L’éruption du Kilauea (Hawaii) en 1952

Dans l’un de ses Volcano Watch, l’USGS / HVO revient sur l’éruption du Kilauea en 1952. Elle pourrait avoir des points communs avec la prochaine éruption du volcan après la pause actuelle qui fait suite à l’événement de 2018.
Le 27 juin 1952, une éruption a commencé au sommet du Kilauea, mettant fin à une période de repos de près de 18 ans. Pendant près de deux décennies de calme après l’éruption sommitale de 1934, on a observé plusieurs périodes d’activité sismique intense et de déformation au niveau du sommet. Cependant, aucun de ces événements n’a entraîné d’éruption.
Au début du mois d’avril 1952, une série de séismes a été enregistrée le long de l’East Rift Zone du Kilauea et sous le sommet. Les séismes, accompagnés d’une inflation sommitale, ont persisté en mai et juin.
En fin de soirée le 27 juin, une éruption a commencé au sommet, avec une forte incandescence et des grondements en provenance du cratère de l’Halema’uma’u ..
Quelques minutes après le début de l’éruption, une fontaine de lave a jailli dans la partie sud-ouest du cratère et s’est élevée à près de 250 mètres au-dessus de la lèvre. La fontaine a rapidement décliné et la lave s’est accumulée le long d’une fissure qui parcourait tout le plancher de l’Halema’uma’u.
Le HVO explique que le lac de lave ainsi formé avait à sa surface des plaques de croûte refroidie espacées par des fissures qui permettaient de voir la lave ci-dessous, un peu comme sur le petit lac de lave qui est apparu de 2008 à 2018 dans l’« Overlook Crater» de l’Halema’uma’u. Le jaillissement de la lave donnait naissance à des vagues à la surface du lac. On pouvait voir parfois des tourbillons à la surface du lac ; ils projetaient des morceaux de croûte, parfois d’un mètre de diamètre, à plusieurs mètres de hauteur. Ce même phénomène a été observé en 2018 sur le chenal de lave issu de la Fracture n°8.
Après les premières heures de l’éruption, les fontaines de lave ont commencé à se calmer. Après un peu plus de quatre heures d’éruption, seul le quart nord-est de la fissure était actif et on pensait que l’éruption allait peut-être se terminer. Peu de temps après, cependant, la partie sud-ouest de la fissure s’est réactivée avec de petits bouillonnements de lave. A ce moment-là, on estime que le cratère de l’Halema’uma’u contenait un lac de lave d’environ 15 mètres de profondeur.
Le 11 juillet, la partie active de la fissure avait fortement diminué. Deux fontaines ont continué à être actives et ont édifié un grand cône à l’intérieur du lac de lave. Des ouvertures dans les flancs du cône permettaient à la lave de se répandre et d’alimenter le lac dont la surface était maintenant considérablement réduite.
À la fin du mois d’août, la majeure partie de la lave produite par l’éruption était contenue dans le grand cône à l’intérieur duquel deux bouches actives construisaient de plus petits cônes de projection. Entre ces deux cônes de projection, il y avait une petite mare de lave d’une trentaine de mètres de diamètre.
L’éruption a continué de la même manière pendant les mois suivants, avant de se terminer, après 136 jours d’activité, le 10 novembre 1952
Un volume d’environ 60 millions de mètres cubes de lave s’est accumulé dans le cratère de l’Halema’uma’u. Avec l’éruption, le plancher de l’Halema’uma’u s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère. À titre de comparaison, le plancher du cratère avant l’effondrement sommital de 2018 se trouvait à environ 80 mètres sous la lèvre.
Source: USGS / HVO.

————————————————-

In one of its Volcano Watch, the USGS / HVO describes the 1952 eruption of Kilauea which might have similarities with the volcano’s next eruption after the current pause that followed the 2018 event.

On June 27th, 1952, an eruption started at the summit of Kilauea, ending a period of quiescence that had lasted nearly 18 years.

During the nearly two decades of quiet following a summit eruption in 1934, there were several periods of increased earthquake activity and deformation beneath the summit. However, none of these phases of unrest resulted in an eruption.

Early in April 1952, a series of earthquakes began along Kilauea’s East Rift Zone and beneath the summit. The earthquakes, accompanied by summit inflation, persisted through May and June.

Late in the evening on June 27th, an eruption started at the summit, with a loud roaring and bright glow emanating from Halema‘uma‘u Crater..

Within minutes of the eruption onset, a lava fountain erupted on the southwestern edge of the Halema‘uma‘u Crater floor, nearly 250 metres higher than the crater rim. The fountain quickly waned and lava pooled along a fissure that crossed the entire floor of Halema’uma’u crater.

HVO explains that the lava lake had plates of cooled crust on its surface separated by cracks that provided views of the incandescent molten lava below,  much like the smaller 2008 to 2018 lava lake within the Halema‘uma‘u “Overlook crater.” The fountaining lava created waves over the surface of the lake. Observers also noted seeing occasional whirlwinds on the lake surface that threw pieces of crust, up to a metre across, several metres into the air. This same phenomenon was observed in 2018 over the fissure 8 lava channel.

After the initial hours of the eruption, the lava fountains began to subside. After a little more than four hours, only the northeastern quarter of the fissure was active, and observers thought that the eruption could be ending. Shortly after, however, the southwestern end of the fissure reactivated with low bubbling fountains, and by that time Halema‘uma‘u Crater was estimated to have been filled with a lake of lava approximately 15 metres deep.

By July 11th, the active length of the fissure had shortened to approximately 120 metres. Two main fountains persisted and began to build a large cinder and spatter cone within the lava lake. Gaps within the cone wall allowed lava to spill out and feed the surrounding lava lake, whose surface had been considerably reduced.

By the end of August, most of the erupted lava was contained within the large cone, where two active vents were building smaller spatter cones. Between the two spatter cones, there was a small lava pond that had an average diameter of about 30 metres.

The eruption continued in the same way for the next few months until it ended after 136 days on November 10th, 1952

A volume of about 60,000,000 cubic metres of erupted lava was confined within Halema‘uma‘u Crater. The eruption raised the floor of Halema’uma’u Crater from 230 metres to 140 metres below the rim. For comparison, the Halema‘uma‘u Crater floor prior to the 2018 summit collapse was approximately 80 metres below the rim.

Source: USGS / HVO.

Vue du cratère de l’Halemaumau le 26 juin 1952, veille du début de l’éruption (photo du haut), et de ce même cratère (photo du bas) quatre semaines plus tard. Comme indiqué dans la description de l’éruption, le plancher s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère.  (Crédit photo: National Park Service).

Nouvelles coulées de lave au large de Mayotte ? // New lava flows off Mayotte island ?

Depuis deux ans, l’île de Mayotte fait face à une importante crise sismo-volcanique. Elle se traduit par la présence d’un essaim sismique très actif qui a débuté le 10 mai 2018 à l’Est des côtes de Mayotte. Plusieurs milliers d’événements ont été enregistrés et plusieurs centaines de secousses ont été ressenties par la population mahoraise. Le séisme le plus significatif, d’une magnitude de M 5,9, a eu lieu le 15 mai 2018 et a fortement inquiété les habitants.

Les scientifiques ont découvert que la cause de cette intense sismicité était l’éruption d’un volcan sous-marin d’une hauteur de 800 mètres et d’un diamètre de 4-5 km à sa base. Il est situé à 3500 mètres de profondeur.

Le réseau de surveillance volcanologique et sismologique de Mayotte (REVOSIMA) a lancé deux campagnes de surveillance du volcan sous-marin au mois de mai.

La première campagne, Mayobs 13-2, s’est déroulée du 4 au 11 mai. Opérée par l’IFREMER, l’IPGP, le BRGM et le CNRS elle a permis « d’acquérir des relevés du fond marin et des images de la colonne d’eau sur une surface d’environ 1500 km2 à l’Est de l’île de Mayotte« .
Grâce à ces relevés, les scientifiques ont constaté que le volcan sous-marin découvert en mai 2019 à 50 km à l’est des côtes de Mayotte « ne montre pas d’évolution majeure depuis le mois d’août dernier ». En revanche, le relief du fond marin a été modifié sur un secteur de 5 km2 au Nord-Ouest du volcan et cela pourrait résulter de nouvelles coulées de lave, d’autant plus que deux nouveaux panaches de fluides chauds à 1400 m de profondeur ont été identifiés.
La deuxième campagne, Mayobs 13-1 s’est déroulée du 6 au 19 mai à bord du Champlain de la Marine nationale. Elle a consisté à récupérer des sismomètres disposés au fond de la mer. Ceux-ci ont pour mission d’affiner la surveillance du volcan en complément de sismomètres disposés à terre. Leurs donnés vont être rendues publiques à la fin du mois de juin. D’autres sismomètres ont été immergés pour une nouvelle série de mesure qui durera 6 mois.

Depuis le mois de juillet 2018, conséquence de l’éruption sous-marine, l’île de Mayotte s’est déplacée vers l’Est de 20 à 23 cm et s’est enfoncée de 9 à 17cm selon la localisation.

Source : La 1ère France Info, Le Journal de Mayotte.

—————————————-

For the past two years, Mayotte has faced a major seismic-volcanic crisis. The island went through a very active seismic swarm that started on May 10th, 2018 off the eastern coast. Several thousand events have been recorded and several hundred tremors have been felt by the Mahoran population. The largest earthquake with a magnitude M 5.9 occurred on May 15th, 2018 and caused a wave of anxiety among the population.
Scientists have discovered that the cause of this intense seismicity was the eruption of an underwater volcano 800 meters high and 4-5 km in diameter at its base. It is located 3500 meters deep.
The Mayotte volcanological and seismological monitoring network (REVOSIMA) launched two underwater volcano monitoring campaigns in May.
The first campaign, Mayobs 13-2, ran from May 4th to 11th. Operated by IFREMER, IPGP, BRGM and CNRS, it « enabled the acquisition of seabed surveys and images of the water column over an area of ​​approximately 1,500 km2 east of  Mayotte Island « .
Thanks to these surveys, scientists have found that the underwater volcano discovered in May 2019 50 km east of the coast « has not shown any major evolution since last August ». On the other hand, the relief of the seabed has been modified over an area of ​​5 km 2 to the northwest of the volcano and this could result from new lava flows, especially since two new plumes of hot fluids at 1400 m deep have been identified.
The second campaign, Mayobs 13-1, took place from May 6th to 19th on the French Navy ship Champlain. It consisted in recovering seismometers set up at the bottom of the sea. Their mission is to refine the monitoring of the volcano in addition to seismometers on land. Their data will be made public at the end of June. Other seismometers have been submerged for a new series of measurements which will last 6 months.
Since July 2018, as a result of the underwater eruption, the island of Mayotte has moved east 20 to 23 cm and sank 9 to 17 cm depending on the location.
Source: La 1ère France Info, Le Journal de Mayotte.

Un volcan dans la cuisine ! // A volcano in the kitchen !

Pendant cette période de confinement, voici une solution à la fois drôle et instructive pour occuper vos enfants pendant un moment ! Tous les enfants adorent les volcans. Voici la recette pour en faire un, en éruption en plus!

Voici les ustensiles et ingrédients dont ils auront besoin:

Voici les ustensiles et ingrédients dont ils auront besoin:

– Un récipient un peu large, comme un plateau de service ou une cuvette ménagère

– Un petit seau de sable

– Une petite bouteille en plastique

– Un colorant alimentaire, rouge de préférence, ou du sirop de grenadine

– Du vinaigre blanc

– Du bicarbonate de soude

++++++++++

Voici comment procéder :

1) Placer la petite bouteille au centre de la grande cuvette.

2) Former une structure de sable en forme de montagne autour de la bouteille. Ne laisse dépasser que son goulot.

3) Verser 3 cuillères à soupe de grenadine ou 1 cuillère à café de colorant rouge dans la bouteille.

4) Ajouter un verre de vinaigre blanc.

5) Introduire ensuite rapidement 2 cuillères à soupe de bicarbonate.

Ça commence à bouillonner dans la bouteille, de la mousse rouge sort par le goulot ! La mousse coule sur le sable comme la lave sur le flanc d’un volcan ! Chouette, non !

En cliquant sur ce lien, vous verrez une illustration très sympa de l’expérience, avec l’accent en plus !

https://youtu.be/4I9X5U5shK0

++++++++++

Comment ça marche :
La « lave » qui s’échappe de la bouteille se forme par une réaction chimique qui se déclenche lorsqu’on mélange le bicarbonate de soude avec le vinaigre. Cela crée une réaction base / acide. Le bicarbonate de soude est une base, autrement dit une substance qui accepte les ions hydrogène. Dans le même temps, le vinaigre est un acide, une substance qui perd de l’hydrogène. Lorsqu’on mélange ces deux ingrédients, on obtient un acide très instable qui se scinde immédiatement en eau et en dioxyde de carbone (CO2). La réaction libère du dioxyde de carbone à l’intérieur de la bouteille. Ce sont les bulles qui se forment. À mesure que le dioxyde de carbone est libéré, la pression continue de s’accumuler dans le bocal. Comme le gaz prend beaucoup d’espace, il sort de la bouteille et il entraîne le liquide avec lui. Dans un volcan, il y a du magma, des roches très chaudes qui ont fondu. Elles contiennent des gaz. Ces gaz, tel un moteur, entraînent le magma hors du volcan : c’est une éruption, avec la lave qui sort du cratère!

…mais rien ne vaut un vrai volcan!

——————————–

During this lockdown period, here is something funny and educational to keep your children busy for a moment! All children love volcanoes. Here is the recipe to make one, an eruptive volcano at that!

Here are the materials and ingredients they need :

– A large tray or a large kitchen bowl

– Some sand

– A small plastic bottle

– Food colouring, preferably red, or grenadine syrup

– White vinegar

– Baling soda

++++++++++

Here is how to proceed :

1) Instal the plastic bottle in the middle of the tray or kitchen bowl

2) Build a sand structure, looking like a mountain around the bottle, without covering its neck

3) Drop 3 tablespoons of  grenadine syrup or one teaspoon of food colouring into the bottle.

4) Add a glass of white vinegar.

5) Add rapidly 2 tablespoons of baking soda

The mixture starts fizzing inside the bottle and red foam starts coming out of the bottle! It then flows along the sand, like lava on the slope of a volcano… Nice, isn’t it?

By clicking on this link, you will see a video illustrating the experiment:

https://youtu.be/4I9X5U5shK0

++++++++++

How does this work?

The “lava” coming out of your glass jar is formed through a chemical reaction that occurs when you combine baking soda with vinegar. This creates a base-acid reaction. The baking soda is a base which is a substance that accepts hydrogen ions. Meanwhile, vinegar is an acid which is a substance that loses hydrogen. When both of these ingredients are mixed together, it produces a very unstable acid which immediately splits up into water and carbon dioxide (CO2). The reaction releases carbon dioxide inside the glass jar. You can see this by the bubbles that are forming. As carbon dioxide is released, pressure continues to build up in the jar. Eventually, the carbon dioxide escapes the jar which causes the « lava eruption ». This experiment is a pretty accurate representative of a real life volcano eruption. Enjoy!

…but there is nothing like a real volcano!

Photo: C. Grandpey

Klyuchevskoy (Kamchatka)

Le KVERT indique qu’une éruption explosive modérée est en cours sur le Klyuchevskoy (Kamchatka). Le 18 avril 2020, une coulée de lave a été observée sur le flanc sud-est du volcan. Le panache de cendre s’étendait sur une centaine de kilomètres vers le NE du volcan et s’élevait à 5,5 km au-dessus du niveau de la mer.
Comme d’habitude, le KVERT prévient que l’activité du Klyuchevskoy peut perturber le trafic aérien.
La couleur de l’alerte aérienne reste Orange

————————————–

KVERT indicates that a moderate explosive eruption is under way at Klyuchevskoy (Kamchatka). On April 18th, 2020, a lava flow was observed on the southeastern flank of the volcano. An ash plume was extending about 100 km to the NE of the volcano and rising up to 5.5 km above sea level.

As usual, KVERT warns that Klyuchevskoy’s ongoing activity could disturb air traffic.

The Aviation Color Code remains Orange

Episode éruptif sur le Klyuchevskoy le 18 avril 2020 (Crédit photo : KVERT)

Coulée de lave sur le flanc SE du Klyuchevskoy sue par le satellite Copernicus EU/Sentinel-2 le 19 avril 2020. .

Une petite colère de l’Etna (Sicile) // When Mt Etna (Sicily) gets a little angry…

J’ai indiqué ce matin (19 avril 2020) sur Facebook que quelque chose se passait sur l’Etna. Une fontaine de lave était visible sur la webcam thermique de la Montagnola et un panache de cendre sortait du sommet du volcan. Dans le même temps, le tremor montrait une hausse soudaine. La couleur de l’alerte aérienne est passée au Rouge à 07:24 (GMT) et ramenée à l’Orange à 12:26.
L’événement avait pour siège le secteur du cratère sud-est, dans la « selle » entre l’ancien et le nouveau cratère SE. L’INGV indique que le panache de cendre s’est élevé à environ 5 km au-dessus du niveau de la mer avant de dériver vers l’est. De petites retombées ont été signalées à Zafferana Etnea.
Il semble que la situation soit redevenue normale ce soir.

————————————–

 I indicated this morning (April 19th, 2020) on Facebook that something was happening on Mt Etna. A lava fountain could be seen on the Montagnola thermal webcam and an ash plume was coming out of the summit of the volcano. Meantime, the tremor was showing a sudden sharp increase. The Aviation Color Code was raised to Red at 07:24 UTC and lowered back to Orange at 12:26 UTC.

The event had taken place in the area of the Southeast Crater, in the Saddle between the old an new SE Craters. INGV indicates that the ash plume rose to about 5 km above sea level and drifted to the east. Minor asfall was reported in Zafferana Etnea.

It looks as if everything has gone back to normal this evening.

Source: INGV

De la planète Mars au Kilauea (Hawaii) // From Mars to Kilauea Volcano (Hawaii)

La NASA vient d’annoncer que la mission Mars 2020 avec son rover* Perseverance devrait prendre la direction de la planète Mars le 17 juillet 2020, avec des objectifs scientifiques prioritaires dont une étude astrobiologique majeure sur le potentiel de vie sur la planète rouge. L’Administration américaine a annoncé que le rover serait doté d’un hélicoptère. Ce sera donc « le premier vol à puissance contrôlée sur une autre planète. »
La NASA explique que la mission du rover de la mission Mars 2020 fait partie d’ « un programme plus vaste qui comprend des missions sur la Lune afin de se préparer à l’exploration humaine de la planète rouge. »

Dans une vidéo montrant ses réalisations au cours des dernières années et sa collaboration avec d’autres pays, la NASA explique que la dernière éruption du Kilauea à Hawaii a été analysée par un imageur thermique de conception japonaise installé sur le satellite Terra. L’éruption du 3 mai a provoqué l’ouverture d’un certain nombre de fractures le long de l’East Rift Zone.

Dans cette image dont les couleurs ne sont pas celles de la réalité, les zones rouges correspondent à la végétation, les zones noires et grises à d’anciennes coulées de lave. Les zones jaunes superposées à l’image montrent des points chauds détectés par les bandes infrarouges thermiques du satellite. Le 6 mai 2018, ces points chauds représentaient les fractures ouvertes récemment, ainsi que la nouvelle coulée de lave.

Cette photo, également acquise le 6 mai 2018, montre les panaches de SO2 en jaune et jaune-vert, dont une partie se déplace au-dessus de l’océan.
Source: Jet Propulsion Laboratory de la NAS

* Dans le domaine de l’astronautique le terme rover désigne un véhicule, parfois télécommandé depuis la Terre, disposant d’une certaine autonomie, conçu pour explorer une autre planète ou un corps céleste.

————————————————-

NASA has just announced that the Mars 2020 mission with its Perseverance rover is set to venture Mars on July 17th, 2020, aiming to address high-priority scientific goals, including major astrobiology questions about the potential for life on Mars. It has been announced that a helicopter has been attached to the rover, which will be “the first-ever power-controlled flight on another planet.”

NASA explains that the Mars 2020 Perseverance rover mission is part of “a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet.”

In a video explaining NASA’s achievements in the last years and the collaboration with other nations, NASA explains that the recent eruption of Kilauea Volcano in Hawaii was captured by a Japanese-built thermal imager on NASA’s Terra spacecraft. The May 3rd eruption triggered a number of additional fissure eruptions along the East Rift Zone.

In the first image (see above), the red areas are vegetation, and the black and grey areas are old lava flows. The yellow areas superimposed over the image show hot spots that were detected by the satellite’s thermal infrared bands. These hot spots are the newly formed fissures and new lava flow as of May 6th, 2018.

The second photo, also acquired on May 6th, 2018 shows the SO2 gas in yellow and yellow-green, including a massive plume of it moving over the ocean.

Source: NASA’s Jet Propulsion Laboratory

Eruption du Piton de la Fournaise (Ile de la Réunion): Dernières nouvelles // Latest news

 8 heures (heure métropole) : L’éruption continue, avec une forte sismicité toujours enregistrée sous la partie sud-est du cratère Dolomieu. L’OVPF précise que ces séismes témoignent de la fragilisation du milieu, soit par une circulation de fluide ou la vidange d’un réservoir, très certainement en lien avec l’alimentation du site éruptif et son regain d’activité. L’observatoire confirme la crainte que j’exprimais hier, à savoir un risque d’effondrement du cratère Dolomieu, ou d’une partie du cratère. En conséquence, la mission de terrain prévue par une équipe de l’OVPF pour réparer une station de surveillance endommagée par l’éruption est annulée.

La coulée est toujours très active. Alors que la branche nord semblait avoir cessé de progresser hier soir, l’attention se focalise désormais sur la branche la plus au sud. La gendarmerie de Sainte Rose va se rendre sur place pour un suivi régulier de son évolution.

Un fort panache de gaz, surtout de SO2, recouvre actuellement la partie sommitale du Piton de la Fournaise car le vent rabat le panache sur ce secteur où on relève aussi une abondance de cheveux de Pele. .

Source : OVPF.

—————————————-

 8 a.m. (Paris time): The eruption continues, with a strong seismicity still recorded under the south-eastern part of the Dolomieu Crater. OVPF specifies that these earthquakes testify to the weakening of this area, either by a circulation of fluid or the emptying of a reservoir, most certainly in connection with the supply of the eruptive site and its renewed activity. The observatory confirms the fear that I expressed yesterday, namely a risk of collapse of the Dolomieu Crater, or a part of the crater. As a result, the field mission planned by an OVPF team to repair a monitoring station damaged by the eruption is cancelled.
The lava flow is still very active. While the northern branch seemed to have stopped advancing last night, attention is now focused on the southernmost branch. The gendarmerie of Sainte Rose will go on site for regular monitoring of its progress.
A strong plume of gas, especially SO2, currently covers the summit of the volcano because the wind is sending the plume over this sector where there is also plenty of Pele’s hair. .
Source: OVPF.

Image thermique des coulées de lave le 5 avril 2020 vers 20 heures (Source : OVPF)