Exploration sous-marine de la côte sud d’Hawaii // Submarine exploration of the southern coast of Hawaii

Alors que les scientifiques français se plaignaient du manque de moyens pour explorer le volcan sous-marin au large des côtes de Mayotte, des chercheurs américains se trouvaient à bord du navire de recherche Rainier de la NOAA pour explorer la côte sud de la Grand Ile d’Hawaii. Ils ont pu observer et analyser les conséquences de l’arrivée de la lave dans l’océan lors de l’éruption du Kilauea en 2018. Le Rainier fait partie d’une flotte dont la mission est d’étudie la bathymétrie des eaux côtières autour des États-Unis. Les relevés permettent de mettre à jour les cartes marines et divers documents numériques destinés au commerce et au transport maritime, ainsi qu’à la sécurité de la navigation. Le navire mesure également diverses propriétés de l’eau de mer. Les missions du Rainier s’effectuent principalement en Alaska, mais les conséquences de l’éruption de 2018 l’ont conduit à Hawaii. Cette mission a été l’occasion d’observer les deltas de lave formés pendant l’éruption dans la Lower East Rift Zone.

La principale mission de la NOAA étant de maintenir à jour les cartes marines, la côte de Puna au SE de la Grande Ile méritait d’être analysée en raison des changements survenus en 2018. Cependant, l’intérêt de la mission dépasse l’hydrographie. L’observation des pentes sous-marines permet aux volcanologues du HVO à mieux comprendre les processus qui affectent la stabilité du delta de lave nouvellement formé dans la baie de Kapoho, ainsi que d’autres dangers le long du nouveau littoral.
Une étude réalisée en août 2018 par le navire de recherche Nautilus exploité par l’Ocean Exploration Trust, avait déjà fourni une base de référence permettant d’identifier les changements bathymétriques survenus au cours de l’année écoulée.
À l’instar du Nautilus, le Rainier a analysé la bathymétrie à l’aide d’un sondeur multi-faisceau (SONAR) monté sur sa coque. Ce système envoie les ondes acoustiques perpendiculairement à la longueur du navire. Le principe est simple : Les ondes sont envoyées vers le fond de l’océan et remontent vers le navire où un récepteur mesure le temps écoulé. La collecte de millions de mesures de distance permet de construire un DEM (Digital Elevation Model) modèle numérique du relief sous-marin. En comparant le nouveau DEM du Rainier à celui obtenu l’année dernière avec le Nautilus, les volcanologues sont en mesure de voir quelles parties du delta de lave sous-marin sont les plus fragiles, et donc susceptibles de s’affaisser ou de s’effondrer. Par ailleurs, la comparaison d’images satellite récentes avec les cartes des coulées de lave de 2018 révèle que certaines des nouvelles côtes ont déjà reculé de plusieurs dizaines de mètres. Des changements similaires pourraient donc se produire sous la surface de l’océan.
Le traitement et la publication du nouvel ensemble de données prendront un certain temps. Cependant, alors que le Rainier était ancré au large des côtes hawaiennes, les volcanologues du HVO ont pu monter à bord et  repérer des détails intéressants au niveau du littoral submergé le long des deltas de 2018, y compris un chenal de lave, aujourd’hui inactif. Des discussions avec l’équipage du navire ont permis d’identifier plusieurs zones intéressantes pour y effectuer des investigations bathymétriques.
Source: USGS.

——————————————-

While French scientists were complaining about the lack of means for the exploration of the submarine volcano off the coasts of Mayotte, Americans researchers were on board the NOAA research ship Rainier to explore the southern coast of Hawaii Big island. They could observe and analyse the consequences of the arrival of lava in the ocean during the 2018 Kilauea eruption. The Rainier is part of a fleet that surveys the bathymetry of coastal waters around the United States. The surveys are used to update nautical charts and various digital products in support of marine commerce and transportation, as well as navigation safety. The ship also measures various properties of the ocean water. The Rainier works primarily in Alaska, but the aftermath of the 2018 eruption brought it to Hawai‘i. The journey provided a special opportunity to re-survey the lava deltas formed during the Lower East Rift Zone eruption.

Because NOAA’s core mission is to maintain up-to-date nautical charts, the Puna coast became an important objective given the changes that occurred there in 2018. However, interest in the data goes beyond hydrography. Views of the submarine slopes help HVO volcanologists to better understand ongoing processes that affect the stability of the newly-formed lava delta in Kapoho Bay, along with other hazards along the new coastline.

An August 2018 survey by the Exploration Vessel Nautilus, operated by the Ocean Exploration Trust, provides a baseline to identify bathymetric changes over the past year.

The Rainier, like the Nautilus, surveys bathymetry using a multibeam echosounder (SONAR) mounted to its hull. This system transmits acoustic waves in a fan along the beam of the ship, perpendicular to the ship’s length. As these waves reflect off the ocean floor and back to the ship, a highly-sensitive receiver measures the time that has passed.

Collecting millions of distance measurements allows for the construction of a submarine Digital Elevation Model (DEM). By comparing the new DEM from the Rainier with last year’s DEM from the Nautilus, it will be possible for volcanologists to see which parts of the submarine lava delta are subsiding. Comparisons of recent satellite images with 2018 lava flow maps have suggested that some of the new coastline has already retreated by tens of metres, so similar changes might be expected below the waves.

Full processing and publication of the new dataset will take some time. However, while the Rainier was anchored offshore, HVO’s volcanologists came on board and could spot various submarine features along the 2018 deltas, including a possible lava channel, now inactive. Discussions with the ship’s crew identified several target areas for further bathymetric investigation.

Source : USGS.

L’arrivé de la lave fragilise le littoral hawaiien (Photo: C. Grandpey)

L’éruption de 1969 du Mauna Ulu à Hawaii // The Mauna Ulu 1969 eruption in Hawaii

Le mois de mai 2019 est une date importante dans l’histoire du Kilauea, sur la Grande Ile d’Hawaii. D’une part, c’était le premier anniversaire de l’éruption de 2018. D’autre part, mai 2019 marquait le 50ème anniversaire d’un autre événement majeur sur l’East Rift Zone: le début de l’éruption du Mauna Ulu qui a duré de 1969 à 1974.
Il y a cinquante ans, le 24 mai 1969, le début de l’éruption du Mauna Ulu a commencé avec l’ouverture d’une fracture à l’endroit où se croisent le rift est du Kilauea et la zone de la faille de Koa’e. Cette nouvelle fracture s’est comportée comme les fissures 17, 20 et 22 de l’éruption de 2018, avec des fontaines de lave de 30 mètres de hauteur issues d’une fracture linéaire. Ce type d’éruption est classique à Hawaii et apparaît sous l’appellation « fontaine hawaïenne » dans les manuels de volcanologie du monde entier.
S’agissant du Mauna Ulu, le système de fissures s’étire sur 4,5 km d’est en ouest et traverse les cratères Alo’i et Alae dans le Parc National des Volcans d’Hawaï. Les fontaines de lave se limitaient à deux zones principales: l’une entre les deux cratères et l’autre à l’ouest du cratère Alo’i.
Le premier jour de l’éruption du Mauna Ulu, la zone de fontaines de lave la plus à l’ouest est restée active pendant 18 heures. La zone à l’est est restée active pendant 36 heures, mais on sait peu de choses sur cette activité, car la Chain of the Craters Road a été coupée par les fontaines de l’ouest, de sorte que les fontaines de l’est n’étaient visibles que de loin.
L’éruption du Mauna Ulu a duré cinq ans et a été précédée par une série d’éruptions fissurales dans l’East Rift Zone en 1960, 1961, 1962, 1963 (2), 1965 (2), 1965 (2) et Février 1969. Chacune d’elle a duré entre 1 et 15 jours. À l’époque, on ne pouvait pas savoir que l’activité éruptive commencée le 24 mai 1969 était le début de quelque chose de plus important. En fait, avec une durée de seulement 36 heures, elle semblait plutôt insignifiante à côté des autres éruptions à Hawaii..
La fracture de l’épisode 1 de l’éruption a généré une activité de spattering qui a édifié des remparts linéaires de plusieurs mètres de hauteur du côté nord de la fracture. En fait, cette brève activité fissurale a constitué le premier des 12 épisodes de fontaines de lave du début de l’éruption du Mauna Ulu qui s’est poursuivie jusqu’au 31 décembre 1969.
À partir de l’épisode 2, l’activité est restée confinée dans la zone de fontaines de lave située à l’est. La bouche éruptive donnait souvent naissance à deux fontaines qui jaillissaient côte à côte, parfois de la même hauteur, de plusieurs dizaines à plusieurs centaines de mètres de haut.
Les fontaines de lave ont fini par édifier un cône de tephra de 50 mètres de hauteur. Ce cône a été baptisé Mauna Ulu (montagne grandissante). Il a ensuite été recouvert de 70 mètres de lave et constitue encore aujourd’hui un repère important bien visible depuis la Chain of the Craters Road.
En janvier 1970, l’éruption du Mauna Ulu est devenue effusive, avec des coulées de lave qui se sont dirigées vers le sud à travers le parc national et ont finalement atteint l’océan. Un lac de lave s’est formé dans le cône de tephra. Il a permis aux chercheurs du HVO de comprendre les phénomènes de « gas pistoning ». La lave a également comblé les pit craters Alo’i et Alae.
Après une pause de trois mois et demi (d’octobre 1971 à février 1972), l’activité éruptive a repris pendant deux ans, jusqu’en juillet 1974, date à laquelle l’éruption a finalement pris fin.
Cette éruption a permis des avancées scientifiques inestimables en volcanologie, notamment une meilleure compréhension de la manière dont se forment les coulées pahoehoe et a’a. Le Mauna Ulu a permis les premières observations sous-marines détaillées de la formation des laves en coussins. L’évolution de vastes champs de lave, la formation de tunnels de lave et l’origine des moulages d’arbres (« tree molds ») ont également été documentées.
L’éruption du Mauna Ulu a été l’éruption du Kilauea la plus importante, la plus volumineuse en matière de débit de lave, et la mieux documentée au 20ème siècle, jusqu’en 1983, année où a commencé la très longue éruption du Pu’O’o.
Source: USGS.

En cliquant sur ce lien, vous verrez une impressionnante galerie d’images de l’éruption du Mauna Ulu en 1969:

https://www.maxisciences.com/eruption-volcanique/mauna-ulu-des-geologues-devoilent-les-images-d-archives-spectaculaires-d-une-fascinante-eruption-volcanique_art40576.html

—————————————————

May 2019 was a notable date in Kilauea Volcano’s history. On the one hand, it was the one-year anniversary of the 2018 eruption. On the other hand, it marked the 50th anniversary of another important event on the East Rift Zone: the start of the 1969-1974 Mauna Ulu eruption.

Fifty years ago, on May 24th, 1969, the opening fissure of the Mauna Ulu eruption broke ground where Kīlauea’s east rift and the Koa‘e fault zone intersect. This fissure behaved similarly to fissures 17, 20, and 22 of the 2018 eruption with 30-metre- tall lava fountains emerging from a linear crack. This style of eruption is classic to Hawaii and is thus called « hawaiian fountaining » in volcanology textbooks around the world.

At Mauna Ulu, the fissure system stretched 4.5 km from east to west and cut straight through ‘Ālo‘i and ‘Alae pit craters within Hawai‘i Volcanoes National Park. The fountains were confined to two main areas: one between the two pit craters and the other west of ‘Ālo‘i crater.

On the first day of the Mauna Ulu eruption, the western fountaining zone erupted for 18 hours. The eastern zone erupted for 36 hours, but not much is known about that activity because the Chain of Craters road was cut by the western fountains, making the eastern fountains visible only in the far distance.

The five-year-long Mauna Ulu eruption was preceded by a series of East Rift Zone fissure eruptions that occurred in 1960, 1961, 1962, 1963 (2), 1965 (2), 1968 (2), and February 1969, each lasting between 1 and 15 days. At the time, there was no way to know that the eruptive activity that began on May 24th, 1969, was the start of something bigger. In fact, at only 36 hours long, it seemed rather insignificant.

The episode 1 fissure produced spatter in linear ramparts several metres high on the north side of the fissures. Ultimately, this brief fissure was the first of 12 lava fountaining episodes during the early Mauna Ulu eruption that continued through December 31st, 1969.

Beginning with episode 2, activity was localized to only the eastern fountaining zone. The vent would often have dual fountains, which erupted side-by-side, occasionally with both the same height, ranging from several tens to several hundred metres high.

The lava fountains eventually built a tephra cone 50 metres tall. This cone was named Mauna Ulu (growing mountain). It was later covered in 70 metres of lava and is a prominent landmark still visible from the Chain of Craters Road.

In January 1970, the Mauna Ulu eruption became effusive, producing lava flows that travelled south through the national park, and ultimately reached the ocean. A lava lake formed within the tephra cone, allowing HVO researchers to document and understand gas pistoning phenomena. Lava also filled in ‘Ālo‘i and ‘Alae pit craters.

After a 3.5 month pause (October 1971 to February 1972), eruptive activity resumed for two more years, until July 1974, when the eruption finally ended.

This eruption produced invaluable scientific advancements in volcano science, including an improved scientific understanding of how pāhoehoe and ‘a‘ā form. Mauna Ulu provided the first detailed observations of pillow lava forming underwater. The development of large lava flow fields, the formation of lava tubes, and the origin of tree molds were also documented.

The Mauna Ulu eruption was the largest, most voluminous, and best documented eruption recorded at Kilauea in the 20th century, until 1983 when the next long-lived eruption began at Pu’O’o.

Source: USGS.

By clicking on this link, you will see an impressive gallery of photos of the 1969 Mauna Ulu eruption:

https://www.maxisciences.com/eruption-volcanique/mauna-ulu-des-geologues-devoilent-les-images-d-archives-spectaculaires-d-une-fascinante-eruption-volcanique_art40576.html

Vue du Mauna Ulu (Crédit photo: C. Grandpey)

Fontaine de lave pendant l’éruption du Mauna Ulu en 1969 (Crédit: Don Swanson, USGS, que je salue ici).

Réunion le volcan rouge

Après le double documentaire consacré à la Montagne Pelée (Martinique) et à Soufriere Hills (Montserrat), en voici un autre de la même veine. Il a pour sujet le Piton de la Fournaise sur l’Ile de la Réunion. Vous serez conduits sur le volcan, auprès des fontaines et coulées de lave, dans les tunnels et au fond de la mer par une bande de passionnés. Je connais quelques uns de ces « fous furieux de la Fournaise » que je salue ici. Je les remercie de m’avoir fait découvrir de petites parcelles de leur terrain de jeu. Mes amitiés aussi à Aline Peltier qui ponctue le film de ses commentaires scientifiques.

Vous découvrirez le film d’une cinquantaine de minutes en cliquant sur ce lien :

https://www.france.tv/documentaires/animaux-nature/1085373-reunion-le-volcan-rouge.html

Photos: C. Grandpey

Photo: Christian Holveck

Le phytoplancton de l’éruption du Kilauea (Hawaii) // Phytoplankton of the Kilauea eruption (Hawaii)

Le 3 mai 2018, le volcan Kilauea entrait en éruption à Hawaii. Pendant plusieurs mois, jusqu’au 6 août, le volcan a vomi d’énormes quantités de lave qui ont fini leur course dans l’Océan Pacifique après avoir détruit des centaines de maisons sur leur passage.

Le contact entre la lave et l’eau de mer a provoqué une importante prolifération de phytoplancton. Un banc de 150 km de long est apparu le long de la côte sud de la Grande Ile. Les scientifiques ont recueilli des échantillons et ont découvert qu’ils contenaient des taux très élevés de nitrate, d’acide silicique, de fer et de phosphate susceptible de fertiliser le phytoplancton, ainsi que du fer, du manganèse et du cobalt.
Trois jours après la première entrée de la lave dans l’océan, des images satellites ont montré au large de la Grande Ile d’Hawaï une nappe d’eau de couleur verdâtre, riche en chlorophylle-a, le pigment qui donne leur couleur aux plantes et aux algues. Une fois que la lave a cessé de couler dans l’océan, la nappe d’eau verte s’est dissipée en une semaine.
Alors que la prolifération d’algues était à son maximum, les scientifiques ont analysé l’eau de mer afin de déterminer pourquoi le phytoplancton avait soudainement prospéré. Les résultats de leur travail ont été publiés dans la revue Science.

Les concentrations d’acide silicique et de métaux traces étaient semblables à celles rencontrées dans la lave basaltique du Kilauea. L’équipe scientifique a découvert que le nitrate était le principal moteur de la prolifération du phytoplancton, mais sa source restait un mystère. La lave elle-même ne contient presque pas d’azote pour permettre aux microbes de l’océan de se transformer en nitrate.
Selon toute probabilité, le nutriment qui a favorisé la prolifération du phytoplancton provenait des profondeurs de l’océan. Le long de l’île, le littoral est très pentu, ce qui a permis à la lave de l’éruption d’atteindre rapidement les eaux profondes qui contiennent des nitrates en abondance, contrairement aux eaux de surface.
Ce mécanisme au cours duquel la lave à haute température permet à des  panaches d’éléments nutritifs en provenance d’eaux profondes d’atteindre la surface, est peut-être plus fréquent qu’on le pense. Par extrapolation, on peut raisonnablement penser que les volcans sous-marins sont en mesure de générer des proliférations de phytoplancton brèves mais intenses.

Il est bon de noter que l’on observe régulièrement de telles remontées d’eau profonde – également appelées upwellings – sur toute la côte californienne. Les bancs de kelp et les créatures marines qui peuplent ces écosystèmes dépendent essentiellement des courants qui font remonter les nutriments fertilisants des eaux profondes vers la surface. C’est probablement ce même processus que l’on a observé à Hawaii pendant l’éruption du Kilauea, mais il est intervenu plus rapidement.

Source : Médias américains.

————————————————–

On May 3rd, 2018, Kilauea erupted in Hawaii. For several months, until August 6th, the volcano emitted huge quantities of lava that ended up in the Pacific Ocean after destroying hundreds of houses in their path.
The contact between lava and sea water caused a significant proliferation of phytoplankton. A 150 km long bench appeared along the southern coast of the Big Island. Scientists collected samples and found that they contained very high levels of nitrate, silicic acid, iron and phosphate that could fertilize phytoplankton, as well as iron, manganese and cobalt.
Three days after the first lava entry into the ocean, satellite images showed a large greenish area off Hawaii Big Island, rich in chlorophyll-a, the pigment that gives the green colour to plants and algae. Once the lava stopped flowing into the ocean, the green water dissipated in a week.
While algal blooms were at their peak, scientists analyzed the seawater to determine why phytoplankton had suddenly thrived. The results of their work were published in the journal Science.
The concentrations of silicic acid and trace metals were similar to those found in Kilauea basalt lava. The scientific team discovered that nitrate was the main driver of phytoplankton proliferation, but its source remained a mystery. The lava itself contains almost no nitrogen to allow the microbes in the ocean to turn into nitrate.
In all likelihood, the nutrient that promoted phytoplankton proliferation came from the depths of the ocean. Along the island, the coastline is very steep, allowing the erupted lava to quickly reach the deep waters that contain nitrates in abundance, unlike surface water.
This mechanism, in which high-temperature lava allows nutrient plumes from deep water to reach the surface, may be more common than is thought. By extrapolation, it is reasonable to assume that submarine volcanoes are capable of generating brief but intense phytoplankton blooms.
It is worth noting that such deepwater upwellings are regularly observed throughout the California coast. The kelp beds and marine creatures that inhabit these ecosystems are essentially dependent on currents that move fertilizing nutrients from deep water to the surface. This is probably the same process that was observed in Hawaii during the eruption of Kilauea, but it intervened more quickly.
Source: US media.

Photo: C. Grandpey

Nouvelle carte du Mauna Loa (Hawaii) // New map of Mauna Loa (Hawaii)

Bien qu’il ne soit pas entré en éruption depuis 1984, le Mauna Loa reste un volcan actif. Les dernières mesures de déformation révèlent une inflation continue du sommet, ce qui prouve que le magma exerce une pression sous l’édifice volcanique. L’USGS a récemment publié une carte géologique du versant centre-sud-est du Mauna Loa (“Geologic Map of the Central-Southeast flank of Mauna Loa Volcano”). Cette nouvelle carte remplace la «Carte géologique de l’île d’Hawaï» (1996) et la «Carte géologique de l’État d’Hawaï» pour la région de Mauna Loa. Elle englobe 500 kilomètres carrés du flanc sud-est du Mauna Loa et s’étend entre 3 100 mètres d’altitude et le niveau de la mer. Elle comprend les zones adjacentes et en aval de la zone de rift nord-est du Mauna Loa, ainsi que les régions à l’est et directement en aval de Mokuaweoweo, la caldera sommitale du volcan. A partir de la partie supérieure du flanc est du Mauna Loa, la zone cartographiée s’étend vers le Parc National des Volcans d’Hawaï et le village de Volcano au nord-est. À la limite sud de la zone cartographiée se trouve Punalu’u Bay.
Les coulées de lave en provenance des parties médiane et supérieure de la zone de rift nord-est occupent la partie nord de la carte ; elles représentent environ 40% de la superficie totale. La partie sud de la carte inclut les coulées en provenance de la partie supérieure de la zone de rift sud-ouest qui représentent environ 2% de la superficie totale. Les coulées de lave émises dans la partie supérieure des deux zones de rift forme généralement des lobes étroits.
Les 58% restants de la carte (zone centrale) sont constitués de coulées de lave provenant du sommet du Mauna Loa. Contrairement aux coulées des zones de rift, celles en provenance de la caldera sommitale forment de vastes épanchements de lave pahoehoe qui couvrent de grandes surfaces. Il y a bien quelques coulées de lave a’a dans cette zone mais elles sont insignifiantes par rapport aux coulées pahoehoe.
La carte montre la répartition de 96 coulées réparties en 15 groupes d’âge allant depuis plus de 30 000 ans avant notre ère jusqu’à aujourd’hui, avec l’éruption de 1984. La palette de couleurs varie avec l’âge des dépôts volcaniques. Le rouge, le rose et l’orange représentent les époques récentes, tandis que le bleu et le violet représentent les dépôts plus anciens.
À partir de cette carte, on peut tirer plusieurs conclusions sur l’histoire géologique du flanc sud-est de Mauna Loa. Par exemple, la cartographie géologique et la datation des coulées au Carbone 14 indiquent qu’il y a eu une période d’activité sommitale intense entre environ 2 000 et 1 300 ans avant notre ère. Les coulées de lave de cette époque couvrent plus de 75% de la zone directement en aval du sommet. Cela signifie que le Mauna Loa a connu environ 700 ans d’activité presque continue, ce qui est nettement plus long que l’éruption de 35 ans observée sur le Kilauea entre1983 et 2018.
De plus, on peut noter qu’environ 55% de la surface de la carte est recouverte de couches de cendres volcaniques d’épaisseurs variables qui révèlent des éruptions volcaniques accompagnées d’une activité explosive. Les âges et les origines de ces dépôts de cendres doivent encore être déterminés.
Une zone tectonique historiquement active sur le flanc sud-est du Mauna Loa, connue sous le nom de Ka‘oiki Fault Zone, a été le théâtre de certains séismes récents. En 1983, un séisme de magnitude M 6,6 sur cette zone de faille a précédé l’éruption du Mauna Loa en 1984. Des séismes d’une magnitude supérieure à M 5,5 se sont également produits dans cette zone en 1974, 1963 et 1962.
La carte géologique du versant centre-sud-est du Mauna Loa fournit des informations fondamentales sur le comportement éruptif du Mauna Loa sur une très longue période. Elle offre également des informations précieuses sur lesquelles pourront s’appuyer des études futures en géologie et en biologie. La carte peut être consultée ou téléchargée gratuitement sur le site Web de l’USGS à cette adresse:
https://pubs.er.usgs.gov/publication/sim2932B

Source: USGS.

————————————————

Although it has not erupted since 1984, Mauna Loa is still an active volcano. The latest deformation measurements show continued summit inflation, which proves that magma is pushing beneath the volcanic edifice. USGS has recently published a “Geologic Map of the Central-Southeast flank of Mauna Loa Volcano.” The new map supersedes the “Geologic Map of the Island of Hawaii” (1996) and the “Geologic Map of the State of Hawaii” for the Mauna Loa region. It encompasses 500 square kilometres of the southeast flank of Mauna Loa and ranges from an elevation of 3,100 metres to sea level. It includes areas adjacent to and downslope of Mauna Loa’s Northeast Rift Zone, as well as regions east and directly downslope of Mokuaweoweo, the volcano’s summit caldera. From high on Mauna Loa’s east flank, the mapped area extends toward Hawaii Volcanoes National Park and the community of Volcano in the northeast. At the southern boundary of the mapped area is Punalu‘u Bay.

Lava flows from the middle and upper reaches of the Northeast Rift Zone dominate the northern part of the map, comprising about 40% of the total area. The map’s southern portion contains flows from the upper Southwest Rift Zone that make up about 2% of the total area. Lava from the upper reaches of both rift zones generally forms narrow flow lobes.

The remaining 58% of the map (centre area) consists of lava flows from the summit of Mauna Loa. In contrast to flows from the rift zones, lava flows derived from the summit caldera form voluminous, broad expansive sheets of pahoehoe that cover large areas. Aa flows occur in this area but are inconsequential when compared to the pahoehoe flows.

The map shows the distribution of 96 eruptive flows separated into 15 age groups ranging from more than 30,000 years before present to 1984. The colour scheme is based on the ages of the volcanic deposits. Red, pink, and orange represent recent epochs of time while blue and purple represent older deposits.

From the geologic record, one can deduce several generalized facts about the geologic history of Mauna Loa’s southeast flank. For example, geologic mapping and radiocarbon ages of the flows indicate that there was a period of sustained summit activity from about 2,000 to 1,300 years before the present. Lava flows of this age cover more than 75% of the area directly downslope from the summit. This means that Mauna Loa experienced approximately 700 years of nearly continuous activity, significantly longer than the 35-year-long eruption that occurred on Kilauea in 1983-2018.

Moreover, one can notice that about 55% of the map area is covered by layers of volcanic ash of varying thicknesses, which indicate explosive volcanic eruptions. The ages and origins of these ash deposits still need to be determined.

A historically active tectonic zone on the southeast flank of Mauna Loa, known as the Ka‘oiki Fault Zone, is the site of some recent large tectonic earthquakes. In 1983, an M 6.6 earthquake on the Ka‘oiki Fault Zone preceded Mauna Loa’s 1984 eruption. Earthquakes greater than M 5.5 also occurred there in 1974, 1963 and 1962.

The “Geologic Map of the Central-Southeast Flank of Mauna Loa Volcano” provides fundamental information on the long-term eruptive behaviour of Mauna Loa volcano. It also offers valuable base information on which collaborative studies in geology and biology can be launched. The map can be viewed or freely downloaded from the USGS Publications website at this address:

https://pubs.er.usgs.gov/publication/sim2932B

Source: USGS.

Source: USGS

La Vierge au Parasol (Ile de la Réunion) : Toute une histoire…

La Vierge au Parasol est pratiquement une institution sur l’Ile de la Réunion. Autrefois située en pleine nature, cette Vierge tenant un parasol bleu est vénérée par de nombreux catholiques réunionnais car elle est censée les protéger contre les éruptions du Piton de la Fournaise, le volcan actif de l’île. Il faut reconnaître que la statue en a vu de toutes les couleurs.

Son histoire a commencé an 1896, année où deux Réunionnaises font placer une statue de Notre-Dame de Lourdes sur la route du Grand Brûlé. Surmontée d’un parasol (parapluie en créole), cette Vierge est destinée à préserver les habitants de Bois Blanc des colères du volcan et de la lave qui avance parfois jusqu’à la mer. Au début du 20ème siècle, un  propriétaire à Bois-Blanc la place dans ses champs pour protéger ses récoltes..

En dépit de ses qualités de protection, la statue a connu des mésaventures. C’est ainsi qu’en 1961 elle a été ensevelie sous une coulée de lave, avant de faire sa réapparition en 1963. Plus grande que la précédente, peinte en bleue et blanc, elle tenait toujours à la main son éternel parasol. Elle a été réinstallée à quelques kilomètres du premier oratoire, dans un lieu où elle était censée être à l’abri de la lave.

Mauvais calcul, car en janvier 2002 le Piton de la Fournaise menace à nouveau la statue qui est mise en sécurité sur le site de Piton Sainte Rose.

En 2005, elle est à nouveau mise à l’abri lors d’une autre éruption volcanique.

Suite à ces malheurs à répétition, la statue est installée au Grand Brûlé le 15 août 2011. La même année, une réplique de la statue est façonnée pour que la Vierge n’ait pas à être déplacée pour le 15 août, jour de la fête de l’Assomption.

Le 8 janvier 2014, la statue a été décapitée par des inconnus. Une réplique en résine fut alors installée au Grand Brûlé où elle fut vandalisée le 28 avril 2015, taguée à la peinture rouge avec, entre autres, l’inscription « Satan est de retour. »

Depuis cette époque, une reproduction de la Vierge au Parasol trône à l’intérieur de l’église Notre-Dame-des-Laves de Sainte Rose qui fut épargnée de justesse par une coulée de lave en 1977.

Le 15 août 2019, plus de 10 000 fidèles ont assisté à la messe de l’Assomption à Piton Sainte-Rose. On a craint un moment que la messe soit annulée car le Piton de la Fournaise était en éruption quelques jours plus tôt et les coulées qui descendaient les Grandes Pentes menaçaient de couper la RN 2 qui permet d’accéder à Sainte Rose. Heureusement pour les pèlerins, l’église Notre-Dame-des-Laves est restée parfaitement accessible. Comme chaque année, la Vierge au Parasol fut installée sur l’esplanade de Piton Sainte-Rose.

On peut voir une petite stèle avec une minuscule statue de la Vierge au Parasol le long de la RN 2, mais je conseille d’entrer dans l’église de Sainte Rose. En plus de la Vierge au Parasol, on pourra admirer les vitraux qui rappellent le passé tumultueux du site. On pourra aussi feuilleter quelques pages du Journal de l’Ile de la Réunion à propos de l’éruption de 1977.

Source : Guide local, Journal de l’Ile.

++++++++++

Le long de la RN 2…

L’église Notre-Dame-des Laves, épargnée par une coulée en 1977…

A l’intérieur de l’église…

L’église reste sous la menace de la lave.

Photos: C. Grandpey

Stromboli (Sicile): L’éruption du 28 août 2019 // Stromboli (Sicily) : The August 28th 2019 eruption

Comme je l’ai écrit précédemment, une nouvelle et violente éruption a secoué le Stromboli le 28 août 2019. On a observé trois séquences explosives. L’INGV a donné plus de détails sur l’événement.
Comme on a pu le voir sur les photos diffusées sur les réseauc sociaux, les explosions ont généré une colonne de cendrequi est montée jusqu’à 4 km au-dessus du sommet. Les deux premières explosions ont eu lieu dans la zone cratèrique centre-sud, tandis que la troisième, de moindre intensité, s’est produite vingt secondes plus tard dans le secteur nord. Il s’agissait d’une explosion latérale dont les produits émis ont débordé sur la Sciara del Fuoco. Le moment le plus impressionnant a sans aucun doute été le moment où les matériaux issus de l’effondrement de la colonne éruptive sont retombés sur la Sciara del Fuoco en générant un écoulement pyroclastique qui a ensuite avancé à le surface de la mer sur plusieurs centaines de mètres. Cee nuage de matériaux pyroclastiques en train de glisser à la surface de la mer m’a rappelé un phénomène identique observé lors de l’éruption de Soufrière Hills à Montserrat.
Une fois encore, la morphologie de la terrasse cratèrique a été bouleversée. Comme je l’ai expliqué précédemment, le complexe de petits cônes de scories qui était apparu dans le cratère nord au cours des dernières semaines a été complètement détruit et la lèvre du cratère située du côté de la Sciara s’est affaissée, laissant la porte ouverte à la lave qui a formé une coulée qui a atteint la côte dans la soirée.
À 20 h 43 (GMT), une nouvelle séquence explosive a eu lieu dans la zone centre-sud de la terrasse cratèrique, avec des retombées sur Ginostra. Une autre explosion, de moindre intensité, a été enregistrée à 21:29 (GMTC). Comme je l’ai déjà écrit précédemment, les rues et les toits du village étaient couverts de cendre et de sable suite aux explosions.
Aux premières heures du 30 août, un débordement de lave en provenance du cratère centre-sud a généré une coulée qui a atteint la côte pendant une courte période.
Source: INGV & The Watchers.

————————————————–

As I put it before, a new, violent eruption occurred at Stromboli on August 28th, 2019. It consisted of three explosions. INGV has given more details about the event.

As could be seen on the photos in the social media, the explosions produced an ash column up to 4 km above the summit area. The first two explosions were located in the central-southern crater area and a third, of lesser intensity, occurred twenty seconds later in the northern area.

The latter was a side explosion whose products spilled out over the Sciara del Fuoco. The most impressive moment was undoubtedly when the material deriving from the collapse of the eruptive column fell back down the Sciara del Fuoco, generating a pyroclastic flow that then propagated in the sea for several hundred metres. This flow sliding on the surface of the sea reminded me of another that propagated over the sea in the same way during the Soufriere Hills eruption in Montserrat.

Once again, the morphology of the crater terrace has changed greatly. As I explained before, the complex of small scoria cones, which had grown around the eruptive vents in the northern crater area during the last few weeks, has been completely destroyed, and the crater rim on the side of the Sciara has subsided, allowing the magma to overflow and form a lava flow which reached the coastline in the evening.

At 20:43 ((UTC), a new explosive sequence took place in the central-southern area of ​​the crater terrace, with the fallout of pyroclastic material on the town of Ginostra. A further explosion, of lesser intensity, was recorded at 21:29 (UTC). As I put it before, the streets and roofs in Ginostra were covered with ash and sand from the explosions.

In the early hours of August 30th, a lava overflow from the central-southern crater area generated a flow which reached the coast for a short time.

Source: INGV, The Watchers.

L’éruption du 28 mai 2019 vue par les sismographes (Source: INGV)