Quelques nouvelles de Vulcano et de l’Etna (Sicile) // Some news of Vulcano and Mt Etna (Sicily)

Dans une note précédente, j’expliquais que la mer avait changé de couleur dans le secteur de Levante sur l’île éolienne de Vulcano. D’après les premières analyses de l’INGV, le phénomène aurait été causé « par la baisse du Ph ». L’inspection du site a été réalisée par des chercheurs à bord d’une embarcation pour « les observations macroscopiques du phénomène, les mesures physico-chimiques sur le terrain et l’échantillonnage ».
Les prélèvements d’eau de mer sur le fond marin à proximité des sites d’émissions gazeuses ont été réalisés au moyen d’une rosette actionnée depuis le bateau. Une rosette est une espèce de barillet portant des bouteilles de prélèvement qui peuvent être déclenchées depuis la surface. Les scientifiques ont également procédé au prélèvement des gaz qui provoquent des bouillonnements à la surface de l’eau. D’autres prélèvements de gaz ont également été effectués au niveau de la mare de boue qui, rappelons le, est interdite d’accès depuis trois ans.

La baignade sur la plage de Levante est interdite pendant au moins deux semaines. L’accès au cratère de la Fossa reste interdit lui aussi.

Source: médias italiens.

Dans une publication sur Facebook, j’avais indiqué le 28 mai 2022 qu’une nouvelle bouche s’était ouverte sur l’Etna (Sicile), dans la partie haute de la Valle del Bove. Une deuxième bouche est également apparue à 06h05 (UTC) le 29 mai 2022. Les points d’émission de la lave se trouvent à 3250 m et 2800 m au-dessus du niveau de la mer. La lave se déplace lentement vers le Monte Simone. Le front de coulée le plus avancé se situe à environ 2100 m d’altitude.
Après une chute rapide observée dans l’après-midi du 28 mai, le tremor éruptif fluctue actuellement sur des valeurs moyennes-élevées. Sa source a été localisée dans la zone du Cratère Sud-Est à une profondeur d’environ 3000 mètres.
Source : INGV.

———————————————-

In a previous post, I explained that the sea had changed colour in the Levante area, on the Aeolian island of Vulcano. According to the first analyzes by INGV scientists, the phenomenon was probably caused « by the drop in Ph ». The site inspection was carried out by researchers aboard a boat for « macroscopic observations of the phenomenon, physico-chemical measurements in the field and sampling ».
Sampling of seawater on the seabed near the sites of gaseous emissions was carried out using a rosette operated from the boat. A rosette is a kind of barrel carrying sampling bottles that can be triggered from the surface. The scientists also took samples of the gases that cause bubbling on the surface of the water. Other gas samples were also taken from the mud pool which, it should be remembered, has been off-limits for three years.

Bathing at the Levante beach is forbidden at least for the next two weeks. Access to the La Fossa crater is prohibited too.

Source: Italian news media.

In a post on Facebook, I indicated on May 28th, 2022 that a new vent had opened on Mt Etna (Sicily), in the upper part of the Valle del Bove. A second vent also appeared at 06:05 (UTC) on May 29th, 2022. The lava emission points are at 3250 m and 2800 m above sea level. The lava is slowly moving towards Monte Simone . The most advanced flow front is located at approximately 2100 m altitude.
After a rapid drop observed in the afternoon of May 28th, the eruptive tremor is currently fluctuating on medium-high values. Its source was located in the area of ​​the Southeast Crater at a depth of about 3000 meters.
Source: INGV.

Les bains de boue de Vulcano sont un lointain souvenir (Photo: C. Grandpey)

Nouvelle inquiétude à Vulcano (Sicile) // New anxiety at Vulcano (Sicily)

Le 23 mai 2022 en cours de journée, l’eau le long du littoral devant la plage de Levante à Vulcano (Sicile) a brusquement pris une couleur d’abord blanc laiteux puis sombre, avec des odeurs nauséabondes. Les habitants de Vulcano Porto ont immédiatement signalé cette situation à l’INGV qui a immédiatement lancé les analyses. Le phénomène semble avoir atteint son maximum vers 13h avant de diminuer au cours des heures suivantes. Selon l’INGV, il s’agirait d’un événement de dégazage impulsif qui a affecté la zone dans le secteur de la plage de Levante qui est historiquement affectée par des émissions de gaz à basse profondeur au fond de la mer.
L’INGV explique qu' »un phénomène de libération de fluides dû à une augmentation de la pression dans le système hydrothermal peut provoquer l’évacuation d’une eau riche en sulfures qui se trouve dans la partie la moins profonde du système proprement dit, ce qui expliquerait les couleurs sombres qui ont été observées. L’oxydation qui s’ensuit provoque la formation de soufre élémentaire et la floculation de ce dernier, ce qui explique l’aspect blanc laiteux de l’eau de mer. La dynamique impulsive du dégazage provoque également la dispersion dans l’eau de dépôts préexistants de soufre natif, ce qui contribue à renforcer le phénomène en question. »
Les scientifiques ont également observé une augmentation de la sismicité avec des événements d’une magnitude inférieure à M 1,0. Le prélèvement d’échantillons est prévu ce mardi.

Source: La Sicilia.

Dans la conclusion d’un rapport sur l’île de Vulcano publié le 14 mai 2022, l’INGV indiquait que les résultats des campagnes de mesure des émissions de CO2 dans le sol en mai 2022 montrent que le dégazage à Vulcano Porto est resté pratiquement inchangé ces derniers mois, et présente toutefois des valeurs moyennes bien au-dessus de la normale. De plus, la forte anomalie de concentration de CO2 dans le sol dans la maison Lombardo (40 vol.% à 50 cm) est toujours présente.
Le suivi de la concentration dans l’air du CO2, du SO2 et du H2S à Vulcano Porto a montré des valeurs légèrement anormales mais non dangereuses.
Dans l’ensemble, un dégazage anormal du sol persiste dans le secteur central de la zone du Camping Sicilia (CS1) qui comprend la maison Lombardo et d’autres maisons voisines, ainsi qu’à proximité de la mare de boue dans la zone de la plage de Levante.
Dans de nombreuses zones de Vulcano Porto, le niveau de dégazage reste sur des valeurs moyennes. Une possible évolution vers des émissions de gaz dangereuses pourrait donc avoir lieu à court terme en cas de réactivation de l’activité du cratère de La Fossa.

Cette situation arrive au mauvais moment, à la veille de la saison touristique. Il y a peu de chances que les restrictions d’accès en cours soient levées.

——————————————

On May 23rd, 2022, the water along the coast at Levante beach on the island of Vulcano (Sicily) suddenly took on a colour that was first milky white and then dark, with foul odours. The residents of Vulcano Porto immediately reported this situation to INGV, which immediately started analyses. The phenomenon seems to have reached its maximum around 1 p.m. before decreasing during the following hours. According to INGV, it was an impulsive degassing event that affected the area in the Levante beach sector which is historically affected by gas emissions at low depths on the sea floor.
INGV explains that « a phenomenon of release of fluids due to an increase in pressure in the hydrothermal system can cause the evacuation of a water rich in sulphides which is in the shallowest part of the system itself, which would explain the dark colors that have been observed.The ensuing oxidation causes the formation of elemental sulfur and the flocculation of the latter, which explains the milky white appearance of seawater. The impulsive dynamics of the degassing also causes the dispersion in the water of pre-existing deposits of native sulfur, which contributes to reinforcing the phenomenon. »
Scientists also observed an increase in seismicity with events whose magnitude was less than M 1.0. Sample collection is scheduled for Tuesday.
Source: La Sicilia.

In the conclusion of a report on the island of Vulcano published on May 14th, 2022, INGV indicated that the results of the campaigns to measure CO2 emissions in the ground in May 2022 show that the degassing in Vulcano Porto has remained practically unchanged in recent months, and nevertheless shows average values ​​well above normal. In addition, the strong anomaly of CO2 concentration in the soil in the Lombardo house (40 vol.% at 50 cm ) is still present.
The monitoring of the concentration in the air of CO2, SO2 and H2S at Vulcano Porto showed slightly abnormal but not dangerous values.
Overall, abnormal soil degassing persists in the central sector of the Camping Sicilia (CS1) area which includes the Lombardo house and other neighboring houses, as well as near the mud pool in the area of Levante beach.
In many areas of Vulcano Porto, the level of degassing remains at average values. A possible evolution towards dangerous gas emissions could therefore take place in the short term in the event of a reactivation of activity of the La Fossa crater.

This situation comes at the wrong time, on the eve of the tourist season. Current access restrictions are unlikely to be lifted.

Les émissions de gaz dans l’eau de mer le long de la plage de Levante sont un phénomène qui existe depuis très longtemps. Les touristes adorent se baigner dans ces jacuzzi naturels (Photo: C. Grandpey)

Jour de la Terre : les volcans et notre environnement // Earth Day : volcanoes and our environment

Ces derniers jours en France, tous les bulletins d’information étaient focalisés sur l’élection présidentielle. Les médias ont laissé de côté la pandémie de Covid-19, et pas un mot n’a été prononcé sur le Jour de la Terre – Earth Day – le 22 avril. Comme je l’ai écrit précédemment, personne ne se soucie du sort de notre planète. Le Jour de la Terre a été créé le 22 avril 1970 pour sensibiliser le public aux effets nocifs de l’industrialisation sur l’environnement.
Dans son dernier article Volcano Watch, l’Observatoire des Volcans d’Hawaii (HVO) explique que la participation au Jour de la Terre peut se limiter à une démarche très simple comme éteindre la lumière en sortant d’une pièce. Pour nombreuses personnes – au moins aux Etats Unis – c’est une occasion de se renseigner sa propre empreinte carbone. C’est également le bon moment pour réfléchir à l’influence des événements naturels sur notre environnement.
Par exemple, on sait que la végétation disparaît sur les pentes d’un volcan juste après une éruption. Lors d’une puissante éruption, la flore et la faune sont détruites par la cendre, les gaz volcaniques, la lave ou même les lahars. Le paysage ainsi bouleversé semble inhospitalier au début, mais au bout d’un certain temps, les dépôts volcaniques se décomposent et libèrent des nutriments sur lesquels les plantes se développent. Dans la partie orientale de l’île d’Hawaii, exposée au vent et à l’humidité, les importantes précipitations accélèrent la croissance des plantes. En conséquence, la région peut passer d’une coulée de lave stérile à une forêt tropicale florissante en moins de 150 ans.
L’influence volcanique ne se limite pas à la surface du sol à proximité du volcan. Les panaches de cendres provenant de grandes éruptions peuvent bloquer temporairement le soleil, transformant le jour le plus clair en nuit la plus sombre. L’obscurité peut durer de quelques heures à quelques jours, jusqu’au moment où les particules de cendres sont redescendues à la surface de la Terre. Cependant, les plus petites particules restent en suspension dans la haute atmosphère et sont transportées par les vents sur des milliers de kilomètres. Ces particules sont des milliards de minuscules miroirs qui renvoient le rayonnement solaire dans l’espace. De la même façon, le SO2 se mélange aux gouttelettes d’eau dans l’atmosphère et bloque lui aussi le rayonnement solaire.

De grandes éruptions volcaniques peuvent bloquer le rayonnement solaire au point d’affecter brièvement le climat. Par exemple, l’éruption du Krakatau en Indonésie en 1883 a plongé la région dans l’obscurité totale pendant deux jours et demi et a fait baisser la température de la planète pendant cinq ans. L’éruption encore plus importante du Tambora en 1815 a provoqué «l’année sans été» en Europe et l’Amérique du Nord. Cependant, le refroidissement global généré par les éruptions volcaniques n’est que temporaire et n’est pas une solution à la crise du réchauffement climatique que connaît notre planète.
Les volcans émettent également des gaz à effet de serre dans l’atmosphère, mais une seule éruption n’entraîne pas une hausse significative des températures à l’échelle de la planète. Une telle hausse a été observée il y a des millions d’années lorsque des événements volcaniques à grande échelle comme les Trapps de Sibérie ont duré des millions d’années et ont produit d’énormes quantités de lave à travers cette région. Ces éruptions ont produit des champs de lave constitués de nombreuses et vastes coulées de lave qui se sont empilées les unes sur les autres. L’éruption desTrapps de Sibérie a provoqué le plus grand événement d’extinction de masse jamais observé sur Terre. Les gaz volcaniques ont largement contribué à l’événement d’extinction, mais le magma a également mis le feu à d’énormes gisements de charbon souterrains qui ont libéré de grandes quantités de dioxyde de carbone (CO2) et d’autres gaz à effet de serre.
Aujourd’hui, les activités humaines produisent chaque année 100 fois plus d’émissions de gaz à effet de serre que les volcans de la planète. En d’autres termes, le Mont St. Helens devrait entrer en éruption plus de 3 500 fois par an pour atteindre les émissions anthropiques de CO2. Les volcans influencent notre environnement local et le climat mondial, mais il ne faut pas compter sur eux pour résoudre nos problèmes climatiques actuels.
Source : Surveillance des volcans, USGS, HVO.

—————————————–

These last days in France , all the news bulletins were focused on the presidential election. The media left aside the Covid-19 pandemic, and not a word was pronounced about Earth Day which as supposed to be celebrated on April 22nd. As I put id before, nobody cares about the fate of our planet. Earth Day was first established on April 22, 1970, to raise awareness of some of the harmful effects industrialization was having on the environment.

In its latest Volcano Watch article, HVO explains that participating in Earth Day can be as simple as remembering to turn off the light when you leave a room. Many people use Earth Day as an opportunity to educate themselves on their own personal carbon footprint It is also the right moment to think about how natural events influence environmental change.

For example, vegetation disappears on the slopes of a volcano, following an eruption. Depending on the scale of the eruption, the surrounding flora and fauna have probably been devastated by some combination of ash, volcanic gas, lava, or lahars. The resulting landscape seems inhospitable at first, but over time the volcanic deposits break down and release nutrients on which plants thrive. On the windward and wet east side of the Island of Hawaii, the substantial rainfall drives faster rates of plant growth, meaning the region can go from a barren and young lava flow to a thriving rainforest in under 150 years!

Volcanic influence is not limited to the nearby ground surface. Ash plumes from large explosive eruptions can temporarily block out the sun, turning the clearest day into the darkest night. The darkness can last from hours to days, or until most of the ash particles make their way back down to Earth’s surface. However, the smallest particles remain suspended high in the atmosphere, carried by wind currents for thousands of kilometers. These particles are trillions of tiny mirrors reflecting solar radiation back into space. SO2 combines with water droplets in the atmosphere and blocks solar radiation in the same way. Large volcanic eruptions can block so much solar radiation in this way that they briefly impact the climate. For instance, the 1883 eruption of Krakatoa in Indonesia plunged the region into total darkness for two and a half days and lowered global temperature for five years. An even larger eruption from Mount Tambora in 1815 resulted in “the year without summer” across Europe and North America. However, global cooling brought on by volcanic eruptions is only temporary and is not a solution to the current climate change crisis our planet is currently experiencing.

Volcanoes also regularly emit greenhouse gases into the atmosphere, but we will not notice any significant rise in global temperatures due to a single volcanic eruption. For that, have to look back millions of years ago when volcanic events occurred, creating the Siberian Traps, for example. These were large-scale eruptions that spanned millions of years and spewed enormous amounts of lava across Siberia. They produced lava fields made up of numerous and extensive lava flows stacked on one another. The Siberian Traps eruption caused the largest identified mass extinction event on Earth. Emissions of volcanic gases were a major contribution to the extinction event, but the magma also ignited huge underground coal deposits that released vast amounts of carbon dioxide (CO2) and other greenhouse gases.

Today, human activities annually produce more than 100 times the greenhouse gas emissions than global volcanism. In other words, Mount St. Helens would have to erupt over 3,500 times a year to match human CO2 emissions. Volcanoes influence our local environment and global climate, but we should not rely on them to solve our current climate woes.

Source: Volcano Watch, USGS, HVO.

 

Les sabres d’argent dans le cratère Haleakala (Maui), les épilobes sur les flancs du Mont St. Helens (Etat de Washington) ; les arbustes d’‘ŏhi‘a lehua sur la lave du Kīlauea (Hawaii) sont des exemples de la rapidité avec laquelle la végétation réapparaît après une éruption volcanique (Photos : C. Grandpey) .

Mesure des gaz sur le Kilauea (Hawaii) // Gas measuring on Kilauea Volcano (Hawaii)

Lors d’une éruption, le dioxyde de soufre (SO2) est souvent mentionné par les volcanologues. À Hawaii, c’est la principale composante du vog, ou brouillard volcanique. Cependant, d’autres gaz sont présents dans un panache éruptif et il est intéressant d’étudier leur rapport, comme celui entre le SO2 et le HCl (dioxyde de soufre/chlorure d’hydrogène). Il est également intéressant de connaître la quantité de CO2 (dioxyde de carbone) dissous dans le verre volcanique.
Sur le Kilauea, c’est le travail de l’Hawaiian Volcano Observatory (HVO) d’effectuer ces analyses. Pour réaliser les mesures, les scientifiques de l’Observatoire utilisent un spectromètre infrarouge à transformée de Fourier (IRTF ou FTIR pour Fourier Transform InfraRed spectroscopy). Ce type de spectromètre détecte le rayonnement infrarouge (IR) entrant ; c’est le type de rayonnement associé aux objets chauds ou tièdes qui ont des longueurs d’onde légèrement plus longues que la lumière visible que perçoivent les yeux.
Il s’avère que les gaz absorbent le rayonnement et que chaque gaz – CO2, HCl, SO2, H2O (sous forme de vapeur d’eau), par exemple – a sa propre signature unique de la quantité de rayonnement qu’il absorbe à différentes longueurs d’onde.
Un exemple un peu différent, mais bien connu, de gaz absorbant est l’ozone (O3). L’ozone dans l’atmosphère nous protège d’une partie des rayons ultraviolets (UV) nocifs du soleil (longueurs d’onde plus courtes que la lumière visible) en absorbant très fortement les longueurs d’onde UV. Le SO2 absorbe lui aussi fortement dans la gamme UV ; c’est pour cela que le HVO utilise les UV pour mesurer les taux d’émission de SO2.
Cependant, de nombreux gaz volcaniques n’absorbent pas très bien les UV; en revanche, ils absorbent fortement dans la gamme infrarouge ( IR). En conséquence, les scientifiques du HVO se tournent vers le FTIR pour effectuer les mesurer. L’Observatoire possède deux types de spectromètres FTIR qu’ils utilisent pour des applications différentes.
Pour mesurer les gaz dans l’atmosphère, les scientifiques utilisent le spectromètre FTIR ‘de terrain’ et se rendent sur le site où le volcan émet le panache volcanique. Une source d’énergie IR est nécessaire et la lave convient parfaitement car elle est très chaude. Ainsi, lorsqu’une éruption se produit, les scientifiques peuvent orienter le FTIR vers de la lave incandescente. S’il n’y a pas de lave à portée de main, ils peuvent toujours mesurer le gaz en dirigeant le FTIR vers une lampe spéciale qui génère des IR.
Une fois la source IR obtenue, les scientifiques doivent positionner le FTIR de telle sorte que le gaz volcanique se trouve entre la source IR et le FTIR. Le FTIR mesure les quantités relatives de rayonnement IR à différentes longueurs d’onde, dont une partie est absorbée par les gaz volcaniques. Ils analysent ensuite les données et calculent des ratios de gaz majoritaires, comme CO2/SO2 et le SO2/HCl, qui peuvent donner des informations sur la façon dont le magma et les gaz volcaniques sont véhiculés dans le système d’alimentation du volcan.
Le deuxième spectromètre FTIR reste dans le laboratoire où il est utilisé pour mesurer de petites quantités de H2O et de CO2 dissous dans les minéraux et le verre volcanique. Le principe reste le même que pour le FTIR de terrain. Le FTIR de labo dispose d’une source IR et d’un détecteur de rayonnement qui mesure l’intensité IR à de nombreuses longueurs d’onde différentes. Au lieu d’un panache volcanique pour effectuer les mesures, les scientifiques insèrent une fine lame de minéral ou de verre soigneusement polie entre la source IR et le détecteur.
Les minéraux et les verres, en particulier ceux qui sont émis par des volcans riches en gaz, contiennent souvent du CO2 et du H2O encore dissous qui absorbent les infrarouges à ces longueurs d’onde caractéristiques, tout comme les gaz volcaniques dans l’atmosphère. Dans la mesure où les scientifiques connaissent l’épaisseur de la minuscule lame de verre ou de minéral, le FTIR peut alors leur indiquer quelle quantité de gaz est dissoute dans ce petit échantillon solide. Une fois qu’ils ont ces informations, les scientifiques peuvent déterminer, par exemple, de quelle profondeur provient le matériau émis pendant éruption et à quelle vitesse il a été émis.
Source : USGS/HVO.

——————————————-

During an eruption, sulfur dioxide (SO2) is often mentioned by volcanologists. In Hawaii, it is the major component of vog, or volcanig smog. However, other gases are present in an eruptive plume and it is interesting to study their ratio, such as the one between SO2 and HCl (sulfur dioxide/hydrogen chloride). It is also interesting to know the amount of CO2 (carbon dioxide) dissolved in volcanic glass.

On Kilauea volcano in Hawaii, it is up to the Hawaiian Volcano Observatory (HVO) to perform these analyses. To make the measurements, scientists at the Observatory use a Fourier Transform Infrared spectrometer, or FTIR. FTIR instruments detect incoming infrared (IR) radiation; this is the type of radiation associated with hot or warm objects having wavelengths slightly longer than the visible light we can see with our eyes.

It turns out that gases absorb radiation, and each gas – CO2, HCl, SO2, H2O (water vapour), and others – has its own unique signature of how much it absorbs at different wavelengths.

One slightly different, but common, example of an absorbing gas is ozone (O3). Ozone in the atmosphere protects us from some of the sun’s harmful ultraviolet (UV) radiation (shorter wavelengths than visible light) by absorbing UV wavelengths very strongly. SO2 also absorbs strongly in the UV range; HVO uses UV to measure SO2 emission rates.

However, many important volcanic gases don’t absorb UV very well, but they do absorb strongly in the IR range. So, HVO scientists turn to FTIR to measure them. HVO has two different types of FTIR, which they use for different applications.

For measuring gases in the atmosphere, scientists take the ‘field FTIR’ and head out to where the volcanic plume is. A source of IR energy is needed and lava is a great source of IR because it is very hot. So, when an eruption takes plave,scientists can aim the FTIR at hot, glowing lava. If there is no lava around, they can still measure the gas by aiming the FTIR at a special lamp that generates IR.

Once the IR source is obtained, scientists need to position the FTIR so the volcanic gas is between the IR source and the FTIR. The FTIR measures relative amounts of IR radiation at different wavelengths, some of which is absorbed by the volcanic gases. They then process the data and calculate important gas ratios, like CO2/SO2 and SO2/HCl, which can give information about how magma and volcanic gases are transported in the volcanic plumbing system.

The second FTIR stays in the lab where it is used for measuring small amounts of H2O and CO2 dissolved in minerals and volcanic glass. The principles are the same as with the previous instrument. The lab FTIR has an IR source and a radiation detector that measures IR intensity at many different wavelengths. But instead of a volcanic plume passing between them, the scientists insert a tiny, carefully polished chip of mineral or glass into the path between the IR source and the detector.

Minerals and glasses, especially those that erupt out of gas-rich volcanoes, often have CO2 and H2O still dissolved in them, which will absorb IR at those characteristic wavelengths just like volcanic gases in the air. As long as scientists know how thick the tiny chip of glass or mineral is, the FTIR can then tell them how much of those gases are dissolved in those little solid pieces. Once they know that, they can determine, for instance, how deep the erupted material came from and how quickly it erupted.

Source : USGS / HVO.

Scientifique du HVO utilisant le spectromètre FTIR de terrain au cours de la dernière éruption du Kilauea (Source: USGS / HVO)