Les zones de rift du Kilauea (Hawaii) // Kilauea’s rift zones (Hawaii)

De nombreuses éruptions, que ce soit sur le Mauna Loa ou le Kilauea, se produisent dans des zones de rift, autrement dit de fractures à la surface du sol. C’est ce qui s’est passé en 2018 lorsque la lave est sortie dans la zone de rift est (East Rift Zone – ERZ) du Kilauea.
Ce volcan possède deux zones de rift. La zone de rift Est est longue ; elle s’étire sur une cinquantaine de kilomètres sur terre et environ 70 km sous le niveau de la mer. La zone de rift Sud-Ouest, qui est historiquement moins active, mesure environ 35 km de long et seule une petite partie se prolonge dans l’océan.

Les zones de rift sont des zones de faiblesse du volcan qui se forment dès le début de sa formation, probablement en raison de l’étirement de l’édifice au fur et à mesure de sa mise en place. Les zones de rift permettent au magma de migrer plus facilement depuis la région de stockage au sommet. Ce sont les éruptions successives des zones de rift qui mettent en place les flancs du volcan.
Les jeunes volcans hawaïens ont généralement deux ou trois zones de rift, selon qu’ils s’édifient ou non contre un volcan à proximité immédiate. Dans le cas du Kilauea, il n’y a que deux zones de rift, car le volcan s’appuie contre le flanc sud-est du Mauna Loa. Les deux zones de rift du Kilauea sont presque parallèles aux zones de rift du Mauna Loa, ce qui confirme l’appui du Kilauea contre son voisin. Les zones de rift séparent le flanc nord – relativement stable – du flanc sud qui est  plus mobile. Lorsque le magma pénètre dans la zone de rift, le flanc nord reste stable contre le Mauna Loa au nord tandis que le flanc sud du Kilauea est poussé vers le sud pour recevoir le nouveau magma.
À mesure que la pression augmente dans le système d’alimentation magmatique au sommet, des intrusions se produisent souvent dans la zone de rift, comme ce fut le cas en 2018 dans la partie inférieure de la zone de rift est, la Lower East Rift Zone (LERZ). Les intrusions s’accompagnent généralement d’une hausse de la sismicité lorsque le magma fracture le sol le long de son trajet. Les séismes ont leurs hypocentres à des profondeurs d’environ 2 à 4 km sous la surface et les périodes de forte sismicité peuvent durer plusieurs heures, voire plusieurs jours, en fonction de la progression de l’intrusion. En plus de la sismicité, on observe aussi des déformations du sol lors d’une intrusion magmatique dans une zone de rift. L’inflation au-dessus de l’intrusion est mesurée par des tiltmètres et des stations GPS qui révèlent un mouvement à la fois vertical et latéral au fur et à mesure que les stations s’éloignent de la zone de rift en phase d’inflation.
Tandis que le magma s’élève des profondeurs et se fraye un chemin à travers la roche, la fracturation se traduit à la surface du sol par de nombreuses fissures parallèles au-dessus de l’intrusion. Ces fissures continuent de s’élargir sous la pression du magma. Si l’intrusion atteint la surface, une ou plusieurs fissures vont s’ouvrir et laisser échapper la lave. Des rideaux de fontaines de lave et/ou des phénomènes de spatter apparaissent lorsque la lave jaillit des fissures. Lorsqu’une fissure évolue, on passe généralement d’une éruption linéaire à une éruption à partir d’une ou plusieurs bouches. Cela peut entraîner une augmentation de la pression dans le système éruptif, avec intensification des fontaines de lave.
Les fontaines de lave sont provoquées par la formation rapide de bulles de gaz lorsque le magma monte à de faibles profondeurs ; elles éclatent ensuite et projettent la lave sous pression vers la surface. Les bulles se forment parce que la pression à faible profondeur est suffisamment basse pour permettre au gaz dissous dans le magma de s’échapper, un peu comme des bulles qui se forment lorsqu’on ouvre une bouteille d’eau gazeuse. En plus des coulées, les fontaines qui jaillissent des fissures peuvent entraîner des accumulations de projections près de la bouche éruptive, ce qui donne naissance à des formations linéaires ou coniques. Les spatter cones que l’on rencontre souvent le long des zones de rift du Kilauea se forment de préférence lorsque l’activité éruptive persiste.

Quand l’éruption se termine, le magma de l’intrusion qui n’a pas atteint la surface redescend à l’intérieur de la zone de rift où il peut demeurer en fusion pendant des décennies. C’est ainsi qu’une lave de composition chimique semblable à celle de l’éruption de 1955 a été émise au cours de la première semaine de l’éruption de 2018 dans la Lower East Rift Zone, ce qui laisse supposer que la lave sortie des premières fissures était un magma résiduel de l’éruption de 1955.

Cela montre que les zones de rift jouent un rôle essentiel dans l’acheminement du magma dans l’édifice volcanique, mais elles peuvent aussi stocker du magma susceptible d’alimenter de futures éruptions.
Source: USGS / HVO.

————————————————-

Many eruptions on both Mauna Loa and Kilauea occur alon rift zones . This is what happened in 2018 when lava eruped along Kilauea’s East Rift Zone.

Kilauea has two rift zones. The East Rift Zone is longer, with about 50 kilometres on land, plus approximately 70 kilometres below sea level. The Southwest Rift Zone, which is historically less active, is about 35 kilometres long with only a small portion underwater.

Rift zones are areas of weakness in the volcano which form early in its lifetime, likely due to spreading of the volcano as it settles. Volcanic rift zones provide the easiest pathways for magma to travel underground from the summit storage region, with successive eruptions from the rift zones building up the volcano’s flanks.

The youngest Hawaiian volcanoes typically have two or three rift zones depending on whether they are built up against a neighbouring volcano. In the case of Kilauea, there are only two rift zones because the volcano is buttressed against the southeastern slope of Mauna Loa. Kilauea’s two rift zones are nearly parallel to Mauna Loa’s rift zones reflecting this buttressing and the rift zones separate the relatively stable northern flank from the more mobile southern flank of the volcano. When magma intrudes into the rift, the northern flank remains stable against Mauna Loa to the north, and Kilauea’s southern flank is forced southward to accommodate the additional magma.

As pressure builds within the summit magma plumbing system, rift zone intrusions, like the 2018 intrusion into the lower East Rift Zone (LERZ), can occur. Intrusions are typically accompanied by increasing numbers of earthquakes as the magma fractures the ground along its path. The earthquakes are concentrated at depths of about 2 to 4 kilometres below the ground surface, and periods of increased seismicity can last several hours to days as the intrusion progresses. In addition to seismicity, ground deformation also occurs during a rift zone intrusion. Inflation above the intrusion is measured by tilt and GPS stations showing upward and outward motion as the stations move away from the swelling rift zone.

As the magma ascends and forces its way through the rock, fracturing is mirrored on the ground surface with many parallel cracks above the intrusion. These cracks continue to widen as the rift is forced open. If the intrusion reaches the surface, one or more fissures will open and erupt lava. Long curtains of lava fountains or spatter form as the lava erupts through cracks in the ground. As a fissure evolves, it typically transitions from erupting along a line to focusing at a single or several vents. This in turn can cause increased pressurization within the erupting system resulting in higher lava fountains.

Lava fountains are driven by the rapid formation of gas bubbles as magma rises to shallow depths, which then burst to create the pressurized lava at the surface. The bubbles form because pressure at shallow depths is low enough for the gas dissolved within the magma to escape, like bubbles forming when you open a carbonated drink. Beside lava flows, fissure fountains can produce spatter build-up adjacent to the vent in linear or conical formations. Spatter cones which are common along Kilauea’s rift zones, are likely to build when eruptive activity persists.

When an eruption ends, the intrusion’s un-erupted magma drains back into the rift zone where it can remain molten for decades. In fact, lava with a chemical composition similar to the 1955 eruption was produced during the first week of the 2018 LERZ eruption, suggesting that the early fissures were supplied by stored magma. This illustrates that rift zones are not only essential for the transportation of magma within the volcano, but are also storing magma that could feed future eruptions.

Source : USGS / HVO.

Zone de rift Est du Kilauea

Zone de rift Sud-Ouest du Kilauea

(Photos: C. Grandpey)

Les leçons de l’éruption du Kilauea en 2018 (Hawaii) // The lessons of the 2018 Kilauea eruption (Hawaii)

Dans une note précédente, j’ai expliqué que les volcanologues du HVO étaient en train d’acquérir de nouvelles informations suite à l’analyse de l’éruption du Kilauea dans la Lower East Rift Zone (LERZ). Un nouvel article de la série Volcano Watch nous apprend que les effondrements de la zone sommitale du volcan en 2018 sont également riches d’enseignements.
Dès le début du mois d’avril 2018, le volcan a montré les signes d’un changement dans son comportement, mais les données fournies par les instruments étaient trop vagues pour prévoir ce qui allait se passer. Elles faisaient seulement état d’une augmentation de la pression dans le système magmatique entre le sommet du Kilauea et le cône du Pu’uO’o.
Le 30 avril 2018, la lave est sortie brièvement d’une fracture sur le flanc ouest du Pu’uO’o. Le magma a ensuite pris le chemin de la LERZ, laissant derrière lui un trou béant dans le cratère du Pu’uO’o qui a émis un impressionnant panache de poussière en se vidant.
Le magma qui se trouvait sous le Pu’uO’o s’est immédiatement dirigé vers la LERZ où le sol s’est légèrement soulevé, avec des séismes qui indiquaient la trajectoire suivie par la roche en fusion vers la surface.
Le 3 mai 2018, la lave a percé la surface dans les Leilani Estates, marquant le début de la plus grande éruption dans la LERZ du Kilauea depuis plus de 200 ans.
Au cours des semaines suivantes, le lac de lave qui se trouvait au sommet, dans l’Overlook Crater de l’Halema’uma’u, s’est vidangé tandis que le magma s’écoulait dans la LERZ, comme si une soupape s’était ouverte au fond de l’Overlook Crater. Aidé par la différence d’altitude de près de 900 mètres entre le sommet et la LERZ, le lac de lave s’est vidé régulièrement et le sommet de Kilauea s’est effondré en s’affaissant. Ce processus s’est accompagné d’une forte sismicité.
La vidange du lac de lave a entraîné des éboulements quasi permanents dans l’Overlook Crater vidé de son contenu. Des explosions ont généré d’impressionnantes colonnes de cendre, avec parfois des retombées de gros blocs sur le plancher de l’Halema’uma’u.
À la fin du mois de mai, les explosions au sommet du Kilauea ont été remplacées par des effondrements épisodiques. Au total, 62 événements d’effondrement ont secoué la zone sommitale en déclenchant des séismes qui ont à plusieurs reprises atteint une magnitude de M 5.3, occasionnant des dégâts au bâtiment du HVO et au Jaggar Museum. Les routes, les réseaux d’alimentation en eau et les fondations de certaines maisons dans le village de Volcano ont également été endommagés.
Un an après, les scientifiques du HVO continuent d’analyser les données de l’éruption sommitale du Kilauea. Avant 2018, les modèles indiquaient que l’activité explosive observée au sommet était provoquée par l’interaction entre les eaux souterraines et la haute température du conduit d’alimentation situé sous la caldeira du Kilauea. En revanche, les analyses de plusieurs explosions observées en 2018 laissent supposer que les gaz magmatiques sont le moteur de ces explosions.
Au lieu de s’effondrer d’un seul coup, on s’est rendu compte en 2018 que la caldeira du Kilauea pouvait s’affaisser progressivement sur de longues périodes, avec une déflation du sommet générant une forte sismicité qui constitue un risque majeur.
Les scientifiques ont également constaté que, dans certaines conditions, le sommet de Kilauea et la LERZ peuvent être reliés étroitement. Ceci est corroboré par l’équivalence approximative entre le volume de lave émis dans la LERZ et le volume du vide laissé par l’effondrement sommital ; tous deux sont de l’ordre de 1 kilomètre cube.

Une étude menée par un groupe international de scientifiques a révélé que la vitesse de propagation des ondes sismiques au sommet du Kilauea a montré des variations mesurables avant l’activité éruptive de 2018. Cette découverte représente un paramètre intéressant dans la prévision d’une future activité éruptive.
Source: USGS / HVO.

————————————————–

In a previous post, I explained that US geologists at HVO are gaining new insights from the Kilauea eruption in the Lower Esat Rift Zone. A new Volcano Watch article indicates that they are also learning a lot from the volcano’s 2018 summit collapses.

As soon as early April 2018, the volcano showed signs that change was coming, but the data provided by the instruments were too elusive to predict what was to happen. They only tracked an increasingly pressurized magmatic system between Kilauea’s summit and the Pu’uO’o cone.

On April 30th, 2018, lava emerged briefly from a crack on the cone’s west flank before the remaining magma drained into the East Rift Zone.  The Pu’uO’o crater collapsed, leaving a bottomless, empty cavity.

The magma which was beneath Pu’uO’o immediately headed toward the Lower East Rift Zone (LERZ) where the ground heaved slightly in response, with earthquakes indicating the path followed by the molten rock as it pushed downrift and toward the surface.

On May 3rd, lava erupted within the Leilani Estates. It marked the beginning of the largest eruption on Kilauea’s LERZ in over 200 years.

Over the next weeks, the summit lava lake withdrew deeper into the volcano as magma emptied into the LERZ, as if a valve had been opened at the bottom of the Overlook Crater. Aided by the nearly 900 metre elevation difference between the summit and the LERZ, the lava lake steadily drained and Kilauea’s summit collapsed inward. This in turn prompted elevated seismicity.

Recession of the lava lake resulted in near-constant rockfalls into the now empty Overlook Crater  Explosions sent impressive columns of ash into the sky, sometimes littering the ground around Halema’uma’u with dense blocks of rock.

By late May, Kilauea summit explosions were replaced by episodic collapse events. All told, 62 collapse events rocked Kilauea’s summit, triggering several M 5.3 earthquakeswhich caused damage at the HVO building, the Jaggar Museum. Roads and water system and residential foundations in Volcano were also damaged.

A year later, HVO scientists continue to process data from the 2018 eruption at the summit of Kilauea. Prior to 2018, models indicated that explosive summit activity was driven by steam explosions produced by the interaction between groundwater and the hot conduit below Kilauea’s caldera. But data from several 2018 explosions suggest that magmatic gas is the primary driver.

Rather than necessarily occurring as one big drop, the Kilauea caldera collapse can proceed incrementally over long periods of time, with ground shaking during sustained, rapid summit deflation and episodic collapse posing a major hazard.

Under certain conditions, Kilauea’s summit and the LERZ can be extremely well-connected through the core of the rift zone. This is supported by the rough equivalence of the LERZ erupted volume and the summit collapse void, both on the order of 1 cubic kilometre.

A study led by an international group of scientists has found evidence that seismic velocity – the speed at which seismic waves travel – within Kīlauea’s summit showed measurable changes leading up the 2018 activity. This finding potentially offers another means to forecast eruptive activity.

Source : USGS / HVO.

Panache de cendre et de poussière émis par le Pu’uO’o lorsque le plancher du cratère s’est effondré après l’évacuation du magma vers la LERZ (Crédit photo : USGS / HVO)

Panache de cendre émis par l’Overlook Crater de l’Halema’uma’u pendant la vidange du lac de lave (Crédit photo : USGS / HVO)

L’éruption du Kilauea (Hawaii) en 2018… // The 2018 Kilauea eruption…

Le 3 mai 2019 marquait le premier anniversaire du début de l’éruption du Kilauea en 2018 dans la Lower East Rift Zone (LERZ) de la Grande Ile d’Hawaii. Au cours de l’année écoulée, les volcanologues du HVO ont analysé les très nombreuses données rassemblées pendant l’éruption et ils ont tiré quelques conclusions intéressantes. Le HVO indique que l’éruption dans la LERZ et l’effondrement sommital du volcan fournissent de nombreuses informations sur le comportement du Kilauea.
En premier lieu, l’éruption a montré dans quelle mesure la modification de la composition chimique de la lave a influé sur le risque posé par les coulées. Pendant les deux premières semaines (entre le 3 et le 18 mai), l’éruption est restée relativement modérée, avec des débits de lave relativement faibles. Les analyses chimiques ont indiqué que cette lave provenait de poches de magma plus ancien stockées sous la LERZ. Ce magma plus froid et moins fluide était probablement le reliquat d’éruptions antérieures. Les scientifiques pensent que ce magma a probablement été ‘chassé’ par la lave en provenance du Pu’uO’o. Les analyses chimiques indiquent que cette lave, sur son trajet, est probablement entrée en contact avec deux, voire trois, anciennes poches de magma.
Vers le 18 ou le 19 mai, l’éruption s’est modifiée, avec l’arrivée d’une lave plus chaude et plus fluide. Elle provenait probablement de la vidange du réservoir sommital. Le débit éruptif est devenu de 10 à 20 fois plus important, de même que les coulées de lave qui sont devenues plus rapides et, de ce fait, beaucoup plus menaçantes pour les zones habitées.
Une semblable modification chimique de la lave avait déjà été observée lors de l’éruption de 1955 dans la LERZ, mais one ne s’en est rendu compte que longtemps après la fin de cette éruption. Le suivi quotidien de la composition de la lave pendant l’éruption de 2018 était donc important. Il a permis d’identifier son évolution chimique au début du mois de mai et d’anticiper l’arrivée d’un magma plus chaud et plus fluide, avec des coulées de lave plus dangereuses dans la LERZ. .
Si l’on observe l’évolution des éruptions de 2018 et de 1955, on peut raisonnablement penser que les éruptions futures dans la zone de rift commenceront avec un débit relativement faible impliquant un magma ancien les premiers jours. Avec l’arrivée d’un magma plus jeune et plus chaud, elles donneront ensuite naissance à de grandes coulées de lave rapides et dangereuses pour les habitations.
La composition de la lave a permis d’expliquer un autre aspect de l’éruption de 2018. À la mi-mai, de brèves explosions se produisaient fréquemment au niveau de la Fracture n° 17, avec des projections de bombes à plusieurs centaines de mètres. Au début, les volcanologues ont pensé que ces explosions étaient provoquées par des infiltrations d’eaux souterraines dans les fractures, ce qui provoquait des explosions phréatiques. Cependant, des analyses chimiques ont révélé que la Fracture n° 17 émettait une lave qui avait une composition inhabituelle. La quasi-totalité de la lave émise par le Kilauea est du basalte, tandis que la Fracture n° 17 émettait de l’andésite, ce que l’on n’avait encore jamais observé dans ce secteur du volcan. L’andésite est plus riche en silice que le basalte et est donc moins fluide. La consistance plus visqueuse de la lave andésitique facilite la coalescence et l’éclatement de grosses bulles de gaz sous haute pression ; c’est probablement ce qui explique l’activité explosive sur la Fracture n° 17.
L’éruption a également mis en évidence le lien étroit qui unit l’East Rift Zone du Kilauea et le réservoir magmatique au sommet du volcan. En juin et juillet 2018, on a observé des effondrements quasi quotidiens au sommet du Kilauea, accompagnés de séismes atteignant parfois la magnitude M 5,3. Les caméras qui surveillaient le chenal de lave au départ de la Fracture n° 8 ont observé que le débit de la lave a commencé à augmenter quelques minutes après l’effondrement sommital pour atteindre son maximum entre 2 et 4 heures plus tard. Au moins une fois, l’augmentation du débit d’écoulement de la lave a provoqué des débordements du chenal, avec une menace potentielle pour les zones habitées à proximité.
Ces événements ont démontré que l’augmentation du débit éruptif était dû à une augmentation brutale de pression provoquée par l’effondrement sommital et qui s’est propagée le long du conduit magmatique de 40 km de long en direction de la LERZ, un peu comme le ferait une presse hydraulique. Le délai de 2 à 4 heures avant que le débit de la lave atteigne son apogée a permis au HVO et à la Sécurité Civile, dans au moins un cas, de prévoir et de se préparer au risque de débordement de la lave.
Ces informations obtenues pendant l’éruption du Kilauea en 2018 permettront au HVO de mieux comprendre le processus volcanique, mais aussi de mieux prévoir et se préparer aux menaces induites par les prochaines éruptions.
Source: USGS / HVO.

——————————————————–

May 3rd, 2019, marked the one-year anniversary of the start of Kilauea’s 2018 Lower East Rift Zone (LERZ) eruption. Over the past year, HVO geologists have been closely studying the vast amount of data collected during the eruption and they drew a few interesting conclusions. HVO indicates that the Lower East Rift Zone eruption, as well as the 2018 summit collapses, are providing many new insights on Kilauea.

First, the eruption showed how the changing chemical composition of the magma erupted in 2018 controlled the lava-flow hazard. The first two weeks of the eruption (between May 3rd and 18th) produced low eruption rates and relatively small flows. Chemical analyses indicated that the lava originated from pockets of older magma stored underground in the LERZ. This cooler and less fluid magma was probably residue from earlier eruptions. It is thought that this stored magma was presumably forced out by the intruding dike of magma that originated from Pu’uO’o. The chemical analyses indicate that the dike may have intersected two, or even three, separate stored magma bodies.

Around May 18th -19th, the eruption became different as hotter and more fluid magma was erupted. This magma was presumably draining from the summit magma reservoir. The eruption rate increased roughly 10-20 times, and the flows became larger, faster-moving, and much more dangerous.

A similar chemical change in the lava had occurred during the 1955 LERZ eruption, but it was not recognized until long after that eruption ended. Daily tracking of lava composition during the 2018 eruption was important because it allowed to identify the chemical change in early May, and to correctly anticipate that hotter, more fluid magma – leading to more dangerous lava flows – might arrive in the LERZ. .

Taken together, the 2018 and 1955 eruptions point to the possibility that future rift zone eruptions can start in a small way in the opening days as older magma is erupted. But once fresher, hotter magma arrives, rift zone eruptions can switch to large, fast-moving, and dangerous lava flows.

Magma composition also helped explain another hazard of the 2018 eruption. In mid-May, brief explosions occurred frequently from Fissure 17, throwing lava bombs several hundred metres. An initial explanation was that they were driven by groundwater seeping into the fissures, causing steam blasts. However, chemical analyses revealed that Fissure 17 erupted lava with an unusual composition. Nearly all lava erupted on Kilauea is basalt, but Fissure 17 erupted Kilauea’s first documented andesite. Andesite is higher in silica than basalt, and is, therefore, less fluid. The more viscous consistency of andesitic lava makes it easier for large gas bubbles to coalesce and burst with high pressure, which provides a likely explanation for the explosive activity at Fissure 17.

The eruption also highlighted the close connection between Kilauea’s East Rift Zone and the volcano’s summit magma reservoir. In June and July 2018, there were near-daily summit collapse events, each with the equivalent of an M 5.3 earthquake. Time-lapse cameras monitoring the Fissure 8 lava channel observed that the eruption rate began to increase within minutes after a summit collapse, eventually peaking 2 to 4 hours later. At least once, the increased eruption rates produced overflows from the lava channel that could have threatened adjacent residential areas.

This showed that the increase in the eruption rates was driven by a pressure pulse originating from the summit collapse and transmitted down the 40-km-long magma conduit to the lower East Rift Zone, just like a hydraulic press. The 2 to 4-hour delay in peak eruption rates allowed HVO and emergency managers, in at least one instance, to anticipate and prepare for the overflow hazard.

The new insights gained from Kilauea’s 2018 eruption will help HVO better understand the volcanic process, and, in turn, forecast and prepare for the dangers in future eruptions.

Source: USGS / HVO.

La Fracture n°8 et ses impressionnantes coulées de lave a dominé l’éruption du Kikauea dans la Lower East Rift Zone (Crédit photo: USGS / HVO)

Les leçons de l’éruption du Kilauea (Hawaii) // The lessons of the Kilauea eruption (Hawaii)

Maintenant que la dernière éruption du Kilauea est terminée, les scientifiques du HVO vont pouvoir étudier attentivement ce qui s’est réellement passé et, si possible, essayer de prévoir les événements futurs sur le volcan.
On peut affirmer aujourd’hui que l’éruption du Kilauea en 2018 a été la plus importante des 200 dernières années. En l’espace de quatre mois environ, le volcan a déversé au moins 0,83 kilomètre cube de lave – l’équivalent de plus de 300 000 piscines olympiques – sur une superficie d’environ 34 kilomètres carrés. L’éruption a transformé le paysage et ajouté plus de 2,5 kilomètres carrés de nouvelle terre à la côte sud de la Grande Ile.
Des événements spectaculaires se sont déroulés au cours de l’éruption, comme l’effondrement de la caldeira sommitale, le huitième événement de ce type observé sur les volcans de la planète depuis 1900. Ces événements ont offert aux chercheurs une occasion unique de répondre à des questions géologiques et d’améliorer les outils de prévision éruptive.

Rappelons-nous ce qui s’est passé sur le Kilauea depuis le début de l’éruption:
L’éruption a débuté début mai, lorsque le lac de lave dans l’Overlook Crater de l’Halema’uma’u a débordé, puis a commencé à se vidanger rapidement, chutant de plusieurs centaines de mètres en quelques jours. Cet événement a envoyé le magma sous la surface de la terre jusqu’à une quarantaine de kilomètres vers le sud-est, où il a ouvert des fractures et déclenché des séismes dans la Lower East Rift Zone (LERZ) à partir du 3 mai 2018. De nouvelles fractures ont continué à s’ouvrir pendant des semaines tandis que la caldeira sommitale s’effondrait en provoquant des explosions de gaz et de cendre.
À la fin du mois de mai, l’éruption s’est concentrée autour de la Fracture n° 8, avec des fontaines de lave atteignant 80 mètres de hauteur. Un réseau de chenaux s’est mis en place et la lave a détruit tout sur son passage en se dirigeant vers l’océan. Elle a continué à couler jusqu’au 4 août, jour où l’éruption a cessé brusquement.
Grâce aux instruments que le HVO avait installés sur le Kilauea, les chercheurs ont pu assez bien comprendre comment le magma se déplaçait dans le système de fractures et ils ont été en mesure d’évaluer la quantité de magma qui était mise en oeuvre. Cependant, il reste encore d’importantes questions en suspens, notamment ce qui a déclenché l’éruption et pourquoi elle s’est arrêtée si soudainement.
Les scientifiques du HVO expliquent que l’éruption a débuté en imitant de nombreux autres événements de l’histoire récente du Kilauea, avec une accumulation de pression dans le secteur du Pu’uO’o, en aval du sommet. Au cours des dernières décennies, l’inflation du Pu’uO’o avait déjà provoqué des épanchements de lave dans le secteur. En mai 2018, une rupture s’est produite dans la partie profonde du système d’alimentation, ce qui a permis à beaucoup plus de magma de se déplacer vers la LERZ.
Les scientifiques ne comprennent pas pourquoi cette rupture profonde s’est produite et, au bout du compte, il sera sûrement difficile de tirer des conclusions définitives sans référence à des événements similaires en guise de comparaison. La raison pour laquelle l’éruption s’est arrêtée du jour au lendemain sera peut-être plus facile à déterminer une fois que les chercheurs auront associé toutes les données recueillies lors de l’éruption avec des modèles d’écoulement de fluides.
En dépit du contrôle étroit du déroulement de l’éruption, les scientifiques ont été incapables de prévoir son évolution. La plupart d’entre eux pensaient qu’elle durerait des mois, voire un an. C’est la raison pour laquelle ils ont été si lents à admettre qu’elle était définitivement terminée.
Il reste d’autres mystères à résoudre, notamment ce qui a déclenché les événements explosifs qui ont secoué le sommet du Kilauea à partir du mois de mai.
Source: Earther.

———————————————-

Now that the last Kilauea eruption is over, scientists at the US Geological Survey’s Hawaii Volcano Observatory (HVO) will have the opportunity to study what really happened and, if possible, predict future events on the volcano.

One can now definitively say that Kilauea’s 2018 eruption was its biggest in at least 200 years. In the span of about four months, the volcano spilled at least 0.83 cubic kilometres of lava – the equivalent of over 300,000 Olympic-sized swimming pools – over an area of about 34 square kilometres, transforming the landscape and adding more than 2.5 square kilometres of new land to the coast.

The dramatic sequence of events that unfolded during the eruption, like the eighth caldera collapse scientists have witnessed at any volcano on Earth since 1900, have given researchers an unprecedented opportunity to answer basic geological questions and improve the tools for trying to predict future eruptions.

Let’s remember what happened at Kilauea volcano from the start of the eruption:

The action at Kilauea started in early May, when the lava lake in the Overlook crater overflowed and next began to rapidly drain, dropping hundreds of metres in a matter of days. This sent magma streaming below the surface some 40 kilometres to the southeast, where it opened new fissures and triggered earthquakes in the Lower East Rift Zone (LERZ) beginning on May 3rd, 2018. Fresh fissures continued to open for weeks as the newly drained summit caldera collapsed in on itself, triggering explosive eruptions of gas and ash.

By the end of May, the eruption had concentrated around Fissure 8, with lava fountains up to 80 metres high, feeding a network of channels that ultimately destroyed everything on their way to the ocean. Lava continued to flow until August 4th, when things shut off abruptly.

Thanks to the scientific instruments HVO already had in place around Kilauea, researchers have developed a pretty good picture of how magma moved through the system, and they were able to better constrain how much molten rock is stored there. However, there are still major unanswered questions, including what tipped off the eruption in the first place and why it stopped so suddenly.

HVO scientists explain that the eruption started out looking like many other events in Kilauea’s recent history, with pressure building up at the Pu’uO’o vent down-rift of the summit. For the past few decades, inflation at Pu’uO’o has caused new lava outbreaks in the area. But this time, something ruptured in that deeper part of the plumbing system, which allowed a lot more magma to move much further into the LERZ.

It is not understood why that deep rupture occurred, and ultimately it might be tough to draw definitive conclusions without any similar events to compare it to. The mystery of why Kilauea shut off virtually overnight is perhaps more within reach once researchers combine all the data collected during the eruption with models of fluid flow.

Although this is one of the most well monitored eruptions in the world, scientists still could not predict its evolution. Most of them said it would last months or even a year. This is the reason why they were so slow to admit it was definitely over

There are other mysteries to solve, including what set off the explosive events that rocked the summit crater beginning in May.

Source : Earther.

Les fontaines de lave dans la Fracture n°8 ont constitué l’un les événements les plus spectaculaires de la dernière éruption du Kilauea (Crédit photo: USGS / HVO)

Kilauea (Hawaii): Fin de l’éruption ? // End of the eruption ?

À en juger par le ton des derniers bulletins du HVO, il semble que les scientifiques américains soient à la fois perplexes et déçus par la situation sur le Kilauea. Ils s’attendaient à une éruption longue, qui pourrait durer plusieurs semaines, voire plusieurs mois, et ils se trouvent confrontés à un événement qui s’achève relativement rapidement. Il est clair qu’ils ont mal apprécié la situation. Même les Américains peuvent se tromper!
Les dernières observations montrent que l’activité éruptive a cessé sur le volcan. On n’observe plus d’incandescence à l’intérieur du cône de la Fracture n° 8, et plus aucune lave ne pénètre dans l’océan. Des quantités négligeables de gaz, principalement de la vapeur, sortent de la paroi nord du cône de la Fracture n° 8 et de certains secteurs de la Lower East Rift Zone (LERZ). Les parois intérieures du cône et du chenal de lave ont tendance à s’affaisser. Le cône mesure une cinquantaine de mètres de hauteur. .
Le sommet de Kilauea est calme, sans effondrement, depuis le 2 août 2018. La sismicité reste faible et la déformation du sol est négligeable. Les émissions de SO2 au sommet et le long de la LERZ ont considérablement diminué et sont souvent trop faibles pour pouvoir être mesurées. .
A mes yeux, la fin de l’éruption n’est pas une surprise. Comme je l’ai fait remarquer à plusieurs reprises, son déclin a été très progressif : 1) réduction puis fin des fontaines de lave dans la Fracture n° 8 ; 2) diminution du débit de lave dans le chenal vers la mer ; 3) ralentissement de l’affaissement de la caldeira sommitale;  4) réduction de l’entrée de lave dans l’océan, puis 5) fin complète de l’éruption.

———————————————-

Judging from the tone of the latest HVO bulletins, it seems US scientists are both puzzled and disappointed with the situation on Kilauea Volcano. They had expected an eruption that might last more weeks or months and that is rapidly coming to an end. It is clear they were mistaken in their diagnosis. Even the Americans can be wrong!

The latest observations show that activity has stopped on the volcano. No more incandescence is visible in the Fissure 8 cone, and no more lava is entering the ocean. Minor amounts of gases, primarily steam, are rising from the north wall of the Fissure 8 cinder cone and from areas along the Lower East Rift Zone. The interior walls of the cone and lava channel are slumping downward and inward. The cinder cone is about 50 metres high.  .

The summit of Kilauea has remained quiet, with no collapse events since August 2nd, 2018. Seismicity remains low and ground deformation is negligible. SO2 emissions at both the summit and LERZ are drastically reduced and often too low to be measured. .

The end of the eruption is no surprise to me. As I have written it several times, the decline of the eruption was very progressive with 1) the reduction and the end of lava fountains in Fissure 8, then 2) the decrease in lava output in the lava channel to the ocean, together with 3) the slowing of the slumping of the summit caldera;  then 4) the reduction of the lava entry; then 5) the complete end of the eruption.

Plus aucun signe d’activité au fond de la Fracture n°8 (Crédit photo: USGS / HVO)

Kilauea (Hawaii): Pas d’effet de l’ouragan Lane sur le volcan // No effect of Hurricale Lane on the volcano

La tempête tropicale Lane s’est éloignée vers l’ouest, loin de la Grande Ile d’Hawaï où les inondations ont été sévères. Comme on pouvait s’y attendre, l’ouragan a eu peu d’effet sur l’éruption, à l’exception de quelques chutes de pierres au sommet et d’une augmentation des émissions de vapeur au niveau des bouches actives du Pu’uO’o et sur la Lower East Rift Zone (LERZ). Cependant, le HVO a perdu la communication avec plusieurs stations de surveillance dans la partie est de l’île, mais la capacité de l’observatoire à évaluer les conditions volcaniques n’a été que faiblement affectée..
La sismicité et la déformation du sol sont négligeables au sommet du Kilauea. Dans la LERZ, on aperçoit parfois une petite accumulation de lave au fond de la Fracture n° 8. On observe encore quelques petites entrées de lave dans l’océan et quelques petits panaches de brume volcanique. Les émissions de SO2 au sommet et sur la LERZ sont très faibles, avec une quantité totale inférieure à ce qu’elle était )à la fin de l’année 2007. Les émissions de SO2 de la LERZ sont trop faibles pour pouvoir être mesurées.
Source: USGS / HVO.

—————————————

Tropical Storm Lane is moving to the west away from the Island of Hawaii where flooding remains a problem. As could be predicted, the hurricane has had little effect on the eruption aside from minor rockfalls at the summit and increased steaming from Pu’uO’o and LERZ vents. However, HVO lost communication with several monitoring stations on the east side of the island, but the losses only slightly reduced the Observatory’s ability to assess volcanic conditions.
Seismicity and ground deformation are negligible at the summit of Kilauea. On the Lower East Rift Zone (LERZ), a small lava pond can occasionally be seen deep within the fissure 8 cone. A few ocean entries are still oozing lava and laze plumes are minimal. SO2 emission rates at both the summit and LERZ are drastically reduced; the combined rate is lower than at any time since late 2007. The SO2 emissions from the LERZ are too low to measure.
Source: USGS / HVO.

Encore un peu d’incandescence au fond de la Fracture n° 8 (Crédit photo: USGS / HVO)

Kilauea (Hawaii): Quelques réflexions sur l’éruption // A few thoughts about the eruption

Même si le HVO ne cesse de répéter qu’il faut attendre plusieurs semaines pour être certain que l’éruption est effectivement terminée, on peut raisonnablement dire que la lave ne coulera plus dans la Lower East Rift Zone (LERZ) et le District de Puna.

Débutée le 3 mai 2018, cette dernière éruption a été l’une des plus spectaculaires jamais observées au cours des dernières décennies. Aucun mort n’est à déplorer et seules deux personnes ont été blessées par des bombes volcaniques projetées par la lave. En revanche, les dégâts matériels sont considérables car plus de 700 maisons ont été détruites.

Si je devais faire le bilan de cette éruption, j’insisterais sur plusieurs points :

Les informations ont été de grande qualité, qu’elles soient en provenance du HVO ou de la Protection Civile. Les bulletins – souvent relayés par la presse locale – étaient très complets et illustrés de nombreuses photos ou vidéos. Les autorités ont vraiment joué la transparence.

– Si les images étaient largement disponibles sur Internet, l’approche de l’éruption par les touristes et les personnes autres que les scientifiques et les membres de la Protection Civile a été une catastrophe. Ce fut vraiment « l’éruption interdite ». Il a souvent été question de la mise en place d’une ou plusieurs plateformes d’observation, mais elles n’ont jamais vu le jour. La seule solution pour les touristes était donc de mettre la main au portefeuille et d’acheter des survols en hélicoptère ou des approches des coulées par la mer. A se demander si la volonté des autorités n’était pas de faire travailler ces structures commerciales. Personnellement, je ne suis pas loin de le penser ! Vouloir mettre l’accent sur la sécurité comme le font en permanence les Américains dans les parcs nationaux et autres sites potentiellement ouverts aux touristes, c’est bien, mais il ne faut pas pousser le bouchon trop loin !

– D’un point de vue scientifique, on a eu la confirmation de notre incapacité à prévoir le déroulement d’une éruption. On sent d’ailleurs la gêne et la frustration des scientifiques locaux qui se sont faits surprendre par la fin relativement rapide de l’éruption alors qu’ils avaient misé sur un événement de longue durée.

Le démarrage de l’éruption était prévisible car il était évident que le réservoir magmatique sommital était à saturation avec des débordements des lacs de lave dans l’Halema’uma’u et le Pu’uO’o. De plus, cela faisait plusieurs mois que les tiltmètres montraient que le Kilauea traversait une longue phase d’inflation. La sortie de la lave était donc assez facile à pronostiquer, même si personne ne savait où l’événement allait avoir lieu. A aucun moment l’Observatoire n’a prévu son apparition dans les Leilani Estates. Les scientifiques n’ont pu que constater la sortie de la lave.

La suite et la fin de l’éruption ont fait l’objet de nombreux articles. Toutes les hypothèses ont été avancées, tant pour l’activité sommitale que le long de l’East Rift Zone. Comme je l’écrivais précédemment, beaucoup pensaient que l’éruption pourraient durer des mois, voire des années. D’autres s’attendaient à un regain d’activité quand la Fracture n° 8 a montré des signes de faiblesse et n’a plus envoyé la lave dans le chenal vers l’océan, mais Madame Pele a décidé de siffler la fin de la partie.

– Toujours d’un point de vue scientifique, l’éruption a montré que l’intrusion initiale dans la Lower East Rift Zone avait remobilisé une ancienne lave plus froide et plus « évoluée » que celle observée dans les lacs de lave de l’Halema’uma’u et du Pu’uO’o. La lave émise dans la LERZ au début de l’éruption dans les Leilani Estates était semblable à la première lave émise lors de l’éruption de 1955 dans la même région. Au cours des jours suivants, les analyses chimiques ont révélé une lave progressivement plus chaude et moins évoluée, jusqu’à ce qu’elle se stabilise à des températures de 1130-1140°C et débouche sur l’éruption spectaculaire de la Fracture n° 8. C’est la première fois qu’une telle évolution dans la nature de la lave a pu être observée et étudiée en direct sur le terrain.

– Autre point positif : Les scientifiques ont pu observer en direct l’affaissement simultané du cratère sommital qui accompagnait la vidange du réservoir magmatique peu profond et l’évacuation de la lave dans la Lower East Rift Zone. L’événement a été particulièrement spectaculaire, avec de gros effondrements qui ont généré une forte sismicité dans toute la zone sommitale.

– Comme je l’ai indiqué plus haut, le bilan matériel est lourd avec des centaines de structures avalées par la lave. Beaucoup se demandent pourquoi des lotissements ont été autorisés dans une zone de fractures (Rift Zone) déjà envahie par la lave dans les décennies précédentes. La réponse est facile : parce que le terrain est beaucoup moins cher qu’ailleurs sur la Grande Ile, en particulier dans le secteur de Kailua-Kona. Dans le District de Puna, on se trouve près de la mer, dans de très beaux paysages et les terrains ne coûtent pas trop cher. S’y établir est un peu jouer à la roulette russe car la lave peut surgir sans prévenir.

Si votre habitation est détruite, va se poser le problème de l’assurance et des dédommagements. Il faut savoir que les polices d’assurances liées aux risques naturels comme les séismes et les éruptions sont très, très chères aux Etats-Unis et beaucoup d’habitations ne sont pas assurées contre ces sinistres. Vous allez me dire : On peut faire jouer la garantie incendie, étant donné que la maison a flambé ! Eh bien non ! Pour que la garantie incendie soit acceptée par les assureurs, il faut que les fondations de la maison soit apparentes après le sinistre, ce qui n’est pas le cas si une coulée de lave est passée par là.

Seules des aides locales et fédérales peuvent venir en aide aux sinistrés, mais elles seront loin de couvrir le montant des dommages subis. Certains ont essayé de négocier des aides à l’amiable avec leurs compagnies d’assurances alors que d’autres préfèrent passer par des actions en justice.

—————————————————

Even though HVO keeps repeating that we need to wait several weeks to be certain that the eruption is actually over, it is reasonable to say that lava will no longer flow in the Lower East Rift Zone (LERZ) and the Puna District. .
Started on May 3rd, 2018, this eruption was one of the most dramatic ever observed in recent decades. No deaths were reported and only two people were injured by volcanic bombs. However, the material damages are considerable because more than 700 houses were destroyed.
If I had to analyse this eruption, I would insist on several points:

The information was of a high quality, whether from HVO or the Civil Defense. The reports – often relayed by the local press – were very complete and illustrated with many photos or videos. The authorities really played transparency.

– If the images were widely available on the Internet, the approach of the eruption by tourists and people other than scientists and members of the Civil Defense was a disaster. It was really « the forbidden eruption« . There has often been talk of setting up one or more observation platforms, but they have never existed. The only solution for the tourists was therefore to buy helicopter overflights or approach the eruption from the sea. One may wonder wonder if the authorities’ aim was not to bring work to these commercial structures. Personally, I’m not far from thinking it! It is a good idea to focus on safety, as Americans are always doing in national parks and other sites that are potentially open to tourists, but the safety measures are often exaggerated!

– From a scientific point of view, there was the confirmation of our inability to predict the course of an eruption. We can feel the embarrassment and frustration of local scientists who were surprised by the relatively rapid end of the eruption while they had bet on a long-term event.
The onset of the eruption was predictable as it was obvious that the shallow magma reservoir was saturated. The lava lakes in Halema’uma’u and Pu’uO’o often overflowed. In addition, the tiltmeters had shown for several months that Kilauea was going through a long period of inflation. The breakout of lava was easy enough to predict, although no one knew where it was going to take place. At no time has the Observatory anticipated its appearance in the Leilani Estates. Scientists could only observe the event.
The continuation and the end of the eruption have been the subject of many articles. All the hypotheses have been suggested, both for activity at the summit and along the East Rift Zone. As I put it earlier, many scientists thought the eruption could last for months or even years. Others were expecting a renewal of activity when Fracture # 8 showed signs of weakness and no longer sent lava in the channel to the ocean, but Madame Pele decided to blow the whistle.

– Still from a scientific point of view, the eruption has shown that the initial intrusion into the Lower East Rift Zone remobilized an older, colder and more « evolved » lava than the one observed in the Halema’uma’u and Pu’uO’olava lakes. The lava emitted in the LERZ at the beginning of the eruption in the Leilani Estates was similar to the first lava emitted during the 1955 eruption in the same region. Over the following days, the chemical analyzes revealed a progressively warmer and less evolved lava until it stabilized at temperatures of 1130-1140°C and resulted in the dramatic eruption of Fracture no. 8. This was the first time such an evolution in the nature of lava could be observed and studied live on the field.

– Another positive point was that scientists were able to observe live the simultaneous collapse of the summit crater that accompanied the emptying of the shallow magma reservoir and the evacuation of the lava in the Lower East Rift Zone. The event was particularly spectacular, with large collapses that generated strong seismicity throughout the summit area.

– As I indicated above, the material outcome is severe with hundreds of structures swallowed by lava. Many people are wondering why building houses was allowed in a Rift Zone already invaded by lava in previous decades. The answer is easy: because the land is much cheaper than elsewhere on the Big Island, especially in the ​​Kailua-Kona area. In the District of Puna, houses are near the sea, in beautiful landscapes and the land is not too expensive. However, settling there is a little Russian roulette because the lava can come out any time, without warning.
If your home is destroyed, there will be the problem of insurance and compensation. You should know that insurance policies related to natural hazards such as earthquakes and eruptions are very, very expensive in the United States and many homes are not insured against these damages. You might be inclined to use fire warranty, since the house has been burnt! You would be wrong ! For the fire insurance to be accepted by insurers, the foundations of the house must be apparent after the disaster, which is not the case if a lava flow has passed through.
Only local and federal funds can help the victims, but they will not be enough to finance the damage suffered during the eruption. Some owners have tried to negotiate out-of-court assistance with their insurance companies, while others prefer to go to court.

Crédit photo: USGS / HVO