Relation entre les éruptions à Hawaii et en Californie // Relationship between eruptions in Hawaii and in California

Dans sa série Volcano Watch, l’Observatoire des Volcans d’Hawaii (HVO) a publié un nouvel article fort intéressant sur les volcans des Etats Unis.

Les scientifiques du HVO expliquent que certaines régions surveillées par les différents observatoires volcanologiques ont connu des éruptions géologiquement «jeunes» qui sont néanmoins trop vieilles pour avoir eu des témoins oculaires et avoir laissé des traces écrites. Cela pose un problème aux volcanologues car ils aimeraient s’appuyer sur les éruptions du passé pour mieux anticiper les éruptions du futur. Les magmas émis dans différentes régions se forment de manière différente, et les éruptions peuvent durer des jours, des semaines, des mois, des années, et parfois même plusieurs décennies.

Les observatoires volcanologiques gérés par l’USGS, qui comprennent l’Observatoire des Volcans d’Hawaii (HVO), l’Observatoire Volcanologique des Cascades (CVO), l’Observatoire Volcanologique de l’Alaska (AVO), l’Observatoire Volcanologique de Yellowstone (YVO) et l’Observatoire Volcanologique de Californie (CalVO), surveillent de nombreux types de volcans et d’éruptions, depuis le Mont St. Helens qui émet en général une lave visqueuse, jusqu’aux éruptions plus récentes du Kilauea et du Mauna Loa où des laves fluides sont généralement observées.

La Californie héberge le Mont Shasta, stratovolcan d’aspect classique, et la grande caldeira de Long Valley. Cependant, aucun de ces volcans n’a connu d’éruption historique, bien que chacun montre les preuves d’une activité géologiquement récente. L’éruption la plus récente en Californie a eu lieu de 1914 à 1917 sur le Lassen Peak où s’est édifié un dôme de lave accompagné de dépôts de cendres.

Une zone à l’est du Mont Shasta et de Lassen Peak est relativement plate mais on y observe de jeunes coulées de lave. Le volcan de Brushy Butte appartient à cette région et des travaux récents sur le terrain montrent qu’il y a au moins 29 dépôts volcaniques constitués de scories, de cônes de projection et de coulées de lave. La question est de savoir combien de temps il a fallu pour édifier ces 29 cônes et coulées de lave.

 Le problème est que les éruptions de Brushy Butte ont eu lieu il y a environ 35000 ans, et pour répondre à cette question, les géologues du CalVO ont utilisé le vieil axiome géologique de «l’uniformitarisme» selon lequel «le présent est la clé du passé».

Pour mieux comprendre comment l’éruption de Brushy Butte et essayer de savoir combien de temps elle a pu durer, les scientifiques se sont tournés vers des volcans actifs d’un type et d’un environnement similaires. Le volcan de Brushy Butte se trouve dans une zone de rift et la lave émise est un basalte tholéiitique. Le Kilauea et le Mauna Loa, même s’ils ne présentent pas la même morphologie, sont proches de Brushy Butte car leurs laves sont généralement émises dans des zones de rift et on rencontre un basalte tholéiitique similaire. Les récentes éruptions volcaniques de ces volcans hawaïens pourraient donc aider à comprendre comment ont été émises les laves du volcan de Brushy Butte et combien de temps les éruptions ont pu durer.

L’un des outils les plus utiles pour comprendre les éruptions de Brushy Butte est le LiDAR, acronyme pour Light Detection and Ranging. L’ensemble de données obtenues par cette technologie permet de créer une image détaillée de la surface d’une coulée de lave avec les différentes formes de relief édifiées lors de l’éruption, tandis que la lave s’éloigne de son point d’émission. (voir l’image ci-dessous)

Les volcans hawaïens sont très actifs. L’éruption du Pu’uO’o, qui a duré plusieurs décennies, a montré les différents types de reliefs que les basaltes tholéiitiques peuvent former sur de longues périodes. En utilisant l’éruption du Pu’uO’o comme référence, les géologues du CalVO ont estimé que les 29 bouches éruptives qui ont émis des coulées de lave ont été créées par l’éruption de Brushy Butte pendant au moins 20 ans. Ils ont pu tirer ces conclusions en observant les différentes formes de relief créées par les coulées de lave et leur emplacement à l’intérieur du volcan. .

Source: USGS / HVO.

———————————————–

In its Volcano Watch series, the Hawaiian Volcano Observatory has published another interesting article about U.S. volcanoes.

HVO scientists explain that some regions monitored by the volcano observatories had geologically ‘young’ eruptions that are nonetheless old enough to lack written documentation. This creates a dilemma for geologists interested in how a future eruption might occur and how long it could last. The magmas that erupt from these different regions are formed in different ways, and eruptions can range from days, weeks, months, years to as long as several decades in duration.

USGS volcano observatories, which include the Hawaiian Volcano Observatory (HVO), Cascades Volcano Observatory (CVO), Alaska Volcano Observatory (AVO), Yellowstone Volcano Observatory (YVO), and California Volcano Observatory (CalVO), monitor many different types of volcanoes and eruptions, from Mount St. Helens that erupts viscous lava, to the more recent eruptions of Kilauea and Mauna Loa, where fluid lavas are usually observed.

California displays Mount Shasta, a classic-looking stratovolcano, and the large caldera of Long Valley. However, but neither has erupted historically though each has evidence of geologically young activity. The most recent eruption in California was from 1914–1917 at Lassen Peak, creating a lava dome and related ash deposit.

An area east of Mount Shasta and Lassen Peak is relatively flat but contains young looking lava flows. Brushy Butte Volcano is part of this region, and recent field research shows that it contains at least 29 volcanic deposits consisting of scoria and spatter cones and lava flows. The question about Brushy Butte Volcano is:how long did it take to erupt these 29 cones and lava flows?

The problem is that the Brushy Butte eruptions took place approximately 35,000 years ago, and to answer this question CalVO geologists have used the old geologic axiom of ‘uniformitarianism’ or ‘the present is the key to the past.’

To better understand how Brushy Butte erupted and how long it might have taken, active volcanoes of a similar type and setting were used as an analog. The Brushy Butte Volcano is located in a rifting area, and the type of magma erupted there is tholeiitic basalt. Kilauea and Mauna Loa, though not exactly the same, are close in that their lavas erupt commonly from rift zones and are usually of a similar tholeiitic basalt type. So, the recent volcanic eruptions from these Hawaiian volcanoes could help understand how lavas erupted from Brushy Butte Volcano and how long it might have taken.

One of the most helpful tools used to understand the Brushy Butte eruptions is Light Detection and Ranging or LiDAR. The resulting dataset creates a detailed picture of the surface of a lava flow showing the different landforms created as a volcano erupts and lava moves downhill away from its vent. (see image below)

Hawaiian volcanoes are very active, and in particular the decades-long eruption of Pu’uO’o displayed many types of landforms that tholeiitic basalts can form over long timeframes. Using Pu’uO’o as an analog, CalVO geologists estimated that the 29 closely-spaced vents and lava flows of Brushy Butte Volcano erupted over at least 20 years based on the different lava flow landforms created and their placement around the interior of the volcano.

Source : USGS / HVO.

Vue d’ensemble du site éruptif de Brushy Butte (Source : Wikipedia)

Carte montrant, à l’aide d’un dégradé de couleurs, le relief du volcan de Brushy Butte (environ 150 mètres de hauteur). Elle a été réalisée à l’aide des données LiDAR à résolution de 1 mètre. On y voit, sous forme de points, les différentes bouches éruptives ainsi que les chenaux et les levées tracés par les coulées de lave dans le paysage. (Source : CalVO)

Chambre magmatique du Kilauea : les leçons de l’éruption de 2018 // Kilauea’s magma chamber : the lessons of the 2018 eruption

Les personnes qui visiteront le Kilauea Overlook (point de vue sur le Klauea) qui vient d’être ouvert au public dans le Parc National des Volcans d’Hawaï découvriront un paysage totalement nouveau, façonné par l’éruption dans la Lower East Rift Zone et l’effondrement du sommet du volcan en 2018.
Du 16 mai au 2 août 2018, la caldeira de Kilauea a connu une série de 62 événements d’effondrement. Au terme de ces événements, la partie la plus profonde de Halema’uma’u s’était affaissée de 500 m, plus que suffisant pour y loger l’Empire State Building.
Beaucoup de gens se demandent maintenant si le système magmatique sous le sommet du Kilauea se comportera comme avant. Avant 2018, les données géophysiques montraient un système complexe de chambres magmatiques sous le sommet. L’une des plus importantes était une chambre superficielle, située à environ 1,6 km de profondeur sous la caldeira du Kilauea. Ce réservoir était relié à la surface via un conduit qui donnait naissance à l’Overlook Crater et alimentait le lac de lave sommital.
Le premier indice sur la situation du réservoir superficiel est apparu en octobre 2018 lorsque les inclinomètres installés au sommet ont détecté un événement de déflation-inflation (événement DI). Avant l’effondrement de 2018, de tels événements DI se produisaient régulièrement; ils pouvaient être observés à partir des données inclinométriques au sommet et les variations de hauteur du lac de lave. Cet ensemble de données a clairement montré que le réservoir superficiel sous l’Halema’uma’u se dégonflait et se regonflait à plusieurs reprises.
Alors que les événements DI étaient clairement observables au sommet du Kilauea, ils étaient également enregistrés par les inclinomètres près du Pu’uO’o, avec un léger décalage dans le temps. Le fait que les variations de pression observées lors de la déflation et de l’inflation du réservoir sommital soient transmises aussi rapidement au Pu’uO’o était une indication du lien étroit entre l’East Rift Zone et le système magmatique sommital.
Les caractéristiques de l’événement DI post-éruptif d’octobre 2018 étaient très semblables aux événements DI qui avaient précédé l’éruption. Cela montrait que les caractéristiques du réservoir superficiel sous l’ Halema’uma’u n’étaient probablement pas très différentes de ce qu’elles étaient avant l’éruption. De plus, les inclinomètres installés sur l’East Rift Zone ont fait apparaître une faible trace d’un événement DI peu de temps après l’événement d’octobre. Cela confirme qu’il existe toujours une connexion étroite entre le réservoir superficiel sous l’Halema’uma’u et l’East Rift Zone.
Depuis cette époque, une analyse plus poussée a été effectuée afin d’obtenir plus d’indications sur le réservoir situé sous l’Halema’uma’u. Dans un article publié en décembre 2019 dans le magazine Science, des scientifiques de l’USGS ont expliqué comment les données de déformation provenant de la forte déflation des chambres magmatiques au sommet du Kilauea pendant les premières semaines de l’éruption de 2018 ont permis de calculer la quantité totale de magma stockée dans le réservoir de l’Halema’uma’u avec plus de précision que précédemment. Compte tenu de l’incertitude naturelle des données, les scientifiques ont constaté que le volume probable de ce réservoir était d’un peu moins de 4 kilomètres cubes. En prenanat en compte le volume d’effondrement de 0,8 kilomètre cube, cela signifie qu’environ 20% seulement du réservoir s’est vidangé lors de l’éruption de 2018 et que 80% du magma se trouve toujours dans le réservoir sommital. En conclusion, bien que la caldeira du Kilauea ait subi des modifications majeures, l’alimentation magmatique située sous cette caldeira fonctionne de la même manière que précédemment.
Source: USGS / HVO.

————————————————————-

Those who will visit the newly opened Kilauea Overlook within Hawai‘i Volcanoes National Park will discover a totally new landscape shaped by the lower East Rift Zone eruption and summit collapse in 2018.
From May 16th until August 2nd, 2018, the Kilauea caldera went through a series of 62 collapse events. At the end of these events, the deepest part of Halema’uma’u had descended 500 m, more than enough to fit the Empire State Building.
Many people wonder now whether the underlying summit magma system will ever behave the same. Prior to 2018, geophysical data showed a complex system of magma storage chambers under the Kilauea summit. One of the most prominent was a shallow chamber about 1.6 km deep under the Kilauea caldera. This reservoir was connected to the surface via a conduit that formed the Overlook Crater and supplied lava to the summit lava lake.
The first clue about the post-collapse state of the shallow reservoir came in October 2018 when summit tiltmeters picked up a deflation-inflation event (DI-event). Before the 2018 collapses, DI-events occurred regularly and could be observed from summit tiltmeter records and in the changing lava lake height. Together these data showed that the shallow Halema’uma’u reservoir was deflating and re-inflating repeatedly.
While DI-events were clearly observable at Kilauea’s summit, tiltmeters near Pu’uO’o recorded similar motions just with a slight time delay. The fact that pressure changes during the deflation and inflation of the summit reservoir could be transmitted so directly to Pu’uO’o was an indication of how closely connected the East Rift Zone was to the summit magma system.
The shape and size of the post-eruption DI-event in October 2018 was very similar to pre-eruption DI-events, indicating that the shape and size of the shallow Halema’uma’u reservoir must not be too different from its pre-eruption state. Furthermore, tiltmeters on the East Rift Zone showed a faint trace of a DI-event just following the October event. This indicated that the close connection between the shallow Halema’uma’u reservoir and the East Rift Zone still exists.
Since then, a more in-depth analysis has been done that gives more clues about the shallow Halema’uma’u reservoir. In a December 2019 article in Science magazine, USGS scientists detailed how deformation data from the intense deflation of the summit magma chambers during the first weeks of the 2018 eruption allowed them to calculate the total amount of magma in the Halema’uma’u reservoir more precisely than ever before.Taking into account the natural uncertainty of the data, they found the most likely volume of the reservoir to be just under 4 cubic kilometres. Given the collapse volume of 0.8 cubic kilometres, this means that only about 20% of the reservoir was emptied during the 2018 eruption and 80% of the reservoir’s magma is still underneath the summit. So, while the surface of the Kilauea caldera has undergone a major remodel, underneath, the magma plumbing system still works in much the same way did before.
Source : USGS / HVO.

Le cratère de l’Halema’uma’u après l’éruption de 2018 (Crédit photo : USGS)

Les leçons de l’éruption du Kilauea en 2018 (Hawaii) // The lessons of the 2018 Kilauea eruption (Hawaii)

Dans une note précédente, j’ai expliqué que les volcanologues du HVO étaient en train d’acquérir de nouvelles informations suite à l’analyse de l’éruption du Kilauea dans la Lower East Rift Zone (LERZ). Un nouvel article de la série Volcano Watch nous apprend que les effondrements de la zone sommitale du volcan en 2018 sont également riches d’enseignements.
Dès le début du mois d’avril 2018, le volcan a montré les signes d’un changement dans son comportement, mais les données fournies par les instruments étaient trop vagues pour prévoir ce qui allait se passer. Elles faisaient seulement état d’une augmentation de la pression dans le système magmatique entre le sommet du Kilauea et le cône du Pu’uO’o.
Le 30 avril 2018, la lave est sortie brièvement d’une fracture sur le flanc ouest du Pu’uO’o. Le magma a ensuite pris le chemin de la LERZ, laissant derrière lui un trou béant dans le cratère du Pu’uO’o qui a émis un impressionnant panache de poussière en se vidant.
Le magma qui se trouvait sous le Pu’uO’o s’est immédiatement dirigé vers la LERZ où le sol s’est légèrement soulevé, avec des séismes qui indiquaient la trajectoire suivie par la roche en fusion vers la surface.
Le 3 mai 2018, la lave a percé la surface dans les Leilani Estates, marquant le début de la plus grande éruption dans la LERZ du Kilauea depuis plus de 200 ans.
Au cours des semaines suivantes, le lac de lave qui se trouvait au sommet, dans l’Overlook Crater de l’Halema’uma’u, s’est vidangé tandis que le magma s’écoulait dans la LERZ, comme si une soupape s’était ouverte au fond de l’Overlook Crater. Aidé par la différence d’altitude de près de 900 mètres entre le sommet et la LERZ, le lac de lave s’est vidé régulièrement et le sommet de Kilauea s’est effondré en s’affaissant. Ce processus s’est accompagné d’une forte sismicité.
La vidange du lac de lave a entraîné des éboulements quasi permanents dans l’Overlook Crater vidé de son contenu. Des explosions ont généré d’impressionnantes colonnes de cendre, avec parfois des retombées de gros blocs sur le plancher de l’Halema’uma’u.
À la fin du mois de mai, les explosions au sommet du Kilauea ont été remplacées par des effondrements épisodiques. Au total, 62 événements d’effondrement ont secoué la zone sommitale en déclenchant des séismes qui ont à plusieurs reprises atteint une magnitude de M 5.3, occasionnant des dégâts au bâtiment du HVO et au Jaggar Museum. Les routes, les réseaux d’alimentation en eau et les fondations de certaines maisons dans le village de Volcano ont également été endommagés.
Un an après, les scientifiques du HVO continuent d’analyser les données de l’éruption sommitale du Kilauea. Avant 2018, les modèles indiquaient que l’activité explosive observée au sommet était provoquée par l’interaction entre les eaux souterraines et la haute température du conduit d’alimentation situé sous la caldeira du Kilauea. En revanche, les analyses de plusieurs explosions observées en 2018 laissent supposer que les gaz magmatiques sont le moteur de ces explosions.
Au lieu de s’effondrer d’un seul coup, on s’est rendu compte en 2018 que la caldeira du Kilauea pouvait s’affaisser progressivement sur de longues périodes, avec une déflation du sommet générant une forte sismicité qui constitue un risque majeur.
Les scientifiques ont également constaté que, dans certaines conditions, le sommet de Kilauea et la LERZ peuvent être reliés étroitement. Ceci est corroboré par l’équivalence approximative entre le volume de lave émis dans la LERZ et le volume du vide laissé par l’effondrement sommital ; tous deux sont de l’ordre de 1 kilomètre cube.

Une étude menée par un groupe international de scientifiques a révélé que la vitesse de propagation des ondes sismiques au sommet du Kilauea a montré des variations mesurables avant l’activité éruptive de 2018. Cette découverte représente un paramètre intéressant dans la prévision d’une future activité éruptive.
Source: USGS / HVO.

————————————————–

In a previous post, I explained that US geologists at HVO are gaining new insights from the Kilauea eruption in the Lower Esat Rift Zone. A new Volcano Watch article indicates that they are also learning a lot from the volcano’s 2018 summit collapses.

As soon as early April 2018, the volcano showed signs that change was coming, but the data provided by the instruments were too elusive to predict what was to happen. They only tracked an increasingly pressurized magmatic system between Kilauea’s summit and the Pu’uO’o cone.

On April 30th, 2018, lava emerged briefly from a crack on the cone’s west flank before the remaining magma drained into the East Rift Zone.  The Pu’uO’o crater collapsed, leaving a bottomless, empty cavity.

The magma which was beneath Pu’uO’o immediately headed toward the Lower East Rift Zone (LERZ) where the ground heaved slightly in response, with earthquakes indicating the path followed by the molten rock as it pushed downrift and toward the surface.

On May 3rd, lava erupted within the Leilani Estates. It marked the beginning of the largest eruption on Kilauea’s LERZ in over 200 years.

Over the next weeks, the summit lava lake withdrew deeper into the volcano as magma emptied into the LERZ, as if a valve had been opened at the bottom of the Overlook Crater. Aided by the nearly 900 metre elevation difference between the summit and the LERZ, the lava lake steadily drained and Kilauea’s summit collapsed inward. This in turn prompted elevated seismicity.

Recession of the lava lake resulted in near-constant rockfalls into the now empty Overlook Crater  Explosions sent impressive columns of ash into the sky, sometimes littering the ground around Halema’uma’u with dense blocks of rock.

By late May, Kilauea summit explosions were replaced by episodic collapse events. All told, 62 collapse events rocked Kilauea’s summit, triggering several M 5.3 earthquakeswhich caused damage at the HVO building, the Jaggar Museum. Roads and water system and residential foundations in Volcano were also damaged.

A year later, HVO scientists continue to process data from the 2018 eruption at the summit of Kilauea. Prior to 2018, models indicated that explosive summit activity was driven by steam explosions produced by the interaction between groundwater and the hot conduit below Kilauea’s caldera. But data from several 2018 explosions suggest that magmatic gas is the primary driver.

Rather than necessarily occurring as one big drop, the Kilauea caldera collapse can proceed incrementally over long periods of time, with ground shaking during sustained, rapid summit deflation and episodic collapse posing a major hazard.

Under certain conditions, Kilauea’s summit and the LERZ can be extremely well-connected through the core of the rift zone. This is supported by the rough equivalence of the LERZ erupted volume and the summit collapse void, both on the order of 1 cubic kilometre.

A study led by an international group of scientists has found evidence that seismic velocity – the speed at which seismic waves travel – within Kīlauea’s summit showed measurable changes leading up the 2018 activity. This finding potentially offers another means to forecast eruptive activity.

Source : USGS / HVO.

Panache de cendre et de poussière émis par le Pu’uO’o lorsque le plancher du cratère s’est effondré après l’évacuation du magma vers la LERZ (Crédit photo : USGS / HVO)

Panache de cendre émis par l’Overlook Crater de l’Halema’uma’u pendant la vidange du lac de lave (Crédit photo : USGS / HVO)

La sismicité pendant l’éruption du Kilauea en 2018 // Seismicity during Kilauea’s 2018 eruption

Le Centre d’alerte aux tsunamis dans le Pacifique (PTWC) a mis en ligne une vidéo en accéléré assez fantastique à l’occasion de l’anniversaire du début de la dernière éruption du Kilauea. .

https://youtu.be/Pc9hM08uscM

Cette animation commence le 1er avril 2018, un mois avant le début de l’éruption. On y voit une séquence habituelle de sismicité sur la Grande Ile d’Hawaii. L’animation se poursuit dans le temps à raison d’un jour par seconde d’animation. Les cercles indiquent l’emplacement des séismes au fur et à mesure qu’ils se produisent. La taille des cercles dépend de la magnitude des séismes tandis que les couleurs représentent leurs profondeurs. Trois jours avant le début de l’essaim sismique annonciateur du début de l’éruption, la lave de l’Overlook Crater a débordé sur le plancher de l’Halema’uma’u. Le 30 avril, l’éruption de Pu’uO’o qui durait depuis 35 ans a cessé et le cône s’est partiellement effondré. Cet événement a coïncidé avec le début d’un essaim sismique d’origine volcanique dans l’East Rift Zone du Kilauea. À partir de l’effondrement du Pu’uO’o, l’activité sismique a migré vers le nord-est le long de l’East Rift Zone, loin du Pu’uO ’o, ce qui correspondait au déplacement du magma dans cette direction. Le magma a atteint la surface sous forme de lave l’après-midi du 3 mai, avec l’apparition de coulées de lave qui ont détruit quelque 700 habitations et couvert plus de 30 kilomètres carrés, y compris Kapoho Bay. Dans cette animation, la tache orange en croissance représente ces coulées de lave.
En émergeant dans l’East Rift Zone le magma a parcouru une longue distance depuis sa source, le réservoir situé sous le sommet du Kilauea. La lave a commencé à quitter l’Overlook Crater le 2 mai, et le 15 mai le lac de lave s’était enfoncé de plusieurs dizaines de mètres. On observait alors des explosions dont certaines provoquaient des séismes de magnitude M 5.0 et envoyaient des nuages ​​de cendre à 9 000 mètres au dessus du niveau de la mer. À la fin du mois de mai cependant, les parois du cratère de Halema’uma’u’u ont commencé à s’effondrer, élargissant le cratère et faisant disparaître l’Overlook Crater, avec la fin de l’activité explosive. Non seulement le cratère de l’Halema ’uma ’u s’est effondré, mais tout le plancher de la caldeira du Kilauea s’est affaissé tandis que le magma s’évacuait du sommet pour aller alimenter l’éruption sur l’East Rift Zone. Cette déflation du sommet du volcan a généré une activité sismique encore jamais observée sur le volcan.
Afin de mieux illustrer l’activité sismique, l’animation comporte dans sa partie inférieure des graphiques montrant des statistiques. Le graphique du haut montre les magnitudes des séismes à mesure qu’ils se produisent. Le graphique du bas montre le nombre total de séismes par heure. Le 30 avril, la fréquence des séismes a atteint une centaine par jour, avec une magnitude supérieure à M 4,0. L’événement le plus significatif a été enregistré pendant l’après-midi du 4 mai, avec une magnitude de M 6,9. Il a généré de nombreuses répliques et un petit tsunami sans gravité. Ce même séisme a également repoussé le flanc du volcan Kilauea de 50 centimètres vers l’océan.
Avec l’affaissement de la caldeira du Kilauea et l’effondrement de l’Halema’uma’u, le nombre de séismes a considérablement augmenté et le 15 juin, on en recensait plus de 700 par jour. Ces séismes se sont multipliés pour culminer avec des événements de magnitude M 5,0, voire plus, tous les un à deux jours. Une pause de quelques heures intervenait, puis tout recommençait. Ce cycle s’est répété 62 fois et s’est terminé avec un dernier événement de M 5.0 le 2 août, avant de cesser complètement deux jours plus tard, avec un retour de la sismicité à un niveau normal. L’éruption dans la Lower East Rift Zone du Kilauea était terminée Source: Centre d’alerte aux tsunamis du Pacifique (PTWC).

——————————————————

The Pacific Tsunami Warning Center (PTWC) released a fantastic time lapse video for the anniversary of the start of the last Kilauea eruption. .

https://youtu.be/Pc9hM08uscM

 This animation begins on April 1st, 2018, one month before the start of the eruption with the usual earthquake pattern observed at Hawaii Big Island and proceeds forward in time at a rate of one day per second of animation time. Circles indicate the locations of earthquakes as they occur, with their sizes indicating their magnitudes and their colours representing their depths. Three days before the swarm began, the lava within the “Overlook crater” inside Halema‘uma‘u overflowed. Then on April 30th, the 35-year-old Pu’uO’o eruption ceased and its cone partially collapsed. This event coincided with the start of a swarm of volcanic earthquakes on Kilauea’s East Rift Zone. Starting with that collapse, earthquake activity moved northeast along the East Rift Zone away from Pu’uO’, indicating the movement of magma below the ground in this direction. Magma reached the surface and erupted as lava on the afternoon of May 3rd, with lava flows that destroyed about 700 homes, and covered more than 30 square kilometres, including Kapoho Bay. In this animation a growing orange field represents these lava flows.

The eruption of lava from the East Rift Zone drew magma away from its reservoir under Kilauea’s summit. Lava began to drain from the “Overlook crater” on May 2nd and by May 15th, its lava lake had dropped tens of metres and was producing explosions, some of which were strong enough to register as M 5.0 earthquakes and send ash clouds to 9,000 metres above sea level. By the end of May, however, the walls of Halema‘uma‘u had begun to collapse, thus widening itself and burying its “Overlook crater” and ending the explosive activity. Not only was Halema‘uma‘u Crater collapsing, but the entire floor of the Kilauea caldera was dropping as magma continued to drain from the summit to feed the flank eruption. This deflation of the volcano’s summit generated an unprecedented level of seismic activity with a peculiar pattern.

To help illustrate this pattern this animation includes charts showing some statistics about the earthquake activity shown here. The top graph shows the earthquakes’ magnitudes as they occur. The bottom graph shows the total number of earthquakes per hour. On April 30th,  the frequency of earthquakes increased to about 100 per day with their magnitudes exceeding M 4.0. The largest earthquake struck on the afternoon of May 4th with a magnitude of M 6.9. It produced numerous aftershocks and a small tsunami. This largest earthquake also moved the flank of Kīlauea Volcano as much as 50 centimetres seaward.

With the subsidence of the Kilauea caldera and the collapse of Halema‘uma‘u the number of earthquakes dramatically increased and by June 15th there were more than 700 per day. These earthquakes would repeatedly grow in number and culminate with a magnitude M 5.0 or above event every one to two days, pause for a few hours, then start over again. This cycle repeated 62 times with the last of the M 5.0 events on August 2nd, and ceasing altogether two days later when seismicity suddenly returned to normal background levels, coinciding with the end of the vigorous eruption of lava from the East Rift Zone.

Source :  Pacific Tsunami Warning Center (PTWC).

Source: PTWC

Quelques nouvelles d’Hawaii // Some news from Hawaii

L’éruption a été déclarée définitivement terminée par le HVO et tout est actuellement calme sur le Kilauea. Il n’y a aucune lave active sur la Grande Ile d’Hawaii. Aucun changement majeur n’a été observé sur le Pu’uO’o. Un récent survol en hélicoptère a permis de constater que la morphologie du cratère vide se modifie lentement suite à des effondrements de ses parois. Le magma a quitté le Pu’uO’o le 30 avril 2018 et a fait surface quelques jours plus tard dans la Lower East Rift Zone. Après cette évacuation de la lave, le cratère présentait une profondeur d’environ 356 mètres. Des matériaux provenant d’effondrements des parois du cratère ont, depuis cette époque, recouvert son plancher qui se trouve aujourd’hui à 286 mètres de profondeur.

Un modèle 3D du cratère du Pu’uO’o a été réalisé à partir d’images thermiques obtenues lors du récent survol. Les zones blanches montrent les points chauds dans le cratère. La forme du cratère continue de changer suite à de petits effondrements qui se produisent de temps à autre. Une station GPS sur le flanc nord du Pu’uO’o montre un affaissement constant de la lèvre du cratère. Ce mouvement est dû au glissement du rebord instable du cône.
Voici une courte vidéo du survol:
https://volcanoes.usgs.gov/observatories/hvo/multimedia_uploads/multimediaFile-2662.mp4

Dans ses dernières mises à jour, le HVO indique que les paramètres relatifs à la déformation du sol sont à mettre en relation avec le remplissage du réservoir magmatique profond du Kilauea. Les émissions de SO2 dans l’East Rift Zone et au sommet du Kilauea restent faibles.
Source: USGS / HVO.

——————————————–

With the eruption definitely declared over by HVO, everything is currently quiet on Kilauea Volcano. There is currently no active lava to be seen on the Big Island. No major changes have been observed at Pu’uO’o. A recent helicopter overflight allowed to see that the empty crater is slowly being altered by small rockfalls within it. Magma drained from beneath Pu’uO’o on April 30th, 2018 and erupted a few days later in the lower East Rift Zone. After the magma drained, the crater was roughly 356 metres deep. Collapses on the crater walls have since filled the deepest part of the crater with rockfall debris. Today, the deepest portion of the crater is 286 metres.

A 3D model of the Pu’uO’o crater was constructed from thermal images taken during the recent overflight. White areas show warm spots in the crater. The shape of the crater continues to change through occasional small collapses. A GPS station on the north flank of Pu’uO’o has been showing steady slumping of the craters edge. This motion is due to the sliding of the unstable edge of the cone.

Here is a short video of the overflight:

https://volcanoes.usgs.gov/observatories/hvo/multimedia_uploads/multimediaFile-2662.mp4

In its latest updates, HVO indicated that deformation signals are consistent with the refilling of Kilauea Volcano’s deep East Rift Zone magma reservoir. SO2 emission rates on the East Rift Zone and at Kilauea’s summit remain low.

Source: USGS / HVO.

Voici deux images montrant le cratère du Pu’uO’o le 11 mai 2018 et le 18 mars 2019. On se rend parfaitement compte de la remontée du plancher suite aux effondrements des parois du cratère.

  (Source : USGS / HVO)

Hawaii: La nostalgie de l’éruption du Pu’uO’o // Nostalgia of the Pu’uO’o eruption

Bien que la lave ait cessé de couler il y a plusieurs mois, certains scientifiques à l’Observatoire des Volcans d’Hawaii (HVO) se demandent encore si la dernière éruption du Kilauea est réellement terminée! Il est vrai qu’ils se sont trompés dans leur pronostic et avaient annoncé une éruption beaucoup plus longue. Il est toujours difficile d’admettre qu’on a eu tort !
Le 3 janvier 2018 a marqué le 35ème anniversaire du début de l’éruption du Pu’uO’o. Au cours des trois dernières décennies, la lave est apparue presque continuellement le long de la Middle East Rift Zone. Des petites pauses dans l’activité de surface se sont produites principalement entre les épisodes de fontaines de lave de 1983 à 1986, puis au cours de certains épisodes pendant lesquels sont apparues des fractures secondaires, des intrusions ou des effondrements partiels du plancher du cratère.
Compte tenu de la longévité de l’éruption du Pu’uO’o, les gens s’étaient habitués à voir la lave qui a attiré des millions de touristes du monde entier. L’éruption a été quasiment ininterrompue. Le mot quasiment est important  car on a tout de même observé une centaine de brèves pauses d’activité tout au long des 35 années de l’événement ; la plupart ont duré quelques heures à quelques jours. Les six pauses les plus longues ont duré chacune un à deux mois et toutes se sont produites entre des épisodes de fontaines de lave au cours des deux premières années.
Les archives de l’éruption du Pu’uO’o montrent que des pauses relativement longues sont apparues au cours des épisodes 3 et 4 (65 jours), des épisodes 32 et 33 (52 jours), des épisodes 12 et 13 (50 jours), des épisodes 39 et 40 (49 jours), des épisodes 25 et 26 (43 jours) et les épisodes 31 et 32 ​​(38 jours).
Après les épisodes de fontaines de lave, on a observé plusieurs pauses dans l’éruption du Pu’uO’o, d’une durée d’une semaine à un mois. Ainsi, il y a eu une pause de 10 jours en février 1992 au moment la fermeture du conduit d’alimentation du Kupaianaha, ce qui a mis fin à l’épisode 48. Un an plus tard, il y eu une pause de huit jours en février 1993 après qu’une intrusion en amont de la zone de rift ait provoqué un effondrement du cratère du Pu’uO’o. En février 1996, une pause de neuf jours est survenue après une augmentation des émissions de lave.

La plus longue interruption après un épisode de fontaines de lave a duré 24 jours après l’épisode 54 dans le Napau Crater en février 1997. En septembre 1999, une pause de 11 jours a été observée pendant l’épisode 55, après l’effondrement partiel du plancher du cratère du Pu’uO’o. .
Plus récemment, il y a eu deux pauses en 2011: une pause de 18 jours après l’éruption fissurale de Kamoamoa en mars et une pause de six jours après l’épisode 60 sur le flanc ouest du Pu’uO’o en août.
Le 30 avril 2018, la situation a totalement changé. Avec l’effondrement spectaculaire du Pu’uO’o, la lave a totalement disparu du site pendant le reste de l’année 2018. Le 30 décembre a marqué sept mois d’absence d’activité sur le Pu’uO’o et cette date revêt une importance particulière. En effet, la.Smithsonian Institution considère qu’une phase d’activité est terminée si le volcan ne s’est pas manifesté à nouveau au bout de  90 jours. Aujourd’hui, après une interruption de 7 mois, il est extrêmement improbable que la lave réapparaisse sur le Pu’uO’o. Compte tenu du critère proposé par la Smithsonian Institution, l’éruption du Pu’uO’o peut être considérée comme définitivement terminée. Le 36ème anniversaire de l’éruption le 3 janvier 2019 n’aura donc jamais été célébré !
Cela ne signifie pas que le Kilauea est définitivement éteint. De nouvelles éruptions ont commencé ailleurs sur le volcan après des mois, voire des décennies, de calme. Le magma est toujours présent sous le volcan, comme le prouvent les déformations observées le long de la Middle East Rift Zone. Il ne faudrait pas oublier que le Kilauea est un volcan actif qui entrera de nouveau en éruption à plus ou moins longue échéance.
Source: HVO.
Comme je l’ai déjà écrit, les scientifiques en poste à l’Observatoire du Piton de la Fournaise (Ile de la Réunion) devraient se demander si les éruptions à répétition du volcan font partie du même processus éruptif ou si elles doivent être considérées comme différents épisodes d’activité. Après tout, si l’on associe certaines éruptions du Piton de la Fournaise en fonction des critères de la Smithsonian Institution, elles pourraient avoir duré beaucoup plus longtemps!

————————————————-

Although lava stopped flowing several months ago, some people at the Hawaiian Volcanoes Observatory (HVO) are still wondering whether the last Kilauea eruption is over !

January 3rd, 2018 marked the 35th anniversary of Pu’uO’o. For the past three and a half decades, lava had erupted almost continuously from the middle East Rift Zone (ERZ). Minor pauses in surface activity mostly occurred between the fountaining episodes in 1983 – 1986, and subsequently during a few episodes marked by subsidiary fissures, intrusions, or partial crater floor collapses.

Given the longevity of the Pu’uO’o eruption, people had been accustomed to having nearly-uninterrupted access to lava., which attracted millions of tourists around the globe. The eruption was “nearly-uninterrupted” because there were over one hundred brief pauses in surface activity throughout the 35-year-long event, most lasting hours to a couple days. The six longest pauses during the Pu’uO’o activity were each one to two-months-long, and all occurred between fountaining episodes in the first two years.

Specifically, long pauses between fountains occurred during episodes 3 and 4 (65 days), episodes 32 and 33 (52 days), episodes 12 and 13 (50 days), episodes 39 and 40 (49 days), episodes 25 and 26 (43 days), and episodes 31 and 32 (38 days).

After the fountaining episodes, there were several Pu’uO’o eruption pauses lasting between one week and one month. Specifically, there was a 10 day pause in February 1992 after the Kupaianaha vent shut down, ending episodes 48. A year later there was an eight-day pause in February of 1993 after an uprift intrusion caused the Pu’uO’o crater floor to collapse. A nine-day pause in February 1996 occurred after an observed surge in effusion rate.

The longest eruption hiatus after the fountaining phase lasted 24 days following the episode 54 fissure in Napau Crater in February 1997. In September 1999, there was an 11-day pause during episode 55 after a partial collapse of the Pu’uO’o crater floor.

Most recently, there were two pauses in 2011: an 18-day pause after the March Kamoamoa fissure, and a six-day pause after the episode 60 west flank break out in August.

However, on April 30th, 2018, everything changed. The catastrophic collapse of Pu’uO’o left the iconic eruption site and the surrounding lava flow fields devoid of lava through the rest of 2018. December 30th marked the seven-month anniversary of no surface activity at Pu’uO’o and is effectively a concluding milestone for this long-lived event.

The Smithsonian Institution classifies the end of continuous volcanic activity based on an absence of eruptive activity over a 90-day period. Statistically, after a 7-month gap in activity, it is extremely unlikely that lava will resume activity within Pu’uO’o. Given the Smithsonian Institution criterion, the Pu’uO’o eruption could be considered over.  The 36th anniversary of continuous eruption, on January 3rd, 2019, cannot be celebrated.

This does not mean Kilauea Volcano is dead. New eruptions have previously begun elsewhere on Kilauea after months to decades of quiet. Magma is being supplied to the volcano, and  deformation data shows evidence for movement of molten rock through the magmatic system, refilling the middle ERZ. It is important to note that Kilauea is still an active volcano that will erupt in the future.

Source : HVO.

As I put it before, scientists at the Observatory of Piton de la Fournaise (Reunion Island) should wonder whether the repeated eruptions of the volcano are part of the same eruptive process or due to different episodes of activity. After all, if we connect the different eruptions of Piton de la Fournaise using the Smithsonian Institution approach, some eruptions might be considered much longer!

Avec les explosions, les lacs et coulées de lave, la dernière éruption du Pu’uO’o a offert un très beau spectacle (Photos: C. Grandpey)

Les leçons de l’éruption du Kilauea (Hawaii) // The lessons of the Kilauea eruption (Hawaii)

Maintenant que la dernière éruption du Kilauea est terminée, les scientifiques du HVO vont pouvoir étudier attentivement ce qui s’est réellement passé et, si possible, essayer de prévoir les événements futurs sur le volcan.
On peut affirmer aujourd’hui que l’éruption du Kilauea en 2018 a été la plus importante des 200 dernières années. En l’espace de quatre mois environ, le volcan a déversé au moins 0,83 kilomètre cube de lave – l’équivalent de plus de 300 000 piscines olympiques – sur une superficie d’environ 34 kilomètres carrés. L’éruption a transformé le paysage et ajouté plus de 2,5 kilomètres carrés de nouvelle terre à la côte sud de la Grande Ile.
Des événements spectaculaires se sont déroulés au cours de l’éruption, comme l’effondrement de la caldeira sommitale, le huitième événement de ce type observé sur les volcans de la planète depuis 1900. Ces événements ont offert aux chercheurs une occasion unique de répondre à des questions géologiques et d’améliorer les outils de prévision éruptive.

Rappelons-nous ce qui s’est passé sur le Kilauea depuis le début de l’éruption:
L’éruption a débuté début mai, lorsque le lac de lave dans l’Overlook Crater de l’Halema’uma’u a débordé, puis a commencé à se vidanger rapidement, chutant de plusieurs centaines de mètres en quelques jours. Cet événement a envoyé le magma sous la surface de la terre jusqu’à une quarantaine de kilomètres vers le sud-est, où il a ouvert des fractures et déclenché des séismes dans la Lower East Rift Zone (LERZ) à partir du 3 mai 2018. De nouvelles fractures ont continué à s’ouvrir pendant des semaines tandis que la caldeira sommitale s’effondrait en provoquant des explosions de gaz et de cendre.
À la fin du mois de mai, l’éruption s’est concentrée autour de la Fracture n° 8, avec des fontaines de lave atteignant 80 mètres de hauteur. Un réseau de chenaux s’est mis en place et la lave a détruit tout sur son passage en se dirigeant vers l’océan. Elle a continué à couler jusqu’au 4 août, jour où l’éruption a cessé brusquement.
Grâce aux instruments que le HVO avait installés sur le Kilauea, les chercheurs ont pu assez bien comprendre comment le magma se déplaçait dans le système de fractures et ils ont été en mesure d’évaluer la quantité de magma qui était mise en oeuvre. Cependant, il reste encore d’importantes questions en suspens, notamment ce qui a déclenché l’éruption et pourquoi elle s’est arrêtée si soudainement.
Les scientifiques du HVO expliquent que l’éruption a débuté en imitant de nombreux autres événements de l’histoire récente du Kilauea, avec une accumulation de pression dans le secteur du Pu’uO’o, en aval du sommet. Au cours des dernières décennies, l’inflation du Pu’uO’o avait déjà provoqué des épanchements de lave dans le secteur. En mai 2018, une rupture s’est produite dans la partie profonde du système d’alimentation, ce qui a permis à beaucoup plus de magma de se déplacer vers la LERZ.
Les scientifiques ne comprennent pas pourquoi cette rupture profonde s’est produite et, au bout du compte, il sera sûrement difficile de tirer des conclusions définitives sans référence à des événements similaires en guise de comparaison. La raison pour laquelle l’éruption s’est arrêtée du jour au lendemain sera peut-être plus facile à déterminer une fois que les chercheurs auront associé toutes les données recueillies lors de l’éruption avec des modèles d’écoulement de fluides.
En dépit du contrôle étroit du déroulement de l’éruption, les scientifiques ont été incapables de prévoir son évolution. La plupart d’entre eux pensaient qu’elle durerait des mois, voire un an. C’est la raison pour laquelle ils ont été si lents à admettre qu’elle était définitivement terminée.
Il reste d’autres mystères à résoudre, notamment ce qui a déclenché les événements explosifs qui ont secoué le sommet du Kilauea à partir du mois de mai.
Source: Earther.

———————————————-

Now that the last Kilauea eruption is over, scientists at the US Geological Survey’s Hawaii Volcano Observatory (HVO) will have the opportunity to study what really happened and, if possible, predict future events on the volcano.

One can now definitively say that Kilauea’s 2018 eruption was its biggest in at least 200 years. In the span of about four months, the volcano spilled at least 0.83 cubic kilometres of lava – the equivalent of over 300,000 Olympic-sized swimming pools – over an area of about 34 square kilometres, transforming the landscape and adding more than 2.5 square kilometres of new land to the coast.

The dramatic sequence of events that unfolded during the eruption, like the eighth caldera collapse scientists have witnessed at any volcano on Earth since 1900, have given researchers an unprecedented opportunity to answer basic geological questions and improve the tools for trying to predict future eruptions.

Let’s remember what happened at Kilauea volcano from the start of the eruption:

The action at Kilauea started in early May, when the lava lake in the Overlook crater overflowed and next began to rapidly drain, dropping hundreds of metres in a matter of days. This sent magma streaming below the surface some 40 kilometres to the southeast, where it opened new fissures and triggered earthquakes in the Lower East Rift Zone (LERZ) beginning on May 3rd, 2018. Fresh fissures continued to open for weeks as the newly drained summit caldera collapsed in on itself, triggering explosive eruptions of gas and ash.

By the end of May, the eruption had concentrated around Fissure 8, with lava fountains up to 80 metres high, feeding a network of channels that ultimately destroyed everything on their way to the ocean. Lava continued to flow until August 4th, when things shut off abruptly.

Thanks to the scientific instruments HVO already had in place around Kilauea, researchers have developed a pretty good picture of how magma moved through the system, and they were able to better constrain how much molten rock is stored there. However, there are still major unanswered questions, including what tipped off the eruption in the first place and why it stopped so suddenly.

HVO scientists explain that the eruption started out looking like many other events in Kilauea’s recent history, with pressure building up at the Pu’uO’o vent down-rift of the summit. For the past few decades, inflation at Pu’uO’o has caused new lava outbreaks in the area. But this time, something ruptured in that deeper part of the plumbing system, which allowed a lot more magma to move much further into the LERZ.

It is not understood why that deep rupture occurred, and ultimately it might be tough to draw definitive conclusions without any similar events to compare it to. The mystery of why Kilauea shut off virtually overnight is perhaps more within reach once researchers combine all the data collected during the eruption with models of fluid flow.

Although this is one of the most well monitored eruptions in the world, scientists still could not predict its evolution. Most of them said it would last months or even a year. This is the reason why they were so slow to admit it was definitely over

There are other mysteries to solve, including what set off the explosive events that rocked the summit crater beginning in May.

Source : Earther.

Les fontaines de lave dans la Fracture n°8 ont constitué l’un les événements les plus spectaculaires de la dernière éruption du Kilauea (Crédit photo: USGS / HVO)