réactivation d’anciennes.
Comme je l’ai dit précédemment, la zone où la sismicité et le soulèvement du sol sont enregistrés est très complexe car elle comprend à la fois une activité tectonique et volcanique. Ce qui me surprend, c’est l’absence d’émission significative de gaz que l’on observe généralement lors d’une intrusion magmatique. Ce que je ne comprends pas non plus, c’est pourquoi l’intrusion – si intrusion il y a – n’a pas provoqué d’augmentation de température dans les champs fumerolliens de la Péninsule de Reykjanes.

Attendons pour voir ce qui se passera dans les jours et les semaines à venir, en espérant qu’une éruption n’aura pas lieu au cœur de l’été, avec fermeture de l’aéroport de Keflakik, maintenant que les touristes sont à nouveau autorisés à entrer en Islande.

°°°°°°°°°°

L’IMO nous informe également que certains signes montent que le Grímsvötn pourrait bientôt entrer en éruption. La dernière s’est produite en 2011. Entre les éruptions, les données de déformation révèlent l’accumulation de nouveau magma en profondeur et l’augmentation de la pression dans le système.
En mai et juin 2020, les scientifiques de l’IMO ont mesuré le SO2 dans la partie sud-ouest de la caldeira du Grimsvötn, près du site des dernières éruptions de 2004 et 2011. C’est la première fois qu’ils mesuraient de tels niveaux de SO2 sur un volcan en Islande en dehors d’une phase éruptive ; la présence de ce gaz indique du magma à faible profondeur. En plus du niveau élevé de SO2, la zone où l’activité géothermale peut être détectée a considérablement augmenté.
Une étude antérieure du Grimsvötn a laissé supposer une corrélation entre les jökulhlaup (inondations glaciaires) et les éruptions de ce volcan. Lorsque la pression augmente dans le système volcanique en raison de l’accumulation de magma, et lorsqu’un grand volume d’eau est stocké dans le lac glaciaire, la chute de pression suite à la vidange du lac lors d’un jökulhlaup  peut faciliter la remontée du magma à la surface et déclencher une éruption. Ce type de scénario a été observé en 2004, mais aussi en 1934 et 1922. [Cette hypothèse de rebond isostatique a été envisagée au niveau de l’Islande dans son ensemble. Certains scientifiques pensent que la fonte des glaciers pourrait alléger leur masse à la surface du sol et ainsi favoriser l’ascension du magma, avec un plus grand nombre d’éruptions sur l’île.]
De nos jours, le niveau de l’eau dans le lac est assez élevé et la pression dans la chambre magmatique en dessous de la caldeira a atteint des valeurs comparables à celles d’avant la dernière éruption. Par conséquent, les volcanologues locaux pensent que la possibilité d’une éruption déclenchée par une inondation glaciaire dans les semaines ou les mois à venir doit être envisagée. Il se peut aussi que ce ne soit pas le cas, et la prochaine inondation glaciaire pourrait ne pas se solder par une éruption. En bref, cela signifie que personne ne peut prédire si et quand une nouvelle éruption se produira!
Source: IMO

——————————————–

It looks as if activity has been increasing in the Reykjanes peninsula and at Grimsvötn volcano, but nobody can tell what will happen next.

The Icelandic Met Office (IMO) indicates that inflation has started again on the Reykjanes peninsula, close to Grindavík. This ground uplift might suggest a magma intrusion. IMO says it would be the third event of this kind since the beginning of this year west of Mt Thorbjörn. The intrusion began around mid May but seismic activity started to increase toward the end of the month. A swarm of about 2000 earthquakes has been detected since then and several events are located east of Thorbjörn, few kilometres North of the town of Grindavík. The largest earthquake of this swarm occurred on Saturday June 13th, 2020 with a magnitude M 3.5.

Since the beginning of the volcanic unrest in January 2020, the total uplift measured in the area has reached about 12 cm. Between the inflation periods, slight deflation has been observed. Local volcanologists think it probably reflects the cooling of the intruded magma or the interaction with the geothermal system. Numerical modelling results show that this third intrusion is occurring roughly in the same area as the previous ones, about 1 km west of M Thorbjörn, at a depth of 3-4 km, with a width of few hundred metres and oriented NE-SW for about 6 km. The estimated volume of magma accumulated during this third intrusion episode is estimated to be 1.2 million cubic metres. The seismic activity is occurring over an area larger than the extension of the intrusion itself and this is probably due to the stress change induced to the crust which affects a wider sector of the peninsula.

Iceland Geosurvey performed micro-gravity measurements along some profiles in late January when the intrusion started near Thorbjörn and they repeated the measurements in late April. The results confirm the presence of intruded magma at depth. Therefore there is a reason to repeat the measurements again and it will be done in mid-summer.

Weekly gas measurements at two sites near the area of the intrusion but their interpretation is still unclear. No chemical changes have been detected at the geothermal power plant in Svartsengi. However, measurements of the geothermal system reveal an increased permeability and increased fluid flow in the surrounding rock, which can be linked to the earthquake activity, inflation and uplift in the area, which triggered the creation of new cracks and opening of older ones.

As I put it before, the area where seismicity and ground uplift are recorded is very complex as it includes both potential tectonic and volcanic activity. What surprises me is the absence of significant amount of gases that are usually produced during magma intrusion. What I also fail to understand is why the intrusion – if there was an intrusion – did not cause any increase in temperature in the fumarolic fields in the Reykjanes Peninsula. We’ll see what happens in the coming days and weeks and hope that an eruption does not take place at the heart of the summer and close Keflakik airport, now that tourists are again allowed to enter Iceland.

°°°°°°°°°°

IMO also informs us that  there is evidence that Grímsvötn volcano is getting ready for the next eruption  It has been noticed that Grímsvötn erupts on average each 5-10 years, although the notion of eruptive cycle has never been clearly proved and that “accidents” may happen. The last eruption occurred in 2011. Between eruptions, the deformation data indicate the gradual accumulation of new magma at depth and the increased pressure in the system.

In May and June 2020, IMO scientists measured SO2 in the southwest corner of the Grimsvötn caldera, close to where the last eruptions in 2004 and 2011 took place. They said it was the first time that they measured so much SO2 at a volcano in Iceland that is not in an eruptive phase and its presence is indicative of magma at shallow level. In addition to the high level of SO2, the area where geothermal activity can be detected at the surface of the volcano has notably increased.

A previous study of Grimsvötn has suggested a correlation between jökulhlaup (glacial floods) and eruptions at Grimsvötn. When the pressure in the volcanic system is increased due to magma accumulation and if a large volume of water is stored in the lake, the pressure release following the removal of water during a flood could facilitate the magma rising to the surface and trigger an eruption. This kind of scenario was observed in 2004, but also in 1934 and 1922.

These days, the water level is rather high and the pressure in the magma chamber below the caldera has reached values comparable to those prior to the last eruption. Therefore, local volcanologists think that the possibility of an eruption triggered by a glacial flood, which could occur in the coming weeks or months, has to be considered. However, this may not be the case, and the next glacial flood may not lead to an eruption. In short, this means nobody is able to predict if and when a new eruption will occur!

Source : IMO.

Grindavik et le Mt Thorbjörn (C’édit photo : IMO)

Site fumerollien sur la Péninsule de Reykjanes (Photo : C. Grandpey)

Caldeira du Grímsvötn avec le Grímsfjall et le lac subglaciaire à l’air libre suite à l’éruption de 2011 (Source : NASA)

L’Eifel (Allemagne) : une bombe à retardement ? // Is Eifel (Germany) a time bomb ?

Peu de gens le savent, mais l’Allemagne possède une belle région volcanique, en l’occurrence l’Eifel, située à l’ouest de la ville de Coblence. Il suffit de regarder les maisons et les escaliers dans les bourgades de Mayen ou Mendig pour se rendre compte que beaucoup d’édifices ont été érigés avec le basalte extrait dans la région. A ce sujet, la visite des carrières souterraines – Lavakeller – de Mendig est fort intéressante. Une hypothèse est que l’activité volcanique de l’Eifel serait due à l’existence d’un point chaud dans le manteau terrestre sous-jacent. Il faut utiliser le conditionnel car cette théorie n’est pas acceptée par l’ensemble de la communauté scientifique.

Fleuron de l’Eifel, le Laacher See est un magnifique maar, cratère plus ou moins circulaire résultat de la rencontre explosive du magma et d’une nappe d’eau souterraine. Il a été formé après l’éruption du volcan Laacher, entre 12 900 et 11 200 ans, donc relativement récemment à l’échelle géologique. On estime que cette éruption a été 250 fois plus importante que l’éruption du Mont St Helens aux Etats-Unis en 1980.

Le Laacher See est toujours considéré comme un volcan actif. On le constate au travers de nombreuses activités sismiques (la dernière en date a eu lieu le 11 avril 2010 avec une secousse de M 3,2 sur l’échelle de Richter) et de fortes anomalies thermiques sous le lac. Des bulles de gaz sont encore visibles à la rive sud, et les scientifiques pensent qu’une nouvelle éruption pourrait survenir à tout moment, ce qui, aujourd’hui, serait une véritable catastrophe

Une équipe de chercheurs de l’Université du Nevada à Reno et de l’Université de Californie à Los Angeles a trouvé de nouveaux indices de volcanisme actif dans la région de l’Eifel. Pour effectuer leur étude, les scientifiques ont collecté les données d’antennes GPS à travers l’Europe occidentale. Cela leur a permis d’analyser les moindres mouvements à la surface de la Terre susceptibles d’être liés à ceux d’un panache mantellique sous la croûte terrestre.
Certains scientifiques pensent que le panache mantellique qui a déclenché cette activité historique est toujours présent, jusqu’à 400 km à l’intérieur de la Terre. Cependant, personne ne sait s’il est toujours actif. L’un des auteurs de l’étude a déclaré: « La plupart des scientifiques pensent que l’activité dans le champ volcanique de l’Eifel (EVF) est une chose du passé, mais en reliant les points les uns aux autres, il semble que quelque chose se prépare sous le nord-ouest de l’Europe »
Dans leur dernière étude, les chercheurs ont utilisé des informations provenant de milliers d’antennes GPS pour réaliser une image des mouvements verticaux du sol (VLM) et de la déformation horizontale du sol sur la plupart des régions situées à l’intérieur de la plaque tectonique où se trouve l’Europe. Leur étude révèle que la surface de la Terre montre un phénomène d’inflation et de déflation sur une vaste zone centrée sur l’Eifel et incluant des régions telles que le Luxembourg, l’est de la Belgique et le Limbourg, la province la plus méridionale des Pays-Bas. L’ascension d’un panache mantellique pourrait expliquer les modèles observés et les mouvements du sol.
Les résultats de cette nouvelle étude confirment une recherche précédente qui avait détecté des preuves sismiques de mouvements du magma sous le Laacher See. Cependant, selon les chercheurs, «cela ne signifie pas qu’une explosion ou un séisme est imminent, ni même qu’une nouvelle activité volcanique est possible dans cette région».

Source : The Watchers.

C’est pourtant cette dernière menace qui sert de support à une vidéo que l’on peut voir au Lava-dome, petit musée construit au coeur de la ville de Mendig, par ailleurs célèbre pour sa Vulcan Bier produite par la brasserie locale… Alors qu’à Hawaii ou sur l’Etna on vend aux touristes des cassettes vidéo rappelant les éruptions passées, à Mendig on essaye d’imaginer ce que pourrait être une prochaine colère du Laacher See, tout en sachant qu’il n’est pas du tout  certain qu’un tel événement se produise un jour ! Quand on ne dispose que de volcans éteints ou en sommeil, il faut bien trouver quelque chose qui puisse frapper l’imagination du touriste de passage.

——————————————————-

Not many people know that Germany has a nice volcanic region, the Eifel, located west of the city of Koblenz. It suffices to look at the houses and the staircases in the villages of Mayen or Mendig to realize that many buildings have been erected with the basalt extracted in the region. By the way, the visit to the quarries – Lavakeller – of Mendig is very interesting. One hypothesis is that volcanic activity in the Eifel is due to the existence of a hotspot in the Earth’s mantle. One should use the conditional because this theory is not accepted by the whole scientific community.
The flagship of the Eifel is the Laacher See, a nice maar, a more or less circular crater, resulting from the explosive contact between magma and underground water. It was formed after the Laacher volcano erupted between 12,900 and 11,200 years ago, so relatively recently on a geological scale. It is estimated that this eruption was 250 times greater than the eruption of Mount St Helens in the United States in 1980.
The Laacher See is still considered an active volcano. One can see it through numerous seismic activities (the last one took place on April 11, 2010 with an event of M 3.2 on the Richter scale) and strong thermal anomalies under the lake. Gas bubbles are still visible at the south shore, and scientists believe that a new eruption could occur at any time, which today would be a real disaster.

A team of researchers from the University of Nevada at Reno and the University of California at Los Angeles have found new evidence of active volcanism in the Eifel region. To conduct their study, the scientists collected data from GPS antennas across Western Europe. This allowed them to analyze the smallest movements on the surface of the Earth likely to be linked to those of a mantle plume under the Earth’s crust.
Some scientists believe that the mantle plume that started this historic activity is still present, down to 400 km into the earth. However, no one knows if it is still active. One of the study’s authors said: « Most scientists believe that activity in the Eifel volcanic field (EVF) is a thing of the past, but by connecting the dots, it seems that something is brewing under the heart of northwest of Europe  »
In their latest study, the researchers used information from thousands of GPS antennas to image vertical land motion (VLM) and horizontal strain rates over most regions inside Europe’s tectonic plate. Their study reveals that the surface of the Earth shows a phenomenon of inflation and deflation over a large area centered on the Eifel and including regions such as Luxembourg, eastern Belgium and Limburg, the southernmost province of the Netherlands. The ascent of a mantle plume could explain the patterns observed and the movements of the ground.
The results of this new study confirm previous research that had detected seismic evidence of magma movements under the Laacher See. However, according to the researchers, « this does not mean that an explosion or an earthquake is imminent, or even that new volcanic activity is possible in this region. »
Source: The Watchers.

Yet, it is this last threat that serves as a support for a video that can be watched at the Lava-dome, a small museum built in the heart of the city of Mendig, also famous for its Vulcan Bier produced by the local brewery … While in Hawaii or on Mount Etna they sell to tourists video cassettes of past eruptions, in Mendig they try to imagine what could be the next eruption of the Laacher See, knowing that it is not sure that such an event will happen one day! When you only have extinct or dormant volcanoes, you have to find something that can catch the imagination of the passing tourist.

Photos : C. Grandpey

Des coulées de boue sur la planète Mars? // Mudflows on Mars ?

La planète Mars possède à sa surface de nombreuses structures qui intriguent les scientifiques. Grâce à elles, ils espèrent pouvoir mieux comprendre le passé de la planète et savoir si l’eau existait autrefois à sa surface. Une nouvelle étude publiée dans la revue Nature Geoscience laisse supposer que certaines de ces formations ont été édifiées par des coulées de boue, comme on peut en observer sur certains volcans sur Terre.
Des dizaines de milliers de cônes de plusieurs kilomètres de hauteur sont visibles dans l’hémisphère nord de Mars, et chaque cône porte un petit cratère à son sommet. Un chercheur de l’Institut de Géophysique de l’Académie tchèque des Sciences a voulu savoir s’ils étaient constitués de lave ou de boue. Jusqu’à présent, aucune recherche n’a été effectuée dans ce domaine. .
Pour savoir si la boue ou la lave coulait à la surface de Mars, le scientifique a utilisé la Mars Chamber de l’Open University, une chambre basse pression qui peut reproduire la pression atmosphérique et les conditions sur Mars, ainsi que sa température de surface.
Le chercheur et ses collègues ont simulé les conditions de basse pression martienne et ajusté la température de la chambre à -4°F (-20°C). Lorsqu’ils ont introduit la boue dans la chambre, elle n’a pas gelé immédiatement. Au lieu de cela, il s’est formé une croûte de glace à la surface de la boue qui est restée liquide à l’intérieur. C’est ce qui expliquerait pourquoi la boue liquide a pu s’échapper des fractures dans la croûte gelée, avant de se recongeler par la suite.
En raison des conditions martiennes mises en place pendant la simulation, telles que la basse pression atmosphérique, l’eau est devenue instable, a bouilli et s’est évaporée. Cela a fini par refroidir et geler la boue. Les formations créées par ce processus ressemblent aux coulées de « lave cordée » à Hawaï.
Comparée aux expériences réalisées avec de la boue soumise à la pression atmosphérique terrestre, la boue de la simulation martienne n’a pas formé de croûte glacée et elle ne s’est pas étalée lorsque la température a baissé.
Il est probable que les cônes à la surface de la planète Mars sont en fait des volcans sédimentaires où la boue est remontée à la surface depuis des centaines de mètres de profondeur.
On trouve les structures coniques dans une zone où de longs et larges chenaux ont laissé leur marque sur la surface martienne, trahissant l’évacuation d’énormes quantités de boue. Ce phénomène a pu donner naissance à un volcanisme sédimentaire.
Selon l’équipe scientifique qui a réalisé la simulation à l’aide de la Mars Chamber de l’Open University, la présence de boue laisse supposer que de l’eau existait autrefois sur Mars. La planète avait probablement un environnement stable et chaud, une atmosphère et un champ magnétique qui permettaient à l’eau d’exister à la surface il y a des milliards d’années. Si les structures géologiques observées à la surface de Mars sont effectivement le résultat d’un volcanisme sédimentaire, cela signifie que dans ces zones, quelque part dans le sous-sol, il devait exister une source de boue. En d’autres termes, il doit y avoir, ou il devait y avoir, une sorte d’aquifère contenant de l’eau à l’état liquide pour mobiliser les sédiments et les faire remonter à la surface de Mars.
Si les coulées sont constituées de lave, cela signifie qu’une source magmatique et de chaleur est probablement présente à faible profondeur sous la surface. En revanche, si les coulées sont sédimentaires ou constituées de boue, cela laisse supposer que de l’eau liquide (et une source de chaleur maintenant l’eau à l’état liquide) est présente sous la surface.
Il est probable que ce type de volcanisme sédimentaire ou de boue existe en d’autres endroits de notre système solaire, comme sur Cérès, une planète naine entre Mars et Jupiter. Il pourrait en être de même pour d’autres lunes glacées, comme Europe, la lune de Jupiter, Encelade, la lune de Saturne, ou Triton, la lune d’Uranus.
Il est difficile d’estimer l’âge des cônes sur Mars, mais ils sont plus jeunes que les plaines environnantes. Il se peut qu’ils aient entre quelques centaines de millions et 2 milliards d’années.
Source: CNN.

——————————————-

The surface of Mars is covered in intriguing features that help understand the planet’s past and the water that once existed on its surface. A new study published in the journal Nature Geoscience suggests that some formations on the planet are actually the product of mud that flowed like lava, just like what happens on some volcanoes on Earth.

Tens of thousands of kilometre-high steep cones are spread across Mars’ northern hemisphere, and each cone bears a small crater on top. A researcher at the Institute of Geophysics of the Czech Academy of Sciences wanted to know if they were formed by magma or mud. No research had been performed in this field up to now. .

To know whether it was mud or lava that was flowing at the surface of Mars, he used The Open University’s Mars Chamber, a low-pressure chamber that can reproduce Mars’ atmospheric pressure and composition, as well as its surface temperature.

The researcher and his colleagues simulated the Martian low-pressure conditions and set the chamber to -4°F (-20°C). When they poured mud in the chamber, it did not freeze immediately. Instead, it formed an icy crust over the liquid mud inside. Liquid mud would then spill from cracks in the frozen crust, which then refreeze.

Due to the simulated Martian conditions, such as the low atmospheric pressure, the water became unstable and boiled and evaporated. This caused the mud to eventually cool and freeze. The formations created by this process look similar to « ropy » lava flows in Hawaii.

Compared to experiments with mud at Earth’s atmospheric pressure, the mud did not form an icy crust, expand as the temperature dropped.

It is likely that the cones on the Martian surface are in fact sedimentary volcanoes where mud is brought up to the surface from a depth of hundreds of metres below it

The conical features can be found in the same area where long, wide channels left their mark on the Martian surface, revealing where giant floods likely erupted from beneath the surface. And this could have led to sedimentary volcanism.

According to the scientific team that performed the experiment with the Open University’s Mars Chamber the presence of mud suggests that water once existed on Mars. The planet likely had a warm stable environment, atmosphere and global magnetic field that allowed water to exist on the surface billions of years ago. If the features observed at the surface of Mars are indeed results of sedimentary volcanism, it means that in these areas somewhere in the subsurface has to be a source of mud. In other words, there has to be, or had to be, some sort of aquifer containing liquid water to mobilize the fine-grained sediments and take them to the surface of Mars.

If the flows are attributed to magma, that means a source of magma and heat must be present nearby below the surface. On the other hand, if they are sedimentary or muddy, that suggests liquid water (and heat that keeps the water liquid) is present below the surface.

This kind of sedimentary, or mud volcanism, could be present in other places throughout our solar system like Ceres, a dwarf planet between Mars and Jupiter. The same could be true of other icy moons, like Jupiter’s moon Europa, Saturn’s moon Enceladus or Uranus’ moon Triton.

It is difficult to estimate the age of the cones on Mars, but they are younger than the flat plains they sit on. They might be between a few hundreds of millions to 2 billion years old.

Source : CNN.

Maccalube di Aragona ( Sicile) [Photo : C. Grandpey]