Les leçons de l’éruption du Kilauea (Hawaii) // The lessons of the Kilauea eruption (Hawaii)

Maintenant que la dernière éruption du Kilauea est terminée, les scientifiques du HVO vont pouvoir étudier attentivement ce qui s’est réellement passé et, si possible, essayer de prévoir les événements futurs sur le volcan.
On peut affirmer aujourd’hui que l’éruption du Kilauea en 2018 a été la plus importante des 200 dernières années. En l’espace de quatre mois environ, le volcan a déversé au moins 0,83 kilomètre cube de lave – l’équivalent de plus de 300 000 piscines olympiques – sur une superficie d’environ 34 kilomètres carrés. L’éruption a transformé le paysage et ajouté plus de 2,5 kilomètres carrés de nouvelle terre à la côte sud de la Grande Ile.
Des événements spectaculaires se sont déroulés au cours de l’éruption, comme l’effondrement de la caldeira sommitale, le huitième événement de ce type observé sur les volcans de la planète depuis 1900. Ces événements ont offert aux chercheurs une occasion unique de répondre à des questions géologiques et d’améliorer les outils de prévision éruptive.

Rappelons-nous ce qui s’est passé sur le Kilauea depuis le début de l’éruption:
L’éruption a débuté début mai, lorsque le lac de lave dans l’Overlook Crater de l’Halema’uma’u a débordé, puis a commencé à se vidanger rapidement, chutant de plusieurs centaines de mètres en quelques jours. Cet événement a envoyé le magma sous la surface de la terre jusqu’à une quarantaine de kilomètres vers le sud-est, où il a ouvert des fractures et déclenché des séismes dans la Lower East Rift Zone (LERZ) à partir du 3 mai 2018. De nouvelles fractures ont continué à s’ouvrir pendant des semaines tandis que la caldeira sommitale s’effondrait en provoquant des explosions de gaz et de cendre.
À la fin du mois de mai, l’éruption s’est concentrée autour de la Fracture n° 8, avec des fontaines de lave atteignant 80 mètres de hauteur. Un réseau de chenaux s’est mis en place et la lave a détruit tout sur son passage en se dirigeant vers l’océan. Elle a continué à couler jusqu’au 4 août, jour où l’éruption a cessé brusquement.
Grâce aux instruments que le HVO avait installés sur le Kilauea, les chercheurs ont pu assez bien comprendre comment le magma se déplaçait dans le système de fractures et ils ont été en mesure d’évaluer la quantité de magma qui était mise en oeuvre. Cependant, il reste encore d’importantes questions en suspens, notamment ce qui a déclenché l’éruption et pourquoi elle s’est arrêtée si soudainement.
Les scientifiques du HVO expliquent que l’éruption a débuté en imitant de nombreux autres événements de l’histoire récente du Kilauea, avec une accumulation de pression dans le secteur du Pu’uO’o, en aval du sommet. Au cours des dernières décennies, l’inflation du Pu’uO’o avait déjà provoqué des épanchements de lave dans le secteur. En mai 2018, une rupture s’est produite dans la partie profonde du système d’alimentation, ce qui a permis à beaucoup plus de magma de se déplacer vers la LERZ.
Les scientifiques ne comprennent pas pourquoi cette rupture profonde s’est produite et, au bout du compte, il sera sûrement difficile de tirer des conclusions définitives sans référence à des événements similaires en guise de comparaison. La raison pour laquelle l’éruption s’est arrêtée du jour au lendemain sera peut-être plus facile à déterminer une fois que les chercheurs auront associé toutes les données recueillies lors de l’éruption avec des modèles d’écoulement de fluides.
En dépit du contrôle étroit du déroulement de l’éruption, les scientifiques ont été incapables de prévoir son évolution. La plupart d’entre eux pensaient qu’elle durerait des mois, voire un an. C’est la raison pour laquelle ils ont été si lents à admettre qu’elle était définitivement terminée.
Il reste d’autres mystères à résoudre, notamment ce qui a déclenché les événements explosifs qui ont secoué le sommet du Kilauea à partir du mois de mai.
Source: Earther.

———————————————-

Now that the last Kilauea eruption is over, scientists at the US Geological Survey’s Hawaii Volcano Observatory (HVO) will have the opportunity to study what really happened and, if possible, predict future events on the volcano.

One can now definitively say that Kilauea’s 2018 eruption was its biggest in at least 200 years. In the span of about four months, the volcano spilled at least 0.83 cubic kilometres of lava – the equivalent of over 300,000 Olympic-sized swimming pools – over an area of about 34 square kilometres, transforming the landscape and adding more than 2.5 square kilometres of new land to the coast.

The dramatic sequence of events that unfolded during the eruption, like the eighth caldera collapse scientists have witnessed at any volcano on Earth since 1900, have given researchers an unprecedented opportunity to answer basic geological questions and improve the tools for trying to predict future eruptions.

Let’s remember what happened at Kilauea volcano from the start of the eruption:

The action at Kilauea started in early May, when the lava lake in the Overlook crater overflowed and next began to rapidly drain, dropping hundreds of metres in a matter of days. This sent magma streaming below the surface some 40 kilometres to the southeast, where it opened new fissures and triggered earthquakes in the Lower East Rift Zone (LERZ) beginning on May 3rd, 2018. Fresh fissures continued to open for weeks as the newly drained summit caldera collapsed in on itself, triggering explosive eruptions of gas and ash.

By the end of May, the eruption had concentrated around Fissure 8, with lava fountains up to 80 metres high, feeding a network of channels that ultimately destroyed everything on their way to the ocean. Lava continued to flow until August 4th, when things shut off abruptly.

Thanks to the scientific instruments HVO already had in place around Kilauea, researchers have developed a pretty good picture of how magma moved through the system, and they were able to better constrain how much molten rock is stored there. However, there are still major unanswered questions, including what tipped off the eruption in the first place and why it stopped so suddenly.

HVO scientists explain that the eruption started out looking like many other events in Kilauea’s recent history, with pressure building up at the Pu’uO’o vent down-rift of the summit. For the past few decades, inflation at Pu’uO’o has caused new lava outbreaks in the area. But this time, something ruptured in that deeper part of the plumbing system, which allowed a lot more magma to move much further into the LERZ.

It is not understood why that deep rupture occurred, and ultimately it might be tough to draw definitive conclusions without any similar events to compare it to. The mystery of why Kilauea shut off virtually overnight is perhaps more within reach once researchers combine all the data collected during the eruption with models of fluid flow.

Although this is one of the most well monitored eruptions in the world, scientists still could not predict its evolution. Most of them said it would last months or even a year. This is the reason why they were so slow to admit it was definitely over

There are other mysteries to solve, including what set off the explosive events that rocked the summit crater beginning in May.

Source : Earther.

Les fontaines de lave dans la Fracture n°8 ont constitué l’un les événements les plus spectaculaires de la dernière éruption du Kilauea (Crédit photo: USGS / HVO)

La fonte accélérée des glaciers asiatiques // The fast melting of Asian glaciers

Je viens de lire plusieurs articles dans la presse scientifique – dont notre CNRS – qui confirment que les glaciers de l’Asie, en particulier ceux de l’Himalaya sont en train d’accélérer leur fonte. Cela fait longtemps que le phénomène est en cours, comme je l’ai expliqué dans mon dernier livre « Glaciers en péril ».

Dans le chapitre dédié à l’Himalaya, j’ai écrit que les glaciers qui recouvrent les montagnes les plus élevées du monde jouent un rôle essentiel car ils alimentent les fleuves d’Asie, ressources en eau pour plusieurs centaines de millions de personnes. Alors que la planète se réchauffe, il est important de comprendre comment ces glaciers répondent aux variations climatiques, pour mieux anticiper leur contribution future aux ressources en eau.

Trente années d’images satellitaires apportent un nouvel éclairage sur l’évolution de ces glaciers. On s’aperçoit qu’ils ont nettement ralenti au cours des deux dernières décennies. A noter que je n’ai pas eu besoin des satellites, mais de mes seules photos, pour montrer le désastre de la fonte glaciaire en Alaska ! Il est vrai aussi que les glaciers alaskiens sont plus faciles d’accès et que des survols en avion ou des approches en bateau suffisent pour se rendre compte de leur évolution

Les montagnes qui encerclent le plateau tibétain forment collectivement les Hautes Montagnes d’Asie (HMA) et s’étendent de l’Afghanistan à la Chine en passant par l’Inde. C’est le plus grand volume de glace en dehors des régions polaires et ce réservoir permet de réguler les fluctuations du débit des cours d’eau, un rôle qui peut s’avérer crucial en périodes de sécheresse.

Les données satellitaires ont permis de documenter les changements de masse des glaciers des HMA sur les dernières décennies. De 2000 à 2016, la perte totale de masse de ces glaciers a été de 260 gigatonnes. Ce que l’on ne connaissait encore pas, c’est la façon dont les glaciers ajustent leur vitesse d’écoulement en réponse à cet amincissement. Le recul des glaciers dans les décennies à venir dépendra de cet ajustement de leur dynamique.

Grâce à des techniques de corrélation d’images, les glaciologues peuvent suivre automatiquement le déplacement de motifs à la surface des glaciers, tels que les crevasses ou des blocs rocheux. Cela a permis de constater que les écoulements des glaciers himalayens ont en moyenne fortement ralenti, avec des pertes de vitesse atteignant 37% par décennie, là où les glaciers s’amincissent le plus.

Le processus de déplacement des glaciers est bien connu : ils se forment par accumulation de neige en haute altitude, puis s’écoulent sous l’effet de la gravité vers les basses altitudes où ils fondent en raison des températures plus élevées. Le poids de la glace la force à glisser sur le socle rocheux et à se déformer le long des pentes. Lorsque le glacier s’amincit et perd de la masse, le glissement et la déformation de la glace deviennent tous les deux plus difficiles, et le glacier ralentit. Les régions où les glaciers s’amincissent le plus sont celles où ils ralentissent le plus. Dans les rares régions comme le Karakorum ou le Kunlun où les glaciers sont stables ou s’épaississent, les observations montrent que les glaciers ont légèrement accéléré.

Cette conclusion qui semble intuitive ne faisait pourtant pas, jusqu’à présent, l’unanimité de la communauté scientifique. D’autres facteurs contrôlent l’écoulement des glaciers, comme la lubrification du socle rocheux par l’eau de fonte, ce qui permet au glacier de glisser plus rapidement vers l’aval, accentuant ainsi sa fonte.

Le fait que les glaciers ralentissent signifie que le transport de glace vers les basses altitudes diminue et les glaciers ont tendance à rester plus haut en altitude, où les températures sont plus basses et la fonte réduite. En dépit du fait que les glaciers vont continuer à perdre de la masse avec l’augmentation des températures, cette perte de vitesse devrait permettre aux glaciers de se protéger quelque temps.

NDLR : Il est intéressant ici de comparer les glaciers himalayens à leurs homologues alpins. Tout se joue au niveau de la zone d’accumulation qui s’élève de plus en plus en raison du réchauffement climatique. Elle se situe actuellement à environ 3000 mètres d’altitude. La chaîne himalayenne étant beaucoup plus haute que nos Alpes, avec une bonne quinzaine de sommets culminant à plus de 8000 mètres, il est normal que les glaciers les plus hauts résistent encore au réchauffement de la planète alors que chez nous ils ne peuvent guère grimper au-dessus de 4000 mètres, ce qui explique leur recul rapide.

L’avantage des satellites est de pouvoir observer les régions difficilement accessibles depuis l’espace et sur de longues périodes de temps. La mise à disposition d’images satellite telles que celles fournies par Landsat et ASTER ou les données européennes Sentinel joue un rôle crucial dans cette mission d’observation..

Source : CNRS.

————————————————

I have just read several articles in the scientific press – including our CNRS – which confirm that Asian glaciers, especially those of the Himalayas, are accelerating their melting. The phenomenon has been going on for a long time, as I explained in my last book « Glaciers en péril ».
In the chapter dedicated to the Himalayas, I wrote that the glaciers that cover the highest mountains in the world play an essential role because they feed the rivers of Asia which provide water resources for several hundred million people. As the planet heats up, it is important to understand how these glaciers respond to climate variations, to better anticipate their future contribution to water resources.
Thirty years of satellite images shed new light on the evolution of these glaciers. We can see that they have slowed down considerably over the past two decades. Editor’s note: I did not need satellites, but my only photos, to show the disaster of glacial melting in Alaska! It is also true that Alaskan glaciers are easier to access and that overflights by plane or boat approaches are enough to be aware of their evolution.
The mountains that encircle the Tibetan Plateau collectively form the High Mountains of Asia (HMA) and extend from Afghanistan to China via India. This is the largest volume of ice outside polar regions and this reservoir helps regulate fluctuations in river flow, a role that can be crucial in times of drought.
Satellite data have documented the mass changes in HMA glaciers over the last decades. From 2000 to 2016, the total mass loss of these glaciers was 260 gigatonnes. What we did not know yet is how glaciers adjust their flow velocity in response to this thinning. The retreat of glaciers in the coming decades will depend on this adjustment of their dynamics.
Through image correlation techniques, glaciologists can automatically follow the movement of features on the surface of glaciers, such as crevices or boulders. This shows that Himalayan glacier flows have on average slowed sharply, with speed losses reaching 37% per decade, where glaciers are shrinking the most.
The process of glacier flow is well known: they are formed by the accumulation of snow at high altitude, then flow under the effect of gravity to low altitudes where they melt due to higher temperatures. The weight of the ice forces it to slide on the bedrock and to deform along the slopes. As the glacier becomes thinner and loses mass, both ice sliding and deformation become more difficult, and the glacier slows down. The areas where glaciers are getting thinner are those where they slow down the most. In the few areas such as Karakorum or Kunlun where glaciers are stable or thicker, observations show that glaciers have slightly accelerated.
This conclusion, which seems intuitive, did not, however, until now, have the unanimity of the scientific community. Other factors control the flow of glaciers, such as the lubrication of bedrock by meltwater, which allows the glacier to slide more rapidly downslope, thus accentuating its melting.
The fact that glaciers slow down means that ice transport to lower altitudes is decreasing and glaciers tend to stay higher at higher altitudes, where temperatures are lower and melting is reduced. In spite of the fact that glaciers will continue to lose mass with increasing temperatures, this loss of speed should allow glaciers to protect themselves for some time.
Editor’s note: It is interesting here to compare the Himalayan glaciers to their alpine counterparts. The essential part is the area of ​​accumulation that rises more and more because of global warming. It is currently about 3000 meters above sea level. The Himalayan range being much higher than our Alps, with a good fifteen peaks culminating at more than 8000 meters, it is normal that the highest glaciers still resist global warming whereas in Europe they can hardly climb to above 4000 meters, which explains their rapid decline.
The advantage of satellites is to be able to observe regions that are difficult to access from space and over long periods of time. The numerous satellite images, such as those provided by Landsat and ASTER or the European Sentinel data, play a crucial role in this observation mission.
Source: CNRS.

Glaciers de l’Himalaya vus depuis l’espace (Crédit photo: NASA)

Mayotte (Archipel des Comores): Ça secoue toujours ! // Mayotte (Comoro Islands): Seismicity is still high !

Dans des notes diffusées le 4 juillet et le 4 décembre 2018, j’indiquais que les habitants de Mayotte (250 000 habitants) étaient très inquiets à cause d’une hausse de la sismicité sur leur île. Un de mes amis m’indiquait que sa fille, médecin dans un hôpital de l’île, était inquiète quand elle ressentait les secousses, que ce soit à l’hôpital ou à son domicile. À l’hôpital, elle recevait la visite de patients souffrant de crises d’angoisse.

La situation ne s’esy pas améliorée ces dernières semaines. Le Bureau de Recherches Géologiques et Minières (BRGM) vient d’enregistrer 99 séismes de magnitude supérieure à M 3,5 au cours des quinze derniers jours, soit en moyenne cinq par jour, avec une activité allant crescendo sur la période. En deux semaines, l’île a subi un total de 228 séismes et l’activité de faible magnitude (inférieure à M 3,5) est importante avec plusieurs séismes par heure.
Depuis le 10 mai 2018, on a enregistré à Mayotte plus de 1330 séismes de magnitude supérieure à M 3,5 dont l’épicentre se situe à une quarantaine de kilomètres à l’est de Mamoudzou, le chef-lieu de l’île.

Depuis le 11 novembre dernier, le BRGM note « un changement de typologie de certains séismes, » phénomène qui a provoqué la curiosité de la communauté scientifique mondiale. Pour le moment, on ne sait pas interpréter l’origine de ces signaux atypiques car « le système de mesures n’est pas suffisamment dimensionné et fin ». Si l’origine volcanique du phénomène – avec une composante tectonique – est désormais avérée, ces signaux atypiques qui proviennent d’un événement se déroulant à 3.500 mètres de profondeur en mer, sont en train d’être étudiés. Comme je l’ai fait remarquer à plusieurs reprises, nous connaissons mieux la surface de la planète Mars que les profondeurs de nos océans. Dans le cas présent, on manque d’informations sur la zone couvrant Mayotte, les Comores et Madagascar. Le BRGM prévoit d’installer des sismomètres terrestres et marins d’ici janvier 2019 et une campagne marine de cinq semaines devrait couvrir la zone en 2020. En attendant, la terre continue à trembler et la population à s’inquiéter.

Source : D’après un article paru sur le site web de la radio France Info.

+++++++++++++

S’agissant de la sismicité, il semble que l’essaim observé dans la région de l’Herðubreið en Islande soit en train de toucher à sa fin. Au total, on a enregistré 170-180 événements avec des magnitudes entre M 0,5 et M 1,8 pour la plupart. Un séisme avait une magnitude de M 2,7.

Source : Met Office islandais.

————————————————

In posts released on July 4th and December 4th, 2018, I indicated that the inhabitants of Mayotte (pop. 250,000) were very worried because of an increase in seismicity on their island. A friend of mine had told me that his daughter, a doctor in a hospital on the island, was worried when she felt the tremors, whether in the hospital or at home. At the hospital, she was visited by patients suffering from anxiety.
The situation has not improved in recent weeks. The Bureau of Geological and Mining Research (BRGM) has recorded 99 earthquakes with a magnitude greater than M 3.5 during the last fifteen days, which means an average of five events per day, with activity increasing over the period. In two weeks, the island has been rocked by a total of 228 earthquakes and low magnitude activity (less than M 3.5) is significant with several earthquakes per hour.
Since May 10th, 2018, Mayotte has recorded more than 1330 earthquakes with a magnitude greater than M 3.5 whose epicentre was located about forty kilometres east of Mamoudzou, the capital of the island.
Since November 11th, the BRGM has noted « a change in the typology of certain earthquakes, » a phenomenon that has triggered the curiosity of the world scientific community. For the moment, researchers do not know how to interpret the origin of these atypical signals because « the measurement system is not sufficiently wide and accurate and fine ». If the volcanic origin of the phenomenon – with a tectonic component – is now proven, these atypical signals that come from an event taking place at a depth of 3,500 metres at sea, are being studied. As I have pointed out many times, we know the surface of Mars better than the depths of our oceans. As far as Mayotte is concerned, there is a lack of information on the area covering Mayotte, the Comoros and Madagascar. The BRGM plans to install ground and marine seismometers by January 2019 and a five-week marine campaign is expected to monitor the area in 2020. Meanwhile, the earth continues to tremble and the population to worry.
Source: Adapted from an article published on the website of the radio France Info.

+++++++++++++

Still about seismicity, it looks as if the seismic swarm that was observed in the Herðubreið area (Iceland) is coming to an end. The total number of earthquakes has been 170-180, most of them with magnitudes of M 0.5 to M 1.8. One earthquake measured M 2.7.

Source: Icelandic met Office

Contexte tectonique de la région (Source: BRGM)

Sismicité à Mayotte et dans toute la région (Source: BRGM)

Quelques nouvelles d’Islande // News from Iceland

Selon l’Iceland Magazine, un essaim sismique intense est actuellement observé dans la réguin de l’Herðubreið, dans la partie nord-est de l’Islande. Près de 200 événements ont été détectés juste au sud de la montagne, à une profondeur relativement importante depuis le début de l’essaim qui a débuté un peu après 9h00 le 18 décembre 2018.
Outre l’activité dans la région de l’Herðubreið, un séisme de M 3,4 a été enregistré dans la caldeira centrale du Bárðarbunga. L’hypocentre était situé à seulement 800 mètres de profondeur dans la partie nord-est de la caldera. Un deuxième événement de M 3.6 a été détecté dans la même zone le 17 décembre.
Les géologues pensent que l’activité sismique sue le Bárðarbunga est provoquée par le remplissage de la chambre magmatique depuis l’éruption dans l’Holuhraun en 2014-2015, alors que la cause de l’activité sismique autour de l’Herðubreið n’est pas encore connue. Le Herðubreið est un volcan éteint, apparu suite à une éruption il y a 10 000 à 11 000 ans, vers la fin du dernier âge glaciaire. Il fait partie du système volcanique de l’Askja. La région est connue pour son activité sismique intense, avec des événements de fracturation.
Source: Iceland Magazine.

À côté de cette activité sismique, il est intéressant de noter que Reykjavik n’aura pas de Noël blanc cette année, et aucune chute de neige n’est prévue en Islande dans les prochains jours. La météo de la semaine écoulée a été digne de l’automne et la pluie est attendue le soir de Noël. Le peu de neige observé actuellement en Islande se situe dans le nord-est de l’île et à Akureyri, qui a récemment reçu un mètre de neige en 24 heures, mais les températures clémentes ont rapidement transformé la neige en eau. Comme le reste de l’Arctique, l’Islande ressent profondément les effets du réchauffement climatique.

—————————————————

According to the Iceland Magazine, an intense earthquake swarm is currently observed in Mt. Herðubreið area in the NE part of Iceland. Nearly 200 events have been detected just south of the volcano at a significant depth since the swarm began shortly after 9:00 a.m. on December 18th, 2018.

Beside the seismic activity at Herðubreið, an M 3.4 quake was recorded in the central caldera of the Bárðarbunga system. The hypocentre was located at a depth of only 800 metres in the NE part of the caldera. A second M 3.6 event was detected in the same area on December 17th.

Geologists believe the seismic activity in Bárðarbunga is caused by the volcano refilling its magma chambers since the 2014-15 Holuhraun eruption, while it is not immediately clear what causes the Herðubreið activity. Mt. Herðubreið is an extinct volcano, formed in a single eruption 10,000-11,000 years ago, toward the end of the last Ice Age. It is located within the Askja volcano system. The area is known for high levels of seismic activity, including fissure rifting events.

Source : Iceland Magazine.

Beside this seismic activity, it is interesting to notice that Reykjavik will not have a white Christmas this year as no snowfall is predicted in Iceland in the next days. The weather for the past week has been autumn-like and rain is expected on Christmas Eve. The only slight bit of snow in Iceland at the moment is in North East Iceland and in Akureyri which recently received one metre of snow in 24 hours, but the mild temperatures rapidly turned the snow into water. Like the rest of the Arctic, Iceland is deeply feeling the effects of global warming.

Herðubreið et désert de l’Odadahraun (Photo: C. Grandpey)