L’Everest et le réchauffement climatique // Mount Everest and global warming

Il y a 70 ans, le 29 mai 1953, le Néo-Zélandais Edmund Hillary et son sherpa Tenzing Norgay parvenaient au sommet de l’Everest.
Depuis, des milliers d’alpinistes ont atteint le toit du monde. 2023 marque un nouveau record de candidats à l’escalade, mais aussi un record nombre d’accidents mortels…et de déchets abandonnés aux camps de base.
Sur les quelque 300 personnes qui ont perdu la vie lors de l’ascension de l’Everest, la majorité sont décédées dans ou autour de la zone de la mort, une zone située au-dessus de 7 900 mètres d’altitude. Ici, les alpinistes sont tués par des avalanches ou des chutes de pierres, par des blessures subies suite lors de chutes, ou encore par une exposition aux éléments (très nombreuses gelures en 2023). Sans oublier l’épuisement ou le mal aigu des montagnes (AMS).
Lorsqu’une personne meurt sur l’Everest, le cadavre est momifié par le vent et les basses températures ; il se fige rapidement sur place. Les sauveteurs doivent extraire le corps de la glace. Une fois gelé, son poids peut avoir doublé à cause de la glace. Il faut parfois une équipe de huit personnes pour gérer un seul corps. La récupération d’un corps est aussi très dangereuse. En 1984, un sherpa et un inspecteur de police népalais ont été tués alors qu’ils tentaient de récupérer le corps d’un alpiniste allemand mort sur la montagne cinq ans plus tôt.
On estime qu’il reste entre 200 et 250 corps sur l’Everest, gelés le long des voies d’escalade, ou enterrés dans les champs de neige et les glaciers. Généralement, les personnes mortes sur les glaciers restent emprisonnées dans la glace pendant des décennies voire des siècles. Les corps progressent avec la glace, depuis le site de l’accident jusqu’à la zone d’ablation du glacier, où la perte de glace dépasse la masse de glace accumulée.
Selon des sources chinoises et népalaises, la découverte de nombreux cadavres au cours des dernières années montre à quel point la hausse des températures fait fondre la couverture de neige et de glace sur l’Everest. Comme je l’expliquais dans une note précédente, le plus haut glacier de la montagne, le glacier du Col Sud (South Col Glacier) a perdu plus de 54 mètres d’épaisseur au cours des 25 dernières années.
Des victimes tuées par des avalanches ou tombées dans une crevasse glaciaire ressurgissent aujourd’hui avec la fonte des glaces. De nombreux corps ont également été retrouvés près du camp IV, le camp le plus élevé situé à plus de 7 900 mètres d’altitude. Dix corps y ont été retrouvés au cours des quatre dernières années.
La hausse de la température sur la chaîne himalayenne est supérieure à la moyenne mondiale. Lorsque la couverture neigeuse rétrécit, elle n’est plus en mesure de réfléchir la lumière du soleil. Le paysage rocheux et aride absorbe alors davantage de rayonnement solaire, ce qui réchauffe l’environnement. Avec la hausse des températures qui ajoute de l’énergie à l’atmosphère, la météo sur l’Everest devient plus imprévisible. Cela raccourcit la saison d’escalade et augmente le risque de tempêtes soudaines dans la région. Les températures plus élevées peuvent faire couler l’eau de fonte sous les glaciers,ce qui favorise le déclenchement d’avalanches et déstabilise les parois rocheuses, provoquant des chutes de pierres.
Le réchauffement climatique augmente également le risque pour les alpinistes qui se trouvent sous la zone de la mort. En juin 2022, le ministère du Tourisme népalais a annoncé son intention de déplacer le camp de base de l’Everest, car la fonte rapide du glacier de Khumbu augmentait le risque de chutes de pierres et de crues glaciaires soudaines sur le site. Cependant, ce plan a finalement été abandonné en raison du refus des sherpas qui ont fait valoir que cela ajouterait jusqu’à trois heures au trajet jusqu’au sommet et le rendrait encore plus traître. Une étude réalisée en 2018 par des chercheurs de l’Université de Leeds a montré que la glace du glacier près du camp de base fondait à raison de 1 mètre par an. L’eau de fonte glaciaire alimentait une série de lacs glaciaires. Ces lacs,retenus par des barrages de moraines instables, peuvent libérer leur eau lors de crues soudaines, avec des coulées de débris dévastatrices menaçant les vallées en aval.
Avec la fonte des glaciers himalayens, les sherpas doivent souvent trouver de nouvelles voies plus sures pour gravir la montagne. Les itinéraires sont entretenus par un groupe de sherpas, les « icefall doctors », qui constatent que leurs cordes ne sont plus maintenues sur les parois à cause de la fonte des glaces et doivent être repositionnées tous les quelques jours.
Source : Forbes.

——————————————–

70 years ago, on May 29th , 1953, New Zealander Edmund Hillary and his Sherpa guide Tenzing Norgay managed to reach the summit of Mount Everest.

Since that time, thousands of climbers have reached the peak, with this year marking a new record for mountaineers expected on Mount Everest and also the number of deadly incidents.

Of the almost 300 people that have lost their lives in the attempt or reaching the summit, the majority of them have died in or around the Death Zone, the region above 7,900 meters. Here climbers are killed by avalanches or rockfall, by injuries sustained from a fall, from exposure to the elements, from exhaustion or from acute mountain sickness.

When a person dies on Mount Everest, the corpse is mummified by the strong wind and low temperatures and quickly gets frozen into place. Rescuers need to hack the body out of the ice. The frozen body may also have doubled in weight due to the ice. It can take a team of eight people to handle just one body. The recovery of a body is also very dangerous. In 1984, a Sherpa and a Nepalese police inspector were killed when they tried to retrieve the body of a German mountaineer who died on the mountain five years earlier.

An estimated 200 to 250 bodies still remain on Mount Everest, either frozen solid along the climbing routes or buried in the snowfields and glaciers. Generally, fatal casualties on glaciers remain immersed in the ice for decades or even centuries. They are moved together with the ice from the site of the accident to the ablation area, where the loss surpasses the accumulated ice mass.

According to Chinese and Nepalese sources, the discovery of many corpses in the last years shows how rising temperatures are melting the snow and ice cover of the mountain. As I explained in a previous post, the highest glacier on the mountain, the South Col glacier, has lost more than 54 meters of thickness in the past 25 years.

Victims killed by avalanches or lost in a glacier crevasse are now reemerging from the thinning ice. Many bodies were also recovered near Camp IV, the highest camp located at an elevation of over 7,900 meters. Ten bodies were recovered here in the last four years.

The rising temperature of the Himalayan area is more than the global average. When the reflecting snow cover shrinks, the barren rocky landscape adsorbs more solar radiation and heat up the environment. With rising temperatures adding energy to the atmosphere, the weather is becoming more unpredictable, shortening the climbing season and increasing the risk of sudden storms in the area. Higher temperatures can cause meltwater to flow beneath the glaciers, triggering avalanches, and destabilize rocky cliffs, triggering rockfalls.

Climate change is also increasing the risk for climbers beneath the Death Zone. In June 2022, Nepal’s tourism ministry announced plans to move the Everest base camp as the rapidly thinning Khumbu Glacier increased the risk of rockfall and flash-floods at the site. However, that plan was ultimately abandoned due to pushback from sherpas, who argued that it would add up to three hours to the journey to the summit and make it even more treacherous. A 2018 study by researchers from Leeds University showed that the ice of the glacier close to the base camp was melting at a rate of 1 meter per year, with the glacial meltwater feeding a series of glacial lakes. Such lakes, dammed up by unstable dams of ice and loose rocks, can release their water in sudden outburst floods triggering deadly debris flows in the valley beneath them.

With the melting of the Himalayan glaciers, the sherpas often have to find new, safer paths up the mountain. Routes are forged and maintained by a group of sherpas called « icefall doctors », who find that their ropes are now falling out of the melting ice and need to be replaced every few days.

Source : Forbes.

Crédit photo : Wikipedia

Erosion côtière en Alaska : causes et conséquences // Coastal erosion in Alaska : causes and consequences

Au cours de ma conférence « Glaciers en péril, les effets du réchauffement climatique », j’insiste sur les conséquences de la fonte de la glace de mer en Alaska. À mesure que la banquise arctique fond, les côtes déjà fragiles deviennent vulnérables ; elles se trouvent exposées aux vagues au moment des tempêtes. On assiste alors à une accélération de l’érosion qui affecte les personnes et la faune.
Jusqu’à ces dernières années, la glace de mer empêchait les vagues de l’océan de se fracasser contre la côte. Une épaisse couche de glace de mer absorbait la puissance des grosses vagues et les empêchait de déferler sur les plages et contre les falaises. Aujourd’hui, la glace de mer fond et s’éloigne du rivage. L’océan a donc le champ libre pour venir à sa guise saper les côtes et inonder les villages côtiers.

Crédit photo: Wikipedia

Contrairement aux rivages des latitudes moyennes, ceux de l’Arctique sont constitués de pergélisol. Avec des températures plus élevées en été, ce sol dégèle, rendant les côtes arctiques particulièrement sensibles à l’érosion. Le réchauffement de l’eau et l’élévation du niveau de la mer aggravent encore le problème, avec de plus grosses vagues qui viennent frapper les côtes.

Dégel du permafrost dans la toundra (Photo: C. Grandpey)

Deux événements se combinent souvent à l’automne dans l’Arctique : les tempêtes les plus fortes et la plus faible étendue de glace de mer. Après un été de fonte de la glace de mer qui ouvre de vastes étendues d’eau libre, les grosses tempêtes peuvent causer des dégâts considérables, contribuer à l’érosion du littoral et à la perte d’habitat terrestre.
Par exemple, en septembre 2022, le reliquat du typhon Merbok a frappé la côte ouest de l’Alaska avec des vents de force ouragan qui ont obligé à des évacuations, arraché des bâtiments de leurs fondations, sculpté de nouveaux rivages et envoyé entre un et deux mètres d’eau le long de 1 600 kilomètres de côtes. Pour de nombreuses communautés, les dégâts aux infrastructures ont été immédiats. Comme ces communautés dépendent également d’une économie de subsistance, la perte des ressources de la terre a laissé certains habitants dépourvus de réserves pour l’hiver.
Le sol de l’Arctique, autrefois gelé toute l’année, fait maintenant face à plusieurs mois de dégel. Certaines régions dégèlent plus rapidement et plus substantiellement que d’autres. Depuis les années 1990, les températures dans l’Arctique ont augmenté d’environ 0,6 °C par décennie, soit le double de la moyenne mondiale. Les données des services météorologiques de l’Alaska indiquent que de 1971 à 2019, le réchauffement de l’Arctique a été trois fois plus rapide que la moyenne mondiale. Une étude fait même état d’un réchauffement quatre fois plus rapide. Certaines estimations montrent un été sans glace de mer dès 2035. Avec moins de glace de mer pour empêcher les grosses vagues de s’écraser contre les côtes, l’érosion côtière va certainement s’amplifier.
Les températures plus chaudes de l’Arctique font également dégeler le pergélisol. La terre autrefois rigide et solide sous l’effet du gel devient un sol mou et humide qui s’effrite plus facilement sous les assauts des vagues. Le dégel du pergélisol libère également dans les eaux voisines et dans l’atmosphère des gaz à effet de serre autrefois emprisonnés, ce qui accélère le réchauffement climatique. Certaines estimations indiquent que les zones de pergélisol stockent environ 1 700 milliards de tonnes de gaz à effet de serre sous forme de méthane et de dioxyde de carbone ; c’est environ le double du total actuel dans l’atmosphère. Un autre sous-produit du dégel du permafrost est le mercure. Autrefois congelé, il s’échappe désormais dans le sol et les eaux avoisinantes, avec un effet désastreux sur la chaîne alimentaire.

En Alaska, des villages entiers sont déjà confrontés à la nécessité de se déplacer à cause de l’érosion côtière. Le dégel du pergélisol et les vagues érodent le littoral arctique à raison de 50 centimètres par an en moyenne. Dans le nord de l’Alaska, le chiffre atteint 1,40 mètre par an. Sur certains zones littorales comme à Drew Point, en Alaska, l’érosion atteint 20 mètres par an.
Une étude de février 2022 explique que l’érosion pourrait doubler dans l’Arctique d’ici la fin du 21ème siècle. Au fur et à mesure que les scientifiques en sauront davantage sur le moment et l’ampleur de l’érosion côtière dans l’Arctique, les collectivités pourront prendre les mesures nécessaires pour essayer d’y faire face.
Source : National Snow and Ice Data Center (NSIDC).

——————————————–

During my conference « Glaciers at risk », I insist on the consequences of the melting of the sea ice in Alaska. As Arctic sea ice melts, fragile coastlines become vulnerable to bigger waves from storms, leading to accelerated erosion that impacts people and wildlife.

Up to recent years, sea ice keeps the churning ocean from splashing up against the coast. A thick layer of sea ice absorbs the power of big waves, preventing them from slamming into beaches and sea cliffs. But as sea ice melts and recedes away from shore, the ocean can wear away coastlines and flood seaside villages.

Unlike shorelines in the mid-latitudes, Arctic shorelines have permafrost. With higher temperatures in the summer, these soils are thawing, making Arctic coasts especially sensitive to erosion. Warming water and sea level rise compound the issue further as bigger waves pound the coasts.

Two events often collide in the autumn in the Arctic: the strongest storms and lowest sea ice extent. After a summer of sea ice melt, with large areas of open water, large storms can do considerable damage and contribute to shoreline erosion and terrestrial habitat loss.

For example, in September 2022, remnants of Typhoon Merbok battered Alaska’s western coast with hurricane-force winds, forcing evacuations, uprooting buildings, carving out new shores, and surging one ti two meters of water along 1,600 kilometers of coastline. For many communities, the impact from damage to infrastructures was immediate. However, as these communities also rely on subsistence living, the loss of resources from the land left several residents vulnerable without stocks for the winter.

The Arctic’s soil, once frozen all year round, now faces several months of thaw, with some regions thawing faster and more substantially than others. Since the 1990s, temperatures in the Arctic have been increasing at roughly 0.6°C per decade, twice the rate of the global average. Data from Alaskan weather services indicaate that from 1971 to 2019, the rate of Arctic warming was three times as fast as the global average. Another study suggests a four-fold warming. Some estimates showi a summer free of sea ice as early as 2035. With less sea ice preventing big waves from crashing against the shores, coastal erosion is sure to increase.

Warmer Arctic temperatures are also thawing permafrost, turning once frozen-solid land into soft, wet soil that crumbles more easily with wave attacks. Permafrost thaw also releases once-frozen greenhouse gases into nearby waters and the atmosphere, feeding further warming. Some estimates state that permafrost zones store about 1,700 billion metric tons of carbon, both in methane and carbon dioxide form ; this is about twice the current total within the atmosphere. Another byproduct is the release of once-frozen mercury into soil and nearby waters, polluting the food chain.

In Alaska, entire villages are already facing the need for relocation from coastal erosion. Together, thawing permafrost and waves erode the Arctic coastline at an average rate of 50 centimeters per year. In northern Alaska, the rates are 1.4 meters per year, with some sections, like Drew Point, Alaska, eroding much as 20 meters per year.

A study from February 2022 suggests that erosion may double in the Arctic by the end of the 21st century. As scientists learn more about the timing and magnitude of coastal erosion in the Arctic, communities can develop necessary mitigation and adaptation resources.

Source : National Snow and Ice Data Center (NSIDC).

Feux de forêt boréale et réchauffement climatique // Wildfires in boreal forests and global warming

Avec le réchauffement climatique et les températures de plus en plus chaudes, les incendies de forêt se multiplient dans certaines régions du monde. Il suffit de voir les incendies qui ravagent la province canadienne de l’Alberta. Une nouvelle étude confirme qu’en brûlant les forêts les plus septentrionales de la planète pourraient être une « bombe à retardement » car elles libèrent des niveaux record de gaz à effet de serre dans l’atmosphère.
À l’aide de nouvelles techniques d’analyse de données satellitaires, les chercheurs ont découvert que depuis l’an 2000 les incendies de forêt en été sont de plus en plus fréquents dans les forêts boréales. Ils représentaient jusqu’à présent 10 % de la pollution mondiale par le carbone liée aux incendies de forêt. En 2021, leur contribution a grimpé à 23 %, car la sécheresse extrême et les vagues de chaleur en Sibérie et au Canada ont contribué à provoquer des incendies de grande ampleur. On peut lire dans l’étude que « les forêts boréales pourraient être une bombe à retardement en matière de carbone. Les augmentations d’émissions lors des récents feux de forêt font craindre que la mèche soit très courte ».
Les forêts boréales, qui couvrent de vastes étendues du Canada, de la Russie et de l’Alaska, représentent le plus grand biome terrestre. Elles sont également riches en carbone et causent 10 à 20 fois plus de pollution par le carbone – et donc de gaz à effet de serre – que les autres écosystèmes. Les forêts boréales sont l’un des biomes qui se réchauffent le plus rapidement sur Terre, et la hausse des températures contribue à l’expansion des incendies.
La région sibérienne de la Russie a connu des incendies de forêt particulièrement graves en 2021 ; ils ont brûlé près de 18,16 millions d’hectares de végétation. En juillet de cette année-là, un pilote a déclaré qu’il ne pouvait pas survoler la Yakoutie (république de Sakha) parce que la fumée des incendies était trop épaisse. Il a ajouté que de nouveaux incendies sont apparus dans le nord de la Yakoutie, dans des endroits où il n’y en avait pas auparavant.
Les auteurs de l’étude expliquent que les incendies de forêt deviennent de plus en plus importants et intenses et ils se produisent également dans des endroits qui ne sont pas habitués à voir des événements aussi extrêmes. La situation risque de s’aggraver avec la hausse des températures. Les températures plus élevées favorisent la croissance de la végétation, qui devient alors exceptionnellement sèche pendant les vagues de chaleur, ce qui augmente le risque d’incendies de forêt. Il existe une dangereuse rétroaction positive entre le climat et les incendies dans les forêts boréales. Les vagues de chaleur et les sécheresses sont susceptibles de se produire plus fréquemment dans cette région, et la fréquence et l’intensité des incendies de forêt extrêmes comme ceux de 2021 sont susceptibles de favoriser les émissions de CO2, entraînant à leur tour une intensification du réchauffement climatique.
Source : CNN.

——————————————-

With global warming and higher temperatures, more and more wildfires a ravaging some areas of the world. The latest evidence was the wildfires in the Canadian province of Alberta. A new study confirms that the world’s most northerly forests could be a “time bomb” as they release record high levels of planet-heating pollution into the atmosphere.

Using new satellite data analysis techniques, researchers found that, since 2000, summer wildfires have expanded in boreal forests. Boreal forest fires usually make up 10% of global wildfire-related carbon pollution. But in 2021, their contribution soared to 23%, as extreme drought and heatwaves in Siberia and Canada helped drive intense fires. One can read in the study that “boreal forests could be a time bomb of carbon, and the recent increases in wildfire emissions we see make us worry the clock is ticking.”

Boreal forests, which cover huge swaths of Canada, Russia and Alaska, are the world’s largest land biome. They are also carbon dense, releasing 10 to 20 times more planet-heating carbon pollution for each unit of area burned by wildfires than other ecosystems. Boreal forests are one of the fastest warming biomes on Earth, and warmer and drier fire seasons are contributing to expanding wildfires.

Russia’s Siberian region experienced particularly bad wildfires in 2021 which burned nearly 18.16 million hectares of Russian forest. In July that year, a reconnaissance pilot said he couldn’t fly his plane in the far eastern Russian region of Yukutia because smoke from the fires was so thick. He added that new fires have appeared in the north of Yakutia, in places where there were no fires before.

The authors of the study explain that wildfires are becoming larger and more intense and they are also happening in places that are not used to such extreme fires. The situation is likely to worsen as temperatures rise. Higher temperatures encourage the growth of vegetation, which then becomes exceptionally dry during heatwaves, increasing the risk of wildfires. As aconsequence, there is a dangerous positive feedback between climate and boreal fires. Heatwaves and droughts are likely to occur more frequently over the boreal region, and the frequency and intensity of extreme wildfires like those in 2021 are likely to increase, with the release of CO2 emissions in turn leading to further global warming.

Source : CNN.

Image satellite des nuages de fumée générés par les incendies de forêt en Sibérie en 2022 (Source : NASA)

L’effondrement des Alpes (suite) // The collapse of the Alps (continued)

Comme je l’ai expliqué à plusieurs reprises, le dégel du pergélisol dans les Alpes provoque des chutes de pierres et des glissements de terrain qui peuvent devenir une menace pour les localités situées en aval. Un exemple récent a été donné par Brienz, un petit village (moins de 100 habitants) des Alpes suisses, dans le canton oriental des Grisons, dont la population a été évacuée car la montagne menace de s’effondrer. On craint que les fortes pluies de ces derniers jours déstabilisent deux millions de mètres cubes de roche qui pourraient dévaler la pente et atteindre les maisons. Les villageois ont eu seulement 48 heures pour emballer leurs affaires et abandonner leurs domiciles. Ils doivent maintenant attendre, dans des logements temporaires, que la montagne s’effondre, en espérant qu’elle épargnera leurs maisons. Même les vaches ont été évacuées après que les géologues ont averti que le glissement de terrain était imminent.
La situation à Brienz a soulevé des questions sur la sécurité de certaines localités de montagne, car le réchauffement climatique modifie l’environnement alpin. Le village, jugé à risque géologique depuis un certain temps, est construit sur un terrain qui s’affaisse en direction de la vallée, ce qui a provoqué l’inclinaison de la flèche de l’église et l’apparition de profondes fissures dans les bâtiments.
Source : BBC News.

————————————-

As I explained several times before, the thawing of permafrost in the Alpes is causing rockfalls and landslides which can become a threat to communities downslope. A recent example was given by Brienz, a small village (fewer than 100 residents) of the Swiss Alps, in the eastern canton of Graubünden, whose population has been evacuated as the mountain is threatening to collapse. Days of heavy rain could bring two million cubic metres of loosened rock crashing down the mountainside onto the houses. The villagers were given just 48 hours to pack what they could and abandon their homes. They now must wait, in temporary accommodation, for the rock to fall, and hope it misses their homes. Even the dairy cows were loaded up for departure after geologists warned a rockfall was imminent.

The situation in Brienz has raised questions about the safety of some mountain communities, as global warming changes the alpine environment. The village has been judged a geological risk for some time and is built on land that is subsiding down towards the valley, causing the church spire to lean and large cracks to appear in buildings.

Source : BBC News.

Source: BBC News.