Approche scientifique de l’éruption islandaise de 2021 // Scientific approach of the 2021 Icelandic eruption

Nous ne savons pas prévoir les éruptions, mais nous savons décrire le déroulement des événements éruptifs.
Des scientifiques de l’Université d’Islande et du Met Office islandais (IMO) ont publié deux articles dans la revue Nature, dans lesquels ils présentent le fruit de leurs observations lors de l’éruption de Fagradalsfjall en 2021. C’était la première éruption sur la péninsule de Reykjanes après 800 ans de calme volcanique.
Les études montrent que les précurseurs de l’éruption islandaise étaient différents de ceux qui ont précédé de nombreuses autres éruptions à travers le monde, et que la composition de la lave a évolué au fur et à mesure que l’éruption progressait.
Les chercheurs ont analysé l’activité sismique sur la péninsule de Reykjanes. Elle a commencé en décembre 2019, a culminé avec l’éruption du 19 mars 2021 et s’est poursuivie pendant environ six mois.

L’un des articles – intitulé « La déformation et le déclin de la sismicité avant l’éruption de Fagradalsfjall de 2021 » – s’attarde sur les précurseurs de l’éruption et montre dans quelle mesure ils diffèrent des précurseurs de nombreuses autres éruptions dans le monde.
Il y a eu une activité sismique intense sur la péninsule de Reykjanes dans les semaines qui ont précédé l’éruption de 2021, avec une libération de contraintes tectoniques dans la croûte terrestre. Cependant, pendant plusieurs jours avant l’éruption, la déformation du sol et l’activité sismique ont diminué dans la zone autour du site de l’éruption. Ce schéma précurseur est donc différent de ceux qui précèdent de nombreuses autres éruptions dans le monde, qui montrent souvent une augmentation de la déformation du sol et de la sismicité peu de temps avant le début de l’éruption, signe que le magma se fraye un chemin vers la surface.
Les auteurs de l’article expliquent que la situation observée sur le Fagradalsfjall a été provoquée par l’interaction entre le flux magmatique et les contraintes au niveau des plaques tectoniques. Lorsque le magma se fraye un chemin à travers la croûte avant une éruption, une contrainte tectonique est parfois libérée, ce qui provoque des séismes et une déformation du sol. Un déclin de la sismicité et de la déformation peut indiquer que ce processus touche à sa fin et que le magma est prêt à percer la surface.
Au cours de la période de trois semaines qui a précédé l’éruption de Fagradalsfjall, il y a eu à la fois une déformation de surface considérable et une forte sismicité. La cause était la mise en place d’un dyke magmatique vertical entre la surface et 8 km de profondeur. Dans le même temps, des contraintes tectoniques dans la croûte ont été libérées. Des séismes d’une magnitude pouvant atteindre M 5,6 ont été enregistrés dans les zones voisines.
Les scientifiques pensent que la baisse de la sismicité dans les jours qui ont précédé l’éruption peut s’expliquer par le fait que le magma avait alors presque atteint la surface, là où la croûte est la plus faible et où il y a donc moins de résistance.
Cette situation montre qu’il faut tenir compte de la relation entre les volcans et les contraintes tectoniques dans la prévision des éruptions. Une libération des contraintes tectoniques, suivie d’une diminution de la déformation et de la sismicité, peut précéder un certain type d’éruption.

Le deuxième article – intitulé « Déplacement rapide d’une source magmatique profonde sur le volcan Fagradalsfjall » – traite des changements dans la composition de la lave dans la Geldingadalir au cours de l’éruption.
Les scientifiques ont fréquemment échantillonné la lave au cours des 50 premiers jours de l’éruption et ils ont mesuré les gaz volcaniques autour du site éruptif. Ces mesures ont révélé que la lave du Fagradalsfjall provenait directement d’un réservoir magmatique à grande profondeur, à la frontière entre la croûte et le manteau, autrement dit la zone proche du Moho.
Une éruption avec du magma provenant directement de la zone proche du Moho n’a pas été observée dans d’autres éruptions en temps réel. Dans ces cas précédents, le magma provenait de profondeurs moindres de la croûte terrestre. On manque d’informations sur les parties les plus profondes des systèmes magmatiques. L’éruption du Fagradalsfjall a fourni à la communauté scientifique de nouvelles connaissances sur les processus impliqués.
Au début de l’éruption de 2021, la lave était relativement riche en magnésium, comparée à la lave d’autres éruptions historiques en Islande, ce qui révèle un apport de magma particulièrement chaud. Il y avait aussi beaucoup de dioxyde de carbone (CO2) dans les gaz volcaniques émis par la bouche éruptive, ce qui confirme un apport de magma très profond. Selon les scientifiques, cela montre que le magma a subi peu de refroidissement en remontant à travers la croûte jusqu’à la surface. On pense que le réservoir magmatique se trouvait à une quinzaine de kilomètres sous la surface.

L’étude de l’éruption révèle également que la composition de la lave du Fagradalsfjall a radicalement changé au fur et à mesure que l’éruption progressait. Cela laisse supposer que pendant l’éruption un nouveau magma est arrivé en provenance de profondeurs plus importantes que le magma déjà présent dans le réservoir.
Les scientifiques expliquent que l’on sait depuis longtemps que différents types de magma peuvent se mélanger en profondeur, dans les systèmes magmatiques, avant une éruption. Cette éruption présente des preuves en temps réel que ces processus se produisent.
De plus, les modifications de la composition des produits volcaniques montrent que du nouveau magma peut s’introduire rapidement dans un réservoir profond, dans un délai d’environ 20 jours, et se mélanger au magma déjà présent dans le réservoir, en déclenchant potentiellement l’éruption.
Ces découvertes peuvent aider à mieux comprendre les volcans et la géochimie du manteau et pourraient contribuer à l’élaboration de modèles de systèmes magmatiques partout dans le monde.

Source: Met Office islandais, Université d’Islande, The Watchers.

Il sera maintenant intéressant de comparer les conclusions de l’éruption de 2021 avec celles de l’éruption de 2022. Il faudra voir si la dernière éruption se situe dans le prolongement de celle de 2021 ou s’il s’agit de deux événements indépendants l’un de l’autre.

———————————————

We are not good at predicting eruptions, but we are dood at describing what happened.

Scientists from the University of Iceland, the Icelandic Met Office (IMO) have published two papers in the journal Nature, presenting new findings from the 2021 eruption at Fagradalsfjall. It was the first eruption on the Reykjanes Peninsula after 800 years of dormancy.

The studies show that the precursors to the eruption were unusual compared to many other eruptions across the world and that the composition of the lava changed as the eruption continued.

Researchers closely observed the seismic activity on Reykjanes Peninsula, which began in December 2019, culminated with the eruption on March 19th, 2021 and continued for around half a year.

One of the papers – titled “Deformation and seismicity decline before the 2021 Fagradalsfjall eruption” -discusses the precursors to the eruption and how they differ from the precursors of many other eruptions around the world.

There was a significant seismic activity on the Reykjanes Peninsula in the weeks leading up to the 2021 eruption, marked by tectonic stress release in the crust. However, for several days before the eruption, deformation and seismic activity declined in the area around the eruption site. This precursory pattern is different from those preceding many other eruptions around the world, which often show escalating rates of ground displacement and seismicity shortly before the eruption onset, as the magma forces its way to the surface.

The scientists behind the paper explain that the behaviour at Fagradalsfjall was caused by the interplay between magma flow and plate tectonic stress. As magma forces its way through the crust before an eruption, tectonic stress may be released, causing earthquakes and ground deformation in the early stages. A decline in seismicity and deformation may indicate that this process is coming to an end and that the magma may erupt.

During the three-week period preceding the eruption at Fagradalsfjall, there was both considerable surface deformation and a large number of earthquakes. This was caused by the emplacement of a vertical magma-filled dyke between the surface and a depth of 8 km. At the same time, tectonic stress in the crust was released. Earthquakes occurred in nearby areas, up to magnitude M 5.6.

The scientists also suggest that the decline in seismicity in the days before the eruption could be explained by the fact that the magma had then almost reached the surface, where the crust is weakest and there is therefore less resistance.

This situation shows that consideration must be given to the relationship between volcanoes and tectonic stress in eruption forecasting. A release of tectonic stress followed by a decline in deformation and seismicity rate may be a precursory activity for a certain type of eruption.

The second paper – titled “Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland” – discusses the changes to the composition of the lava that flowed through Geldingadalir and the surrounding area as the eruption continued.

Scientists sampled the lava frequently during the first 50 days of the eruption and measured the volcanic gases around the eruption site. This revealed that the lava at Fagradalsfjall was directly sourced from a magma reservoir at great depth, at the boundary between the crust and the mantle – the near-Moho zone.

Eruption directly from the near-Moho zone has not been observed in other eruptions with real-time investigation. In these previous cases, the magma came from shallower levels in the crust. Until now, there has therefore been a lack of information about the deepest parts of magmatic systems. The eruption at Fagradalsfjall has provided the scientific community with new knowledge of the processes involved.

At the start of the eruption, the lava was relatively rich in magnesium in comparison with lava from other historical eruptions in Iceland, indicating an unusually hot magma supply. There was also a lot of carbon dioxide in the volcanic gases emitted from the eruption vent, indicating an unusually deep magma supply. The scientists explain that this suggests that the magma underwent little cooling on its way up through the crust to the surface. It is believed that the magma reservoir was located about 15 km from the surface.

The research also revealed that the composition of the lava at Fagradalsfjall radically changed as the eruption progressed. This suggests that during the eruption, a new magma was generated at greater depths than the magma already present in the reservoir.

The scientists point out that it has long been argued that different kinds of magma can mix deep in magmatic systems before an eruption. This study presents real-time evidence that these processes do occur.

Furthermore, changes to the composition of volcanic products show that new magma can flow into a deep reservoir rapidly, in a timescale of around 20 days, mixing with the magma already in the reservoir and potentially triggering the eruption.

These findings may aid our understanding of volcanoes and the geochemistry of the mantle and could support the development of models of magmatic systems all over the world.

Source: Icelandic Met Office, University of Iceland, The Watchers.

It will now be interesting to compare the conclusions of the 2021 eruption with those of the 2022 eruption. It will be particularly interesting to see if the last eruption is a continuation of that of 2021 or if they are two distinct events.

Captures d’écran de l’éruption de 2021

Islande : le lent déclin de l’éruption // Iceland: the slow decline of the eruption

L’éruption continue de décliner dans la Meradalir ce 20 août 2022 au matin. Les projection ont disparu au niveau de la bouche active d’où s’échappe juste un panache de gaz bleutés. On ne voit pas, non plus, de coulées actives sur la champ de lave. Le tremor continue de décliner. La sismicité reste faible sur le péninsule de Reykjanes, même si un événement de M 3,2 a été enregistré à 5h45 le 20 août à une profondeur de 5,3 km. Comme je l’ai écrit précédemment, rien n’annonce un sursaut d’activité éruptive, mais rien ne dit, non plus, qu’un nouvel épisode éruptif ne sera pas observé d’ici quelques semaines. Ce n’est qu’une hypothèse car la prévision éruptive actuelle ne permet pas d’en savoir plus. Ce n’est pas très grave dans cette région de l’Islande où la population est clairsemée. En cas d’urgence, il serait facile de procéder à des évacuations.

———————————————

The eruption continues to decline in Meradalir on August 20th, 2022 in the morning. The projections have disappeared at the active vent that only emits a plume of bluish gases. One cannot see, either, active flows on the lava field. The tremor continues to decline. Seismicity remains low on the Reykjanes Peninsula, although an M 3.2 event was recorded at 5:45 a.m. on August 20th at a depth of 5.3 km. As I put it previously, nothing announces a new outbreak of eruptive activity, but a new eruptive episode might be observed within a few weeks. It is only a hypothesis because the current eruptive predictions do not allow to know more. It is not a problem in this region of Iceland where the population is sparse. In the event of an emergency, it would be easy to carry out evacuations.

Image webcam le 20 août 2022 au matin

Source: Met Office islandais

Islande : l’éruption le 14 août 2022 // Iceland : the eruption on August 14th, 2022

Spectacle étonnant sur le site de l’éruption le 14 août 2022 sur le coup de midi: des voitures (4X4 probablement) garées et l’arrivée d’un hélicoptère. Difficile de dire ce que tous ces gens sont venus faire en véhicule motorisés, pendant que de milliers d’autres n’avaient pas d’autre choix que d’emprunter le sentier de 7 km conduisant au spectacle.

Comme je l’ai indiqué précédemment, l’éruption semble en perte de vitesse. La hauteur des gerbes de lave dépasse de moins en moins souvent la lèvre du cratère (il est vrai que les parois sot plus hautes) qui s’est formé dans la Meradalir, et on n’observe plus les rideaux de lave des jours derniers.

La lave continue à s’écouler par l’échancrure ouverte dans la bouche active, mais le débit semble, lui aussi, moins impressionnant. D’ailleurs, plus personne ne parle d’un possible débordement dans une vallée adjacente et d’une éventuelle menace de la lave pour la route côtière.

Il n’est donc pas certain que l’éruption dure encore très longtemps, à moins que le magma trouve une autre porte de sortie, mais cette hypothèse me semble peu probable au vu de la faible sismicité sur la péninsule de Reykjanes. Dans le même temps, le tremor éruptif se maintient à un niveau relativement stable.

Personnellement – mais je peux avoir tout faux – je reste persuadé que cette éruption a lieu dans la continuité e celle de 2021 au Fagradalsfjall. Il serait vraiment intéressant d’avoir une comparaison chimique des laves émises sur les deux sites qui ne sont pas très éloignés l’un de l’autre.

————————————–

Amazing pictures on the site of the eruption on August 14th, 2022 around noon: cars (probably 4-wheel drive) parked on the site and the arrival of a helicopter. Hard to say what all these people came to do in motorized vehicles, while thousands of others had no choice but to take the 7 km path leading to the show.
As I put it before, the eruption seems to be losing momentum. The height of the lava projections exceeds less and less often the rim of the crater (whose walls are higher) which formed in Meradalir, and we no longer observe the lava fountains of the last days.
Lava continues to flow through an opening into the active vent, but the flow also seems less impressive. Moreover, no one is talking about a possible overflow in an adjacent valley and a possible threat of lava to the coastal road.
It is therefore not certain that the eruption will last very long, unless magma finds another way out, but this hypothesis seems unlikely to me given the low seismicity on the Reykjanes peninsula. At the same time, the eruptive tremor remains at a relatively stable level.
Personally – but I may be completely wrong – I remain convinced that this eruption takes place in the continuity of that of 2021 at Fagradalsfjall. It would be really interesting to have a chemical comparison of the lavas amitted on the two sites which are not very far from each other.

 Le site éruptif cet après-midi

Gros plan sur le cratère en fin d’après-midi le 14 août 2022 (Images webcam)

Le lac de lave au sommet du Kilauea (Hawaii) // Kilauea’s summit lava lake (Hawaii)

L’éruption du Kilauea se poursuit. La lave continue d’être émise par une bouche dans la partie ouest du cratère de l’Halema’uma’u. Les émissions de SO2 restent importantes, à environ 1 900 tonnes par jour. La sismicité est élevée mais stable, avec peu de séismes et la présence du tremor volcanique.
L’éruption n’a pas fait la Une des journaux récemment, mais cela ne signifie pas que l’activité n’est pas intéressante. Elle se poursuit sans fluctuations importantes.
Le modèle d’activité qui a caractérisé le comportement du sommet du Kilauea pendant des siècles, se résume à un cycle d’effondrement et de remplissage. Le plancher de la caldeira s’effondre et/ou s’affaisse – souvent en raison d’une éruption sur la zone de rift – et les éruptions qui surviennent par la suite au sommet remplissent d’une nouvelle lave la dépression ainsi formée. Destruction et reconstruction se succèdent de manière répétitive.
De nombreux cycles d’effondrement et de remplissage du cratère sommital se sont produits au cours des années 1800 et au début des années 1900. Dans chaque cas, la lave a fini par revenir au sommet et a rempli une grande partie ou la totalité de la dépression.
L’effondrement du fond du cratère en 2018 a été l’un des plus grands événements de ce type au cours des 200 dernières années. Au cours des 18 derniers mois, la lave a fait sa réapparition dans le cratère de l’Halemaʻumaʻu et a lentement rempli la nouvelle dépression. Depuis son retour en décembre 2020, la lave a rempli environ 17% du volume de la dépression creusée par l’éruption de de 2018.
Ce qui est intéressant dans l’activité actuelle, c’est la manière dont la lave remplit le cratère. Dans le scénario le plus simple, on pourrait imaginer que la lave se déverse simplement dans l’Halema’ma’u et recouvre les coulées précédentes, pour finalement remplir le cratère. Si une partie du remplissage se fait de cette manière, une grande partie est «endogène». En d’autres termes, la lave émise par la bouche éruptive arrive sous la croûte de surface, de manière invisible, et elle soulève le fond du cratère. C’est un peu comme si on gonflait un matelas pneumatique géant
Cette évolution de l’éruption peut être suivie à l’aide d’outils modernes. Un télémètre laser mesure en continu la surface de la lave toutes les secondes, avec une précision centimétrique. Les webcams installées sur la lèvre de l’Halemaʻumaʻu montrent parfaitement comment se produit le soulèvement du fond du cratère. Le processus de croissance endogène est bien illustré par la webcam postée sur la lèvre est de l’Halemaʻumaʻu. Les images en accéléré fournies par cette webcam montrent que la partie centrale du fond du cratère est soulevée comme un piston, sans pratiquement se fracturer.
Le lac de lave actif qui occupe une partie relativement réduite du fond du cratère, se soulève progressivement avec le reste du fond du cratère. Le télémètre laser montre des fluctuations du niveau de la lave active dans le lac, qui vient se superposer à une tendance à la hausse progressive du fond du cratère sous l’effet de ce soulèvement lent.
De grandes fissures se sont développées autour de cette partie centrale du fond du cratère. Au-delà des fissures, le long des parois, le comportement de la lave est plus complexe. Cette région externe est souvent déformée par la croissance endogène en dessous.
Ce type de croissance endogène du fond du cratère a déjà été observé dans les années 1800 et au début des années 1900, mais on ne l’a pas vraiment observé au cours du dernier siècle sur le Kilauea.
On peut observer le comportement du sommet du Kilauea grâce aux webcams accessibles sur le site Web du HVO (www.usgs.gov/hvo).
Source : USGS, HVO

—————————————–

The eruption of Kilauea continues. Lava keeps erupting from the western vent within Halemaʻumaʻu crater. SO2 emission rates remain elevated at about 1,900 tonnes per day. Seismicity is elevated but stable, with few earthquakes and ongoing volcanic tremor.

The eruption has not made the news recently, but that does not mean activity is not noteworthy. It is continuing with no significant fluctuations.

The pattern of activity has typified Kilauea’s summit behaviour for centuries, with a cycle of collapse and refilling. The caldera floor collapses and/or subsides – often due to an eruption on the rift zone – and subsequent summit eruptions fill the depression with new lava. Destruction and reconstruction follow each other in a retetitive way.

Numerous cycles of collapse and refilling occurred during the 1800s and early 1900s. In each instance, lava eventually returned to the summit and filled much or all of the depression.

The collapse of the crater floor in 2018 was one of the largest such events in the past 200 years. Over the past year and a half, lava has been erupting in Halemaʻumaʻu crater and slowly refilling the new depression. Since its return to Halemaʻumaʻu in December 2020, lava has refilled about 17% of the volume of the 2018 collapse.

What is also interesting about the current activity is the manner in which the lava is refilling the crater. In the simplest scenario, we might imagine the lava in Halemaʻumaʻu simply pouring in over earlier flows, stacking up and filling the crater. While a portion of the refilling is being done in this manner, a major amount of the refilling is “endogenous.” In other words, lava from the eruptive vent is supplied beneath the solidified surface crust, out of view, lifting the crater floor. It’sa bit like inflating a giant air mattress

This growth can be tracked using modern tools. A continuous laser rangefinder measures the lava surface every second, with centimeter precision. Webcams operating on the rim of Halemaʻumaʻu show the nature of uplift clearly. The process of endogenous growth is well illustrated with the webcam on the east rim of Halemaʻumaʻu. Timelapse images from this webcam show the central portion of the crater floor is being lifted like a piston, largely without fracturing.

The active lava lake which forms a relatively small portion of the crater floor, has essentially been lifted up gradually with the remainder of the crater floor. The laser rangefinder shows short-term fluctuations in the level of the active lava in the lake, superimposed on a gradual upward trend of the crater floor due to this slow uplift.

Around the perimeter of this central portion of the crater floor, a series of large cracks have developed. Beyond the cracks, along the margins of the crater floor, the behaviour is more complex. This outer region is often tilted and deformed from the endogenous growth below.

This type of endogenous growth was already observed in the 1800s and early 1900s. But it has not been observed so much in the past hundred years on Kilauea.

The behaviour of the Kilauea summit can be observed through the webcams on the HVO website (www.usgs.gov/hvo).

Source: USGS, HVO.

 

Cette photo est prise depuis la lèvre Ouest. On peut voir que la surface du lac est composée de grandes plaques crustales séparées par des zones d’accrétion incandescentes. On aperçoit aussi des projections de lave le long de la bordure Est. Le lac et le fond du cratère tout autour, formés de lave solidifiée, sont progressivement soulevés par l’apport endogène de lave sous la surface. (Crédit photo : USGS)