La Science peut-elle permettre la détection des nuages de cendre volcanique? // Can Science help detect volcanic ash clouds?

En 2010, l’éruption de l’Eyjafjallajökull en Islande a déclenché une vague de panique dans le ciel et les nuages ​​de cendre ont paralysé le trafic aérien dans une grande partie de l’Europe. Dans les années qui ont suivi, plusieurs tentatives ont été faites pour essayer de trouver des solutions afin d’éviter que semblable problème se reproduise à l’avenir. Cependant, aucun progrès significatif n’a été réalisé dans ce domaine. Si un autre énorme nuage de cendre devait envahir le ciel européen, il est fort probable que les avions seraient de nouveau cloués au sol.
Un article récemment publié sur le site web Science News explique qu’un nouvel algorithme pourrait «permettre de protéger les avions contre les dangereuses cendres volcaniques». On nous dit qu’il faut cinq à dix minutes à la cendre volcanique pour atteindre une hauteur de 11 kilomètres dans le ciel et se trouver ainsi sur les couloirs des vols  commerciaux, avec un risque certain pour les moteurs des aéronefs.
Les scientifiques ont mis au point un nouvel algorithme permettant d’identifier et de suivre rapidement la trajectoire des nuages ​​de cendre produits par les éruptions. Ils expliquent qu’en utilisant des images satellites, le programme peut mesurer la température, la hauteur et la trajectoire des nuages en l’espace de trois minutes environ.
En suivant les panaches de cendre quasiment en temps réel, les scientifiques peuvent alerter les autorités compétentes et leur conseiller de modifier les bulletins d’alerte concernant les cendres volcaniques ou de modifier les trajectoires de vol des avions se dirigeant vers des éruptions potentiellement dangereuses. La nouvelle technologie pourrait être particulièrement utile pour les volcans qui ne sont pas surveillés dans les régions qui se trouvent loin de tout. Il faut savoir que sur environ 1 500 volcans actifs dans le monde, moins de 10% sont surveillés.
L’algorithme numérise les images prises par les satellites météorologiques américains et japonais en orbite autour de l’équateur et qui enregistrent les images de vastes étendues de la Terre toutes les 30 secondes.
La difficulté consiste à faire la différence entre les types de nuages, par exemple entre les nuages éruptifs et la formation de gros nuages d’orages. Dans ce cas, l’algorithme analyse la «température de luminosité». En effet, lorsque des nuages ​​de cendre surchauffés montent dans le ciel, ils refroidissent rapidement à l’approche de la stratosphère.
Les chercheurs ont mis au point l’algorithme en se basant sur 79 éruptions volcaniques observées dans les données satellitaires de 2002 à 2017. Lorsque l’algorithme a utilisé des données de générations précédentes, il a pu identifier avec précision les nuages ​​de cendre dans environ 55% des cas. À l’aide de données provenant de satellites plus récents, le programme a repéré les nuages ​​dans près de 90% des cas.

Source: Science News.

L’article montre que des progrès ont été accomplis, mais mettre face à face la Science et la Nature peut être dangereux car la Nature n’est pas une science exacte. Je ne voudrais pas être dans un avion confronté aux 10% de nuages ​​de cendre qui n’ont pas été détectés par le programme scientifique décrit dans l’article!
Source: Science News.

————————————————–

In 2010, the eruption of Eyjafjallajökull in Iceland sent a wave of panic in the skies and the ash clouds paralysed air traffic in a large part of Europe. In the years that followed, several attempts were made to try and find solutions in order to avoid similar problems in the future. However, no significant progress has been made. Should another huge ash cloud invade the European skies it is highly likely that the planes will be grounded again.

A recent article released on the website Science News explains us that a new algorithm could “help protect planes from damaging volcanic ash.” We are told that it takes five to ten minutes for volcanic ash to shoot 11 kilometres into the sky  and reach altitudes at which commercial jets cruise, and potentially harm their engines.

Scientists have developed a new algorithm that can identify and track explosive ash clouds soon after volcanoes erupt. They explain that by using satellite imagery, the program can measure the temperature, height and trajectory of the expanding clouds within about three minutes.

By tracking the ash plumes in near real time, scientists can alert aviation authorities if there is a need to alter any volcanic ash advisories or change the flight paths of any planes flying toward hazardous eruptions. The new technology could be especially useful for tracking unmonitored volcanoes in remote regions. Out of the roughly 1,500 active volcanoes across the globe, fewer than 10 percent are monitored.

The algorithm works by scanning images taken by U.S. and Japanese weather satellites that zip around the equator, snapping pictures of large swaths of the Earth as frequently as every 30 seconds.

The challenge is to tell the difference between different types of clouds. To distinguish the eruption of volcanic ash clouds and the formation of large thunderstorms, for example, the algorithm analyzes the “brightness temperature”. Indeed, as superheated ash clouds surge into the sky, they cool quickly as they near the stratosphere.

The researchers trained the algorithm on 79 volcanic eruptions seen in satellite data from 2002 to 2017. When the algorithm used data from earlier satellite generations, it accurately identified ash clouds about 55 percent of the time. Using data from newer satellites, the program spotted the clouds in nearly 90 percent of cases.

Source : Science News.

The article shows us that progress is being made, but confronting Science with Nature can be dangerous as Nature is by no means an exact science. I would not like to be in a plane confronted with the 10 percent of ash clouds that were not spotted by the scientific program described in the article!

Nuage de cendre produit par l’éruption de l’Eyjafjallajökull (Islande) en 2010 (Crédit photo: Wikipedia)