Sierra Negra (Iles Galapagos / Galapagos Islands)

Selon le site web d’El Universo, le volcan Sierra Negra dans les îles Galapagos montre une hausse d’activité. La sismicité est en augmentation depuis janvier 2018 avec des événements allant jusqu’à M 4,8. La couleur du niveau d’alerte a été élevée à Jaune, ce qui signifie que l’accès à l’île Isabela est restreint. La persistance d’une sismicité élevée laisse supposer que le magma s’agite à l’intérieur du volcan, ce qui pourrait se solder par une éruption.
Les scientifiques ont installé un réseau sismique temporaire et deux inclinomètres numériques à proximité et à l’intérieur de la caldeira du Sierra Negra.
Le Sierra Negra est l’un des plus grands volcans des Iles Galapagos. Il possède une caldeira de forme ovale qui mesure 9 km d’est en ouest et 7 km du nord au sud. Il a produit au moins 10 éruptions dans l’époque historique, avec une période de repos moyenne de 15 ans entre chaque période éruptive. Ses deux dernières éruptions ont eu lieu en 1979 et 2005.
Source: El Universo.

———————————————–

According to the El Universo website, the Sierra Negra volcano in the Galapagos Islands is showing increased signs of activity. Seismicity has been increasing since January 2018 with events up to M 4.8 and the colour of the alert level has been raised to Yellow, which means that access to areas of Isabela Island is restricted. The persistence of high levels of seismicity suggests that magma is moving inside the Sierra Negra volcano, which could produce an eruption.

Scientists have installed a temporary seismic network and  two digital inclinometers in the surroundings and in the interior of the Sierra Negra volcano caldera.

Sierra Negra is one of the largest volcanoes in the Galapagos Islands and has an oval caldera, which measures 9 km east-west and 7 km north-south. It has produced at least 10 eruptions in the historical epoch, with an average resting period of 15 years between each eruptive period. Its last two eruptions occurred in the years 1979 and 2005.

Source : El Universo.

Image satellite des îles Galápagos en octobre 2005 lors de la dernière éruption du volcan Sierra Negra dont on aperçoit le panache. (Crédit photo : NASA)

Yellowstone : Le Steamboat Geyser déconcerte les scientifiques // Steamboat Geyser puzzles the scientists

Le Steamboat Geyser dans le Parc National de Yellowstone inquiète les scientifiques qui se posent beaucoup de questions après sa huitième éruption depuis le mois de mars. Elle s’est produite à 9h04 le 4 juin 2018 et a propulsé de l’eau bouillante à plusieurs dizaines de mètres de hauteur. Le geyser a ensuite laissé échapper de volumineux panaches de vapeur.
Le Steamboat Geyser se manifeste très rarement, contrairement au Vieux Fidèle qui est très régulier. Sa dernière grosse éruption remonte à 2014. Les scientifiques ne savent pas pourquoi le geyser connaît subitement ce regain d’activité. Il se peut qu’un petit séisme ait ouvert un nouveau passage à la vapeur suchauffée qui fait jaillir l’eau à la surface. Il se peut aussi que la source magmatique ait subi une modification à la verticale du Steamboat. Les scientifiques prévoient de le surveiller plus activement et de mieux l’étudier pour comprendre ce qui a provoqué le changement soudain de son comportement. Ainsi, les géologues de l’Université de l’Utah ont mis en place une série de capteurs sismiques autour du geyser pour enregistrer les vibrations pendant les éruptions. Ils espèrent obtenir un modèle du réseau d’alimentation du geyser en mesurant les ondes sonores qui le traversent.
Les éruptions d’un geyser sont en surface les expressions de la libération de la pression dans le sous-sol. Au fur et à mesure que l’eau s’écoule dans le sol, elle se rapproche de la roche chauffée par le magma et se transforme en vapeur. Ce processus crée de l’eau surchauffée et sous pression qui se trouve piégée sous la surface de la Terre. Finalement, cette eau bouillante et cette vapeur rassemblent assez de pression pour surmonter la pression de l’eau qui les surmonte. Elles sont brusquement expulsées et donnent naissance à une éruption spectaculaire.
Les autorités du Parc conseillent aux personnes qui ont l’intention de se rendre à Yellowstone de prévoir la visite du Steamboat Geyser vers le 11 ou 12 juin, soit sept à huit jours après la dernière éruption.

Source: Yellowstone Volcano Observatory, Yellowstone National Park.

————————————————–

The Steamboat Geyser in Yellowstone National Park is puzzling scientists after it erupted for the eighth time since March. The most recent eruption occurred at 9:04 a.m. on June 4th, 2018 and spewed boiling water several tens of metres into the air, followed by hours of steam plumes coming out of the geyser basin.

Steamboat Geyser, unlike the regular Old Faithful Geyser, erupts very infrequently. The last time it came to life was in 2014. Scientists are unsure why all of a sudden the geyser is experiencing a string of eruptions. Perhaps a small earthquake caused a more open flow path from the heated steam and water to the surface. Perhaps there is an increased magma source under Steamboat. Experts are unsure of the reason and plan to actively monitor and study the geyser to better understand what prompted the sudden change in its behaviour. Geologists with the University of Utah set up an array of seismic sensors across the geyser to capture the rumbling during eruptions. Their hope is to reconstruct the plumbing of the geyser by measuring the sound waves as they travel through the geyser up to the sensors.

Geyser eruptions are surface expressions of pressure release from the subsurface. As water trickles down into the soil and rocks in the ground, it continues to travel closer to heated rock and magma and becomes heated and turned to vapour. This process creates superheated and pressurized water to be trapped far below Earth’s surface. Eventually, there is enough boiling water and steam to overcome the overburden pressure of rock and water above. When this happens, the contained boiling water and steam is suddenly released in a dramatic eruption.

The park authorities say that if you plan to visit Yellowstone National Park, it is advisable to plan a visit to Steamboat around June 11th or 12th, seven to eight days after the latest eruption.

Source: Yellowstone Volcano Observatory, Yellowstone National Park.

Photo: C. Grandpey

Le magma du super volcan de Yellowstone // Magma of the Yellowstone super volcano

J’ai écrit plusieurs articles sur ce blog concernant la source magmatique de Yellowstone et la présence d’un double réservoir sous le super volcan.
À l’aide d’une modélisation par superordinateur, des scientifiques de l’Université de l’Oregon ont pu fournir de nouvelles hypothèses concernant ce double réservoir qui se cache sous le Parc National de Yellowstone. L’étude a été publiée dans Geophysical Research Letters.
À des profondeurs de 5 à 10 kilomètres, des forces opposées donnent naissance à une zone de transition où les roches froides et rigides de la croûte supérieure cèdent la place à des roches chaudes et partiellement fondues qui se trouvent en dessous. Cette zone de transition piège les magmas ascendants et les pousse à s’accumuler et à se solidifier dans un filon horizontal appelé sill qui, selon la modélisation informatique réalisée par les chercheurs, peut atteindre 15 kilomètres. Les résultats de la modélisation confirment les observations effectuées précédemment en envoyant des ondes sismiques à travers cette zone.
Le sill se compose essentiellement de gabbro solidifié. Au-dessus et au-dessous se trouvent des corps magmatiques distincts. Celui du dessus contient un magma rhyolitique qui peut produire de temps en temps des explosions très puissantes. Des structures similaires existent probablement sous des super volcans ailleurs dans le monde. La morphologie du sill peut aussi expliquer des signatures chimiques différentes que l’on observe dans les matériaux éruptifs.
En 2014, un article publié dans Geophysical Research Letters par une équipe scientifique de l’Université de l’Utah a révélé, grâce à l’analyse d’ondes sismiques, la présence d’un grand volume de magma dans la croûte supérieure. Les scientifiques avaient toutefois remarqué que d’énormes quantités de dioxyde de carbone et d’hélium s’échappaient du sol, ce qui laissait supposer la présence d’une autre poche de magma sous la précédente. Ce mystère a été résolu en mai 2015, lorsqu’une étude réalisée par l’Université de l’Utah, publiée dans la revue Science, a identifié, au moyen d’ondes sismiques, la présence d’un deuxième volume de magma, encore plus important, à une profondeur de 20 à 45 kilomètres.
Cependant, les études des données sismiques n’ont pas permis de déterminer la composition, ou la quantité de magma dans ces deux réservoirs, ni comment et pourquoi ils se sont formés. Pour comprendre les deux structures, les chercheurs de l’Université de l’Oregon ont créé de nouveaux codes de modélisation pour les superordinateurs afin de savoir à quel niveau le magma est susceptible de s’accumuler dans la croûte. Le travail a été réalisé en collaboration avec des chercheurs de l’Institut fédéral suisse de technologie de Zurich.
Les résultats de la modélisation ont révélé qu’une importante couche de magma refroidi, avec un point de fusion élevé, existait au niveau du sill séparant deux corps magmatiques avec un magma à un point de fusion inférieur ; une grande partie de cette couche de magma refroidi proviendrait de la fusion de la croûte. Les auteurs de l’étude pensent que cette structure est à l’origine du volcanisme rhyolite-basalte que l’on trouve dans l’ensemble du point chaud de Yellowstone, y compris les matériaux produits par les super éruptions. En particulier, la modélisation a permis d’identifier la structure géologique du secteur où se trouve le matériau rhyolitique.
Pour le moment, la dernière étude ne permet pas de savoir quand se produiront les prochaines éruptions du super volcan de Yellowstone, mais elle permet d’expliquer la structure du système d’alimentation magmatique. Elle montre l’endroit où le magma prend sa source et là où il s’accumule.
Étudier l’interaction de l’ascension du magma avec la zone de transition dans la croûte terrestre, et comment ce processus influence les propriétés des poches magmatiques qui se forment au-dessus et au-dessous, devrait permettre de mieux comprendre le rôle joué par les panaches mantelliques dans l’évolution et dans la structure de la croûte continentale.
Source: Université de l’Oregon.

———————————————-

I have written several posts on this blog about the magma source of Yellowstone and the presence of two magma bodies beneath the volcano.

Using supercomputer modelling, University of Oregon scientists have unveiled a new explanation for the geology underlying magma bodies below Yellowstone National Park. The study was published in Geophysical Research Letters.

At depths of 5-10 kilometres, opposing forces counter each other, forming a transition zone where cold and rigid rocks of the upper crust give way to hot, partially molten rock below. This transition traps rising magmas and causes them to accumulate and solidify in a large horizontal body called a sill, which can be up to 15 kilometres, according to the team’s computer modelling. The results of the modelling matches observations done by sending seismic waves through the area.

The sill is comprised of mostly solidified gabbro. Above and below lay separate magma bodies. The upper one contains rhyolitic magma that occasionally erupts in very powerful explosions. Similar structures may exist under super volcanoes around the world. The geometry of the sill also may explain differing chemical signatures in eruptive materials.

In 2014, a paper in Geophysical Research Letters by a University of Utah-led team revealed evidence from seismic waves of a large magma body in the upper crust. Scientists had suspected, however, that huge amounts of carbon dioxide and helium escaping from the ground indicated that more magma is located farther down. That mystery was solved in May 2015, when a second University of Utah-led study, published in the journal Science, identified by way of seismic waves a second, larger body of magma at depths of 20 to 45 kilometres.

However, the seismic-imaging studies could not identify the composition, state and amount of magma in these magma bodies, or how and why they formed there. To understand the two structures, University of Oregon researchers wrote new codes for supercomputer modelling to understand where magma is likely to accumulate in the crust. The work was done in collaboration with researchers at the Swiss Federal Institute of Technology, also known as ETH Zurich.

The researchers repeatedly got results indicating a large layer of cooled magma with a high melting point forms at the mid-crustal sill, separating two magma bodies with magma at a lower melting point, much of which is derived from melting of the crust. The authors of the study think that this structure is what causes the rhyolite-basalt volcanism throughout the Yellowstone hotspot, including supervolcanic eruptions. More particularly, the modelling helps to identify the geologic structure of where the rhyolitic material is located.

The new research, for now, does not help to predict the timing of future eruptions. Instead, it helps explain the structure of the magmatic plumbing system that fuels these eruptions. It shows where the eruptible magma originates and accumulates.

Studying the interaction of rising magmas with the crustal transition zone, and how this influences the properties of the magma bodies that form both above and below it should boost scientific understanding of how mantle plumes influence the evolution and structure of continental crust.

Source: University of Oregon.

Source: University of Oregon

Magma et minerai de fer // Magma and iron ore

Des géologues ont découvert que certains magmas se composent de deux liquides distincts, dont l’un est très riche en fer. Leur étude, parue dans la revue Nature Communications, pourrait contribuer à la découverte de nouveaux gisements de minerai de fer pour l’exploitation minière.
Le minerai de fer est extrait dans quelque 50 pays ; l’Australie, le Brésil et la Chine sont les principaux producteurs. La plupart des gisements de minerai de fer se trouvent dans les roches sédimentaires. D’autres sont extraits dans des complexes volcaniques tels que El Laco dans la région d’Antofagasta au Chili, et Kiruna en Suède. Ces gisements de minerai de fer, appelés gisements de type Kiruna, représentent environ 10% de la production mondiale de fer, mais personne ne sait comment ils se sont formés.
L’équipe internationale de chercheurs appartenant à des institutions telles que KU Leuven (Belgique) , l’Université Leibniz de Hanovre (Allemagne) et l’ULiège (Belgique) explique avec certitude que ces gisements de minerai de fer se forment lorsque le magma se scinde en deux liquides distincts. Des études antérieures se sont attardées sur la texture ou la composition des roches naturelles. Les chercheurs mentionnés ci-dessus ont été les premiers à reproduire en laboratoire des magmas comme ceux d’El Laco. Autrement dit, ils ont reproduit les conditions observées dans les chambres magmatiques où s’accumule la roche en fusion lorsqu’elle ne peut remonter à la surface. C’est également là que se forment les gisements de minerai de fer sous les volcans. Il est donc intéressant de reproduire la température et la pression qui règnent dans les chambres magmatiques.
Dans ce but, l’équipe scientifique a utilisé un mélange d’échantillons de minerai riches en fer et de laves typiques que l’on rencontre autour des gisements de type Kiruna. Cela a donné naissance à une composition en vrac qui, selon les chercheurs, existe dans la chambre magmatique profonde sous les volcans. Ils ont placé le mélange dans un four et ont porté la température à 1000-140°C. Ils ont également augmenté la pression jusqu’à environ 1000 fois la pression atmosphérique terrestre. Ils ont ainsi reproduit les conditions qui règnent dans une chambre magmatique. Les chercheurs ont été surpris de constater que, dans ces conditions, le magma se scindait en deux liquides distincts, processus connu sous le nom d’immiscibilité. L’un de ces liquides contenait beaucoup de silice, tandis que l’autre était extrêmement riche en fer – jusqu’à 40% – et en phosphore. Lorsque le liquide riche en fer commence à se refroidir, on obtient du minerai de fer de type Kiruna riche en phosphore.
Cette expérience montre que l’immiscibilité est la clé de la formation de gisements de minerai de fer, comme celui extrait à El Laco. Si les résultats se vérifient, il pourront aider à trouver de nouveaux gisements de minerai de fer dans le monde.
Sources: Science Daily, KU Leuven.

——————————————

Geologists have discovered that some magmas split into two separate liquids, one of which is very rich in iron. Their findings could help to discover new iron ore deposits for mining.

Iron ore is mined in about 50 countries, with Australia, Brazil and China as the largest producers. Most iron ore deposits are found in sedimentary rocks. Others are mined in volcanic complexes such as El Laco in Chile and Kiruna in Sweden. These iron ore deposits, called Kiruna-type deposits, account for about 10% of the global production of iron, yet nobody knows how they are formed.

In Nature Communications, an international team of researchers from institutions including KU Leuven, Leibniz University Hannover, and ULiège present the first evidence that these iron ore deposits are formed when magma splits into two separate liquids. Previous studies have always focused on the texture or the composition of natural rocks. The researchers were the first to actually reproduce magmas in the lab such as the ones found in El Laco. They wanted to reproduce the conditions found in magma chambers, where molten rock accumulates when it cannot rise to the surface. This is also where the iron ore deposits beneath volcanoes are formed, so reproducing the temperature and pressure of the magma chambers seemed well worth examining.

That’s why the scientific team produced a mixture of iron-rich ore samples and typical lavas surrounding Kiruna-type deposits. This created a bulk magma composition that they believed exists in the deep magma chamber beneath volcanoes. They placed the mixture in a furnace and raised the temperature to 1,000-1,040°C. They also increased the pressure to about 1000 times the atmospheric pressure of Earth, which are the conditions of a magma chamber. The researchers were surprised to find that, under these conditions, the magma split into two separate liquids, a process known as immiscibility. One of these liquids contained a lot of silica, whereas the other was extremely rich in iron – up to 40% – and phosphorus. When this iron-rich liquid starts to cool down, one gets iron-phosphorus Kiruna-type ore deposits.

This is the first evidence that immiscibility is key to the formation of iron ore deposits such as the ones mined in El Laco. If the researchers are right, these findings may help to find new iron ore deposits.

Sources: Science Daily, KU Leuven.

Carte géologique du complexe volcanique d’El Laco

Nouvelle étude sur le panache mantellique de Yellowstone // New study on the Yellowstone mantle plume

Au cours des dernières années, plusieurs études ont été réalisées sur le panache mantellique qui alimente le super volcan de Yellowstone. Elles ont révélé que la source du panache est beaucoup plus à l’ouest que prévu. De nouvelles recherches publiées dans la dernière édition de Nature Geoscience révèlent que des scientifiques de l’Université du Texas à Austin ont cartographié la trajectoire précise suivie par ce panache magmatique depuis la surface de la Terre jusqu’à son origine dans le manteau inférieur. L’étude révèle que la source de chaleur qui alimente Yellowstone est un panache de forme cylindrique, de 345 kilomètres de large, qui trouve son origine à 2900 kilomètres de profondeur, à la verticale de la partie nord de la Péninsule de Basse Californie. Cela confirme ce que pensent depuis longtemps les géophysiciens et explique pourquoi le super volcan avec ses geysers, ses sources thermales, ses mares de boue et ses fumerolles est situé dans le nord-ouest du Wyoming.
Jusqu’à présent, les chercheurs avaient réussi à localiser le panache mantellique qui alimente le point chaud de Yellowstone jusqu’à environ 960 kilomètres de profondeur. La dernière étude s’appuie sur les techniques tomographiques existantes qui permettent de cartographier comment les ondes sismiques « S » traversent le manteau terrestre. Par exemple, ces ondes ralentissent lorsque elles rencontrent un point chaud, comme un panache magmatique.
Les chercheurs ont analysé les données de 71 séismes de magnitude 5 ou plus enregistrés dans le monde entier entre 2005 et 2012. Ces séismes font partie d’un ensemble de données fournies par le programme « USAArray » qui regroupe un réseau de 400 sismomètres à travers les États-Unis continentaux. Avant la création de l’USAArray, personne n’avait installé une telle densité de sismomètres sur une zone aussi vaste. Ce réseau a révolutionné notre compréhension de la Terre, du moins sur le continent nord-américain.
L’hypothèse de départ était que le panache mantellique de Yellowstone était probablement une structure plutôt verticale. En fait, les chercheurs ont trouvé que le panache était plus incliné que prévu, jusqu’à la frontière entre le Mexique et la Californie. A son point de départ, à la limite noyau-manteau, on estime que le panache a une température d’environ 590 à 815 degrés Celsius supérieure à celle du manteau environnant. Au fur et à mesure qu’il s’élève vers la surface, sa température s’abaisse et n’est plus que de 400 degrés Celsius supérieure à celle du manteau au moment où il se trouve à 1 000 kilomètres sous la surface de la Terre. Il contient alors de la roche à haute température, mais pas de matière en fusion ou liquide.
Source: Gillette News Record.

—————————————–

In recent years, several studies have been made about the mantle plume that feeds the Yellowstone super volcano. They revealed that the source of the plume was much farther west than expected. In a recent research published in the latest edition of Nature Geoscience, University of Texas at Austin scientists have mapped the precise route of this magma plume from the Earth’s surface all the way to its outer core. It reveals that the source of heat slowly swelling the Yellowstone Plateau is a 345-kilometre-wide cylindrical plume that originates 2,900 kilometres beneath the northern reaches of Baja California. The finding confirms geophysicists’ long time suspicions and explains why the super volcano with its geysers, hot springs, mud pots and fumaroles is located in northwest Wyoming.

Until now, researchers had been able to trace the magma plume feeding the Yellowstone hotspot down to only about 960 kilometres underground. The latest study relied on existing tomography techniques, mapping how seismic “S” waves from earthquakes pass through Earth’s mantle. When the waves reach a hotspot, like a magma plume, they slow down.

The researchers analysed data from 71 M 5 or larger earthquakes that were recorded all around the world between 2005 and 2012. Those quakes were part of the “USAArray” dataset which sweeps a network of 400 seismometers across the continental United States. Before the USAArray was set up, nobody had ever put so many seismometers with such a density over such a large an area. It revolutionized our understanding of the Earth, at least in the North American continent.

The original hypothesis was that the Yellowstone mantle plume would be a rather vertical structure. Actually, the researchers found it was tilted more than they expected, going as far as the Mexico-California border. Where it originates, at the core-mantle boundary, the plume is estimated to be about 590 to 815 degrees Celsius warmer than the surrounding mantle. The structure is pulled to the surface by its buoyancy, and as it rises it loses its temperature, running only 400 degrees warmer than the mantle by the time it’s 1,000 kilometres away from the Earth’s surface. Its content is hot rock, not molten or liquid material.

Source: Gillette News Record.

Imperial Geyser à Yellowstone (Photo: C. Grandpey)

Etude des cristaux pour mieux prévoir les éruptions // A study of crystals to better predict eruptions

Nous savons tous que la prévision éruptive est extrêmement difficile. En effet, chaque volcan possède son propre réseau complexe de conduits d’alimentation. Même lorsque les instruments détectent une activité volcanique, il est très compliqué de savoir quand le magma atteindra la surface.
Des scientifiques du Trinity College de Dublin (Irlande) et de l’Université du Queensland (Australie) ont essayé de comprendre ce processus en analysant les cristaux qui se développent à l’intérieur des volcans et agissent comme enregistreurs de leurs éruptions. Une étude précédente sur les cristaux de l’Etna avait montré que si un nouveau magma arrive dans la chambre située à une dizaine de kilomètres sous la surface, une éruption peut se produire dans les deux semaines suivantes.
Au fur et à mesure qu’il monte vers la surface, le nouveau magma exerce une pression sur les roches encaissantes en accumulant de la pression sous le volcan. Cela génère des séismes et entraîne un gonflement de l’édifice, phénomènes qui peuvent être surveillés en surface ou depuis l’espace avec des satellites. La difficulté est de savoir si une recharge de la chambre magmatique à un certain moment se traduira par une éruption et combien de temps il faudra avant que l’éruption commence.
C’est à ce niveau que les cristaux peuvent intervenir. Ces minéraux ont été baptisés « anté-cristaux » parce qu’ils ont souvent commencé souvent à se développer dans les magmas primaires, des milliers d’années avant que le volcan entre en éruption. Ils se développent couche par couche, tout en enregistrant les changements dans le magma environnant, de la même manière que les cernes des troncs d’arbres enregistrent les variations du climat.
La technologie laser permet de pénétrer la structure de ces « anté-cristaux » pour créer des cartes des éléments traces à l’intérieur. Cela suppose d’envoyer un faisceau laser sur l’ « anté-cristal, » puis d’utiliser un spectromètre de masse pour analyser l’aérosol qui est ainsi émis et déterminer son contenu. Cela permet de créer une image 2D de la structure du cristal qui peut nous renseigner sur son histoire. Par exemple, lorsque d’anciens noyaux d’ « anté-cristaux » sont transportés à la surface par un nouveau magma, cela génère une bordure bien particulière autour du cristal.

En utilisant des cartes chimiques de cristaux provenant des 40 dernières années d’activité de l’Etna, les chercheurs ont pu déterminer la profondeur à laquelle les cristaux se sont développés, mais aussi à quel moment un nouveau magma a commencé à envahir le système volcanique en profondeur. Ils ont constaté que le processus a débuté dans les années 1970, ce qui coïncide avec la période où le volcan a commencé à entrer en éruption plus souvent, avec une ascension plus rapide du magma, plus d’explosivité et une activité sismique plus intense.
Le type de contact entre les noyaux des cristaux et leurs bordures, et l’épaisseur des bordures, contiennent des informations sur le temps qui s’est écoulé entre les arrivées de magma et le début d’une éruption. Cela signifie que nous pouvons mieux prévoir quand une éruption est susceptible de se produire après avoir détecté le magma à certains niveaux sous le volcan.
La conclusion de l’étude est que l’analyse laser d’ « anté-cristaux » dans le monde entier pourrait permettre aux volcanologues de mieux comprendre comment la recharge de la chambre magmatique agit comme déclencheur d’éruptions et de mieux interpréter les données de surveillance des volcans actifs. Cela pourrait permettre d’établir un processus plus précis pour repérer les signes avant-coureurs et prévoir les éruptions imminentes.
Source: Live Science.

L’étude complète peut être lue à cette adresse: https://www.nature.com/articles/s41467-017-02274-w

——————————————-

We all know that predicting an eruption is a very difficult task. Indeed, every volcano has its own unique and complex network of feeding conduits. So, even when instruments detect volcanic activity, it is very hard to know when the magma will make its way to the surface.

Scientists from Trinity College Dublin (Ireland) and the University of Queensland (Australia) have found a way to assess this process by using crystals that grow inside volcanoes and act like a record of its eruption. A previous study on crystals from Mount Etna had shown that if new magma arrives in chambers 10 km below the volcano’s surface, an eruption can follow within two weeks.

As it moves towards the surface, the new magma pushes apart the rock, building up pressure beneath the volcano. This produces earthquakes and inflates the volcanic edifice, effects that can be monitored at the surface or from space with satellites. What is difficult is to know if a particular magma recharge will actually translate into an eruption and how much time it will take for the eruption to start.

This is where the crystals can come in. These minerals are called antecrysts because they often start growing from early magmas thousands of years before the volcano erupts. They grow layer by layer, recording changes in the surrounding magma, like tree rings registering variations in the climate.

Laser technology allows to look into the antecrysts to create maps of the trace chemical elements inside them. This involves firing a grid of laser lines over the antecryst and then using a mass spectrometer to analyse the aerosol that is given off and work out what it contains. This can be used to create a 2D image of the crystal’s composition that can tell us something about its history. For example, when old antecryst cores are transported to the surface by new magma, it generates a distinctive rim on the crystal.

Using crystal chemical maps from the last 40 years of volcanic activity at Mount Etna, the researchers been able to determine the depth at which the crystals grow but also when new magma began invading the underground volcanic system. They found that this started occurring in the 1970s, coinciding with the period when the volcano began to erupt more often, with faster-moving magma and more explosiveness and seismic activity.

The type of contact between the crystal cores and the rims and thickness of the rims hold information on how much time elapses between the arrival of batches of magma and when an eruption started. This means we can better predict when an eruption is likely to occur after magma is detected at certain points beneath the volcano.

The study’s conclusion is that carrying out laser surveys of antecrysts from around the world could help volcanologists better understand how magma recharge acts as a trigger for eruptions, and how to interpret monitoring data from active volcanoes. This could create a more accurate process for spotting warning signs and predicting imminent eruptions.

Source : Live Science.

The complete study can be found at this address : https://www.nature.com/articles/s41467-017-02274-w

L’étude des cristaux permettra-t-elle un jour de mieux comprendre les humeurs de l’Etna? (Photo: C. Grandpey)

Grimsey (Islande) : Ça se calme // Seismicity is decreasing

Comme cela était prévisible (voir ma dernière note), on observe depuis hier 20 février 2018  un déclin de la sismicité sur la zone de fracture de Tjörnes et sur l’île de Grimsey (voir ci-dessous). L’essaim sismique avait une origine purement tectonique avec des événements majoritairement superficiels. L’Icelandic Met Office a indiqué à plusieurs reprises qu’aucun paramètre ne suggérait une ascension du magma. Il faut noter qu’au cours des dernières semaines c’est toute la zone de rift islandaise qui a été soumise à une hausse de la sismicité, depuis la Péninsule de Reykjanes où des séismes de magnitude supérieure à M 3,0 ont été enregistrés.

————————————-

Predictably (see my last post), since yesterday, February 20th, 2018, there has been a decline in seismicity along the Tjörnes Fracture Zone and on Grimsey Island (see below). The seismic swarm had a purely tectonic origin with mostly shallow events. The Icelandic Met Office has repeatedly stated that there were no parameters to suggest any magma ascent. It should be noted that over the last few weeks the entire Icelandic rift zone has been subjected to increased seismicity, starting from the Reykjanes Peninsula where earthquakes above M 3.0 have been recorded.

Source: IMO