Le Kilauea (Hawaii) de 2018 à 2022 // Kilauea Volcano (Hawaii) between 2018 and 2022

Le 3 mai 2022 a marqué le 4ème anniversaire du début de l’éruption spectaculaire du Kilauea en 2018. La lave a envahi une grande partie du District de Puna, avec des coulées qui ont détruit quelque 700 structures. L’événement a également été remarquable par l’effondrement du plancher du cratère de l’Halema’uma’u au sommet du volcan. Dans un nouvel article Volcano Watch, le Hawaiian Volcano Observatory (HVO) rappelle au public les événements qui ont émaillé les 4 dernières années. Dans le même temps, les scientifiques du HVO essayent de comprendre ce que les changements récents peuvent signifier pour l’activité du Kilauea dans les prochaines années.
En 2018, Kilauea était en éruption depuis 1983, donc 35 ans, au niveau du cratère du Pu’uO’o, au coeur de l’East Rift Zone. Le cratère de l’Halemaʻumaʻu a, lui aussi, repris du service et, de 2008 à 2018, il a hébergé un lac de lave qui a attiré des touristes du monde entier; J’étais l’un d’eux en 2011.

Photo : C. Grandpey

Alors que l’équipement du HVO enregistrait des changements sur le Kilauea en 2018, le premier événement majeur s’est produit le 30 avril 2018 avec l’effondrement soudain du Pu’uO’o.

Crédit photo : HVO

Quelques jours plus tard, le 3 mai 2018, l’activité sismique a migré vers les Leilani Estates où des fissures se sont ouvertes. 24 fissures ont été observées à la fin du mois de mai, 24 fissures et des coulées de lave ont envahi une partie du District de Puna jusqu’en septembre.

Crédit photo : HVO

Le cratère sommital de l’Halema’uma’u a également subi des changements majeurs avec, en particulier, la disparition du lac de lave. Des effondrements majeurs se sont accompagnés de séismes qui ont secoué l’ensemble du sommet. Au final, les effondrements ont abaissé le fond du cratère de plus de 500 m.

Crédit photo : HVO

La fin de l’éruption de 2018 et les événements d’effondrement de la caldeira ont été suivis d’une période de calme que le Kilauea n’avait pas connue depuis plus de 35 ans. Un nouveau changement est ensuite intervenu sur le volcan.
Pour la première fois dans l’histoire, une pièce d’eau est apparue au fond de la cavité en entonnoir de Halemaʻumaʻu. Observée pour la première fois en juillet 2019, l’eau a continué à remplir lentement le cratère au cours de l’année et demie suivante et a atteint une cinquantaine de mètres de profondeur.

Crédit photo : HVO

Dans la nuit du 20 décembre 2020, l’Halema’uma’u est entrée dans une nouvelle phase éruptive qui a fait s’évaporer le lac d’eau en moins de deux heures. En moins d’une journée, le niveau de la lave a dépassé le niveau précédent de l’eau et le lac a continué à croître et à remplir le cratère jusqu’en mai 2021.

Crédit photo : HVO

Après quelques semaines de repos, l’Halemaʻumaʻu a commencé une nouvelle éruption en septembre 2021 et elle continue à ce jour.

Les deux éruptions ont rempli l’Halemaʻumaʻu avec une hauteur de plus de 320 m de lave.

Crédit photo : HVO

Une activité de lac de lave presque continue s’est produite pendant des décennies au sommet du Kilauea au 19ème siècle. Toutefois, les scientifiques savent que le comportement du volcan peut changer rapidement d’un jour à l’autre. Une question importante est de savoir ce que les récents changements laissent présager pour l’avenir. L’apparition du lac d’eau au sommet en 2019 a rappelé le risque explosif sur le Kilauea. Aujourd’hui, on peut se demander si le volcan est en train de revenir à une période d’activité prolongée au sommet, comme ce fut le cas dans les années 1800, ou si l’activité ressemblera à celle des trois décennies qui ont précédé le début de l’éruption du Pu’uO’o. Même si le Kilauea est truffé d’instruments de mesure, personne n’est en mesure de répondre à ces questions.
Source : USGS, HVO.

——————————————————

May 3rd, 2022 marked the 4th anniversary of the start of Kilauea’s dramatic 2018 eruption that destroyed much of lower Puna with lava flows that destroyed 700 structures or so. The event was also remarkable with the collapse of Halema’uma’u’s crater floor at the summit of the volcano. In a new Volcano Watch article, the Hawaiian Volcano Observatory (HVO) reminds the public of the events of the past 4 years. At the same time, HVO scientists consider what these recent changes might mean for future activity at Kilauea.

Kilauea had been erupting for 35 years (1983–2018) at Pu’uO’o on the middle East Rift Zone. The summit crater of Halemaʻumaʻu joined the action, and from 2008 to 2018 hosted a lava lake that drew people from around the world; I was among them in 2011.

While HVO equipment was recording the beginning of changes at Kilauea in 2018, the first major visible sign that something special was happening occurred on April 30th, 2018 with the sudden collapse at Pu’uO’o. (see photo above)

Just a few days later, on May 3rd, 2018, seismic activity migrated beneath Leilani Estates and fissures opened. Before May was over, 24 fissures erupted and lava flows inundated parts of lower Puna until September. (see photo above)

The summit crater of Halemaʻumaʻu also underwent major change, and its lava lake disappeared This meant that ava flows in lower Puna were draining the summit magma reservoir, Halemaʻumaʻu underwent 62 collapses (some with explosive eruptions). Each collapse was marked by earthquakes that were felt throughout the summit. In the end, the collapses lowered the crater floor by more than 500 m. (see photo above)

The end of the 2018 eruption and caldera collapse events were followed by a period of quiescence that had been unknown at Kilauea for over 35 years. It also brought a new and interesting change to the volcano.

For the first time in history, a water lake formed within the deepened pit of Halemaʻumaʻu. First noticed in July 2019, the water continued to slowly fill the crater over the next year and a half until it was about 50 m deep. (see photo above)

On the night of December 20th, 2020, the water lake boiled away within an hour or two as Halemaʻumaʻu burst into eruption again. Within less than a day the new lava lake was deeper than the water lake had been, and it continued to grow and fill in the crater until May 2021. (see photo above)

After a few weeks’ rest, Halemaʻumaʻu began a new eruption in September 2021; the eruption continues to this day. These two eruptions have filled Halemaʻumaʻu with over 320 m of lava. (see photo above)

Nearly continuous lava lake activity occurred for decades at Kilauea’s summit in the 19th century. Scientists know that the volcano has the potential to change quickly from one day to the next. An important question is to know what the recent changes portend for Kilauea’s future. The appearance of the water lake at the summit in 2019 renewed attention on Kilauea’s explosive potential. One may wonder whether the volcano is returning to a period of prolonged summit activity similar to the 1800s, or whether future activity will be more similar to that in the three decades prior to the start of the Pu’uO’o eruption. Even though measuring instruments have been set up everywhere on Kilauea, no one is able to answer these quaestions.

Source: USGS, HVO.

Retour sur l’éruption de Kamoamoa (Hawaii) en 2011 // The Kamoamoa eruption (Hawaii) in 2011

Au cours des 35 années qu’elle a duré, l’éruption du Pu’uO’o dans la Middle East Rift Zone (MERZ) du Kilauea a été l’occasion pour les scientifiques d’améliorer leur travail de recherche et de surveillance des volcans hawaiiens. Même les éruptions de courte durée, comme celle de Kamoamoa qui a duré quatre jours en 2011, ont offert des informations importantes.
Dans les mois qui ont précédé l’éruption de Kamoamoa, la lave a rempli le cratère du Pu’uO’o. Une inflation continue a été enregistrée au sommet du Kilauea et le long de la MERZ. Au fur et à mesure que le système se pressurisait, la sismicité augmentait dans la partie supérieure de la Zone de Rift Est (East Rift Zone) et le lac de lave sommital atteignait ses niveaux les plus élevés..
Le 5 mars 2011, une secousse et une augmentation de l’activité sismique, accompagnées d’une déflation rapide du Pu’uO’o, ont été observées en début d’après-midi. Un intrusion dans la partie supérieure de la zone de rift a fait s’évacuer le magma qui se trouvait sous le Pu’uO’o. Peu de temps après, le plancher du Pu’uO’o a commencé à s’affaisser et le niveau du lac de lave sommital a chuté.
Alertés par des alarmes sismiques en temps quasi réel et des données de déformation, les scientifiques du HVO ont rapidement effectué un survol de la zone et ont pu assister au début de l’éruption de Kamoamoa entre le Pu’uO’o et le cratère Napau.
Au cours des premiers jours, l’activité éruptive a oscillé entre deux systèmes de fractures, avec des bouches dont l’activité alternait. En début de journée le 8 mars 2011, l’éruption s’est concentrée sur les deux extrémités opposées des fractures. L’activité a diminué dans l’après-midi du 9 mars, et l’épisode éruptif de Kamoamoa a pris fin vers 22h30..
Le dyke et l’éruption qui a suivi ont joué un rôle de soupape et permis l’évacuation de la pression qui s’était accumulée depuis des mois dans le système d’alimentation du Kilauea.
Pendant l’éruption, afin de compléter les données en temps quasi réel fournies par les stations de surveillance du HVO, les scientifiques ont également récolté des échantillons de lave, effectué des mesures de gaz, cartographié les coulées de lave et les fractures, pris des photos et des notes sur le terrain. Toutes ces données importantes permettent de mieux comprendre les éruptions volcaniques et leurs processus.
Les analyses de plusieurs échantillons de lave prélevés tout au long de l’éruption ont montré que la lave était initialement plus évoluée que celle collectée sur le champs de lave du Pu’uO’o avant l’éruption de Kamoamoa. Cela signifie que le dyke qui a alimenté l’éruption a d’abord émis – ou s’est mélangé à – un magma plus ancien qui était stocké dans la zone de rift. Au fur et à mesure que l’éruption s’est poursuivie et que du magma juvénile est arrivé dans le système, la composition de lave a évolué pour ressembler à celle qui avait été émise précédemment au niveau du Pu’uO’o. Il est intéressant de noter qu’une évolution semblable de la composition de la lave a été observée au début de l’éruption de 2018.
Source : USGS, HVO.

J’étais à Hawaii quelques jours avant le début de l’éruption de Kamoamoa. Vous pourrez voir ci-dessous quelques photos du puits de lave sommital, du cratère du Pu’uO’o et de l’East Rift Zone où la lave commençait déjà à s’écouler.

——————————————–

The 35-year-long Pu’uO’o eruption on Kilauea’s Middle East Rift Zone (MERZ) was a remarkable opportunity for scientists to improve volcano research and monitoring. Even short-lived episodes in this eruption, like the four-day-long Kamoamoa eruption, offered important insights.

In the months leading up to the 2011 Kamoamoa eruption, lava filled Pu’uO’o crater. Steady inflation was recorded at the summit and the MERZ. As the system pressurized, seismicity increased in the upper East Rift Zone and the summit lava lake rose to the highest levels recorded before that time.

On March 5th, 2011, seismic tremor and increased earthquake activity, accompanied by rapid deflation at Pu’uO’o, began abruptly in the early afrternoon. An intrusion uprift drew magma away from beneath Pu’uO’o. Shortly after, the Pu’uO’o crater floor began to subside and the summit lava lake level dropped.

HVO alerted by near real-time seismic alarms and deformation data, quickly conducted an overflight of the area and witnessed the start of the Kamoamoa eruption between Pu’uO’o and Napau craters.

In the first few days, eruptive activity shifted around two fissure systems with vents repeatedly starting and stopping. Early on March 8th, the eruption focused on the two opposite ends of the fissures. The activity waned in the afternoon of March 9th, and around 10:30 p.m. the Kamoamoa eruptive episode was over.

The dike and subsequent eruption acted as a pressure release valve of Kilauea’s magma plumbing system that had been pressurizing for months.

During the eruption, to supplement the near real-time data from HVO monitoring stations, scientists also collected lava samples and gas measurements, mapped lava flows and ground cracks, took photos and detailed field notes. These important data sets help to better understand volcanic eruptions and their processes.

Analyses of multiple lava samples taken throughout the eruption showed that the erupted lava was initially more evolved than the lava collected on the Pu’uO’o flow fields prior to the Kamoamoa eruption. This means that the dike which fed the eruption either pushed out, or mixed with, a body of cooler magma that had been stored in the rift. As the eruption continued, the lava compositions began to resemble those previously erupted at Pu’uO’o, as juvenile lava flushed through the system. This is what happened in the beginning of the 2018 eruption.

Source : USGS, HVO.

I was in Hawaii a few days before the start of the Kamoamoa eruption. Here are some photos of the summit lava pit crater, the Pu’uO’o crater and the East Rift Zone where lava was already beginning to flow.

Photos : C. Grandpey

Les « pauses » dans les éruptions du Kilauea (Hawaii) // « Pauses » in the Kilauea eruptions (Hawaii)

Dans une note publiée le 1er juin 2021, j’expliquais que l’Observatoire des Volcans d’Hawaii (le HVO) jouait sur les mots et refusait d’admettre que l’éruption du Kilauea était terminée, bien qu’aucune activité n’ait été observée depuis le 27 mai 2021. Les dernières mises à jour de l’observatoire indiquent que « le Kilauea n’est plus en éruption. Aucune activité de surface n’a été observée. »

Dans un nouvel article, le HVO nous informe qu' »une fenêtre de trois mois est nécessaire pour définir une « pause » dans une éruption. Cela signifie que nous devrons attendre encore 90 jours (jusqu’au 24 août 2021) pour voir si le HVO admet enfin que l’éruption est terminée… ce dont je ne suis pas sûr !!

Le HVO explique que lorsqu’un intervalle d’activité dure plus de 90 jours, il se transforme généralement (mais pas toujours) en une période de « repos volcanique » beaucoup plus longue qui peut durer plusieurs années, voire plusieurs millénaires. Toute nouvelle activité éruptive devient alors « la prochaine éruption ».

En examinant l’histoire éruptive du Kilauea depuis 1823, la fenêtre d’inactivité de 90 jours a toujours été observée, à une exception près. Une pause d’une durée de trois mois et demi s’est produite lors de l’éruption du Mauna Ulu de 1969 à 1974.

Par la suite, les pauses les plus longues sur le Kilauea ont été enregistrées au cours des trois premières années (1983-1986) de l’éruption du Pu’uO’o, période pendant laquelle 48 séquences éruptives ont été séparées par des pauses qui ont duré de plusieurs jours à plusieurs mois.

L’éruption du Kilauea Iki en 1959 a également connu des pauses de plusieurs heures à plusieurs jours entre les épisodes de fontaine de lave.

Toutes les autres « pauses » pendant les éruptions du Kilauea ont été suivies d’une reprise d’activité un mois ou moins plus tard.

Après une fenêtre d’inactivité de 90 jours lors de l’éruption de 2018, le HVO a décrété que l’éruption était terminée. Le Kilauea est ensuite entré dans une période de repos de 27 mois qui s’est terminée avec l’éruption sommitale dans le cratère de l’Halema’uma’u le 20 décembre 2020.

Source : USGS/HVO.

———————————–

In a post published on June 1st, 2021, I explained that the Hawaiian Volcano Observatory (HVO) was playing with the words and refused to admit that the Kilauea eruption was over, although no activity had been observed since May 27th, 2021. The observatory’s latest updates indicate that “Kilauea Volcano is no longer erupting. No surface activity has been observed.”

In a new article, HVO informs us that “a three-month-long window is useful in defining an eruption “pause,” so that we’ll have to wait 90 days (until August 24th, 2021) to see if HVO finally admits the eruption is over…of which I am not sure!!

Next, HVO explains that when a gap in activity lasts for longer than 90 days, it typically (but not always) becomes a much longer period of volcanic rest and can stretch from years to millennia. Any new eruptive activity thus becomes “the next eruption.”

Reviewing Kilauea’s recorded history since 1823, the 90-day window of inactivity mostly holds true with one exception. A pause lasting 3.5 months occurred during the Mauna Ulu eruption of 1969–74.

The next longest pauses on Kilauea were recorded during the first three years (1983-1986) of the Pu’uO’o eruption where 48, short-lived high-fountain eruptions were separated by variable pauses that lasted days to months.

The Kīlauea Iki eruption in 1959 also had pauses lasting hours to several days between lava fountain episodes.

All other well-documented mid-eruption “pauses” during Kilauea eruptions resumed in a month or less. After a 90-day-window in the 2018 eruption, HVO determined that the eruption was over. Kilauea then entered a 2.25-year-long period of rest that ended with the summit eruption in Halema’uma’u crater that began December 20th, 2020.

Source: USGS / HVO.

Photo : C. Grandpey

Hawaii : l’océan et le volcan // The ocean and the volcano

Des phénomènes de houle sont observés en permanence sur tous les océans du globe. En effectuant des ondulations accompagnées de mouvements ascendants et descendants, les houles agissent sur le plancher océanique et délivrent un signal constant. Ces microséismes océaniques traversent la terre et apparaissent en surface sur les sismomètres. Le HVO a mis en place un certain nombre de sismomètres sur le Kilauea pour contrôler les processus volcaniques et les mouvements de failles actives. Lorsque le magma ne se déplace pas à l’intérieur du Kilauea et lorsque le volcan n’est pas en éruption, les microséismes océaniques apparaissent sur les sismomètres où ils laissent un signal répétitif constant.

Les signaux microsismiques présentent de grandes variations au cours des périodes où le Kilauea  traverse des épisodes d’inflation et déflation en raison du déplacement du magma sous la surface. Des variations similaires se produisent lorsque le volcan est en éruption, comme c’est le cas actuellement. Les scientifiques mesurent les différences entre les microséismes observés pendant les périodes d’activité volcanique et ceux enregistrés pendant les périodes de calme. Le but est d’identifier quand, où et pendant combien de temps le magma a migré et est resté stocké sous le Kilauea.

Les scientifiques du HVO ont récemment utilisé cette technique pour essayer de comprendre les événements qui ont conduit à l’effondrement du sommet du volcan et à l’éruption dans la Lower East Rift Zone en 2018. Les données microsismiques associées à des schémas sismiques et de déformation plus traditionnels donnent des indications sur l’augmentation de la pression dans la partie superficielle du réservoir magmatique au sommet du Kilauea. Le sommet et l’East Rift Zone ont immédiatement commencé réagir et à montrer une inflation, signe que le magma se déplaçait dans ces parties du volcan.

Les variations microsismiques ont également révélé qu’un séisme d’une magnitude de M 5,3 un an auparavant avait considérablement affaibli la croûte à la surface du volcan sous le  Pu’uO’o. Les scientifiques du HVO ont émis l’hypothèse que la hausse de pression au sommet du Kilauea s’ajoutant à l’affaiblissement de la croûte peu profonde sous le Pu’uO’o avait créé des conditions favorables au déplacement du magma le long de la zone de rift et le déclenchement de l’éruption en 2018.

Les scientifiques du HVO ont récemment installé huit sismomètres temporaires supplémentaires autour du cratère de l’Halema’uma’u au sommet du Kilauea, pour suivre les mouvements du magma sous le nouveau lac de lave. Ces sismomètres temporaires, en même temps que le réseau sismique permanent, permettent un échantillonnage spatial plus large des microséismes océaniques qui traversent le réservoir magmatique du Kilauea. Cela permet une étude plus précise de l’endroit où des changements physiques se produisent sous le cratère.

Le fait que l’éruption actuelle soit confinée à l’intérieur du cratère de l’Halema’uma’u au sommet du Kilauea est idéal pour étudier les mécanismes physiques associés à cette éruption. En analysant ces données, les scientifiques du HVO espèrent répondre à plusieurs questions: 1) Où se situent la source magmatique et les conduits empruntés par ce même magma pendant cette éruption ? 2) Cette technique peut-elle aider à comprendre les petites variations de l’activité volcanique observées à certains moments au cours de cette éruption ? 3) Cette technique peut-elle fournir des indices sur la fin de l’éruption ? 4) Dans quelle mesure peut-on appliquer les leçons de cette étude à la compréhension et à la prévision des futures éruptions du Kilauea?

Source: USGS / HVO

—————————————————

Ocean swells occur continuously around the world. As these swells rise and fall, they couple with the ocean floor below them creating a constant signal. These oceanic microseisms, travel through the solid earth and are observed at the surface using  seismometers.

HVO has a number of seismometers in place across Kilauea Volcano for monitoring volcanic processes and active fault movements. When magma is not moving within or erupting from Kilauea, the oceanic microseisms appear on seismometers as a repeating and unchanged signal.

The microseismic signals display large variations during periods when Kilauea is inflating or deflating due to magma moving beneath its surface. Similar variations occur when the volcano is actively erupting, such as now. Scientists measure differences in these observed microseisms during periods of volcanic activity relative to times of quiet, in an effort to identify when, where, and for how long magma is migrating and being stored within Kilauea.

HVO scientists recently applied this technique to better understand the events leading up to the 2018 Lower East Rift Zone eruption and summit collapse. Microseism data combined with more traditional seismic and deformation patterns document the increase of pressure within the shallow region of the magma storage reservoir at Kilauea’s summit. Both the summit and the East Rift Zone immediately began expanding rapidly, suggesting that magma was moving into these regions.

Variations in microseisms also revealed that an M 5.3 earthquake a year earlier had significantly weakened the volcanic crust directly beneath Pu’uO’o. HVO scientists hypothesized that the combination of increased pressure at Kilauea’s summit and the weakening of the shallow crust beneath Pu’uO’o, created conditions favourable for magma to move downrift and erupt in 2018.

HVO scientists recently deployed eight additional temporary seismometers around Halema’uma’u Crater, at the summit of Kilauea, to track magma movements beneath the new lava lake. These temporary seismometers, along with HVO’s permanent seismic network, allow for a larger spatial sampling of the oceanic microseisms travelling through Kilauea’s magma reservoir. This, in turn, means a denser sampling of where physical changes are occurring beneath the crater.

Confinement of the ongoing eruption within Halema’uma’u Crater at Kilauea’s summit is ideal for surveying the physical mechanisms associated with this eruption. With analysis of these data, scientists at HVO hope to answer several questions: 1) where is the magma source and pathways for this eruption?; 2) can this technique help us understand small increases and decreases in volcanic activity observed at times during this eruption?; 3) can this technique provide clues for when the eruption will end?; and 4) how can we apply what we have learned in this study to assist in better understanding and forecasting volcanic activity associated with future eruptions at Kīlauea?

Source : USGS / HVO

Crédit photo : USGS / HVO