Essaim sismique en Islande //Seismic swarm in Iceland

Un essaim sismique est enregistré depuis le milieu de la matinée dans le sud –ouest de l’Islande, avec plusieurs événements d’une magnitude significative : M 4,3 à 10h05, à une profondeur de 7,2 km, puis M 5,7 à 1,1 km de profondeur. D’autres événements ont suivi avec des magnitudes de 4,1, 3,7, 4,9, etc, et des hypocentres généralement compris entre 1 et 5 km de profondeur.

Les secousses ont été ressenties jusqu’à Reykjavik où les vitres et les meubles ont tremblé.

Le Met Office a prévenu que d’autres secousses sont possibles. Ce n’est pas la première fois qu’une telle sismicité est enregistrée dans le SO de l’Islande. Elle est en général liée à la tectonique des plaques dans la région.

—————————————

A seismic swarm has been recorded since mid-morning in the south-west of Iceland, with several events of a significant magnitude: M 4.3 at 10:05, at a depth of 7.2 km, then M 5, 7 to 1.1 km deep. Other events followed with magnitudes of 4.1, 3.7, 4.9, etc., and hypocentres typically between 1 and 5 km deep. The tremors were felt as far away as Reykjavik where the windows and furniture trembled. The Met Office has warned that more tremors are possible. This is not the first time that such seismicity has been recorded in SW Iceland. It is generally related to plate tectonics in the region.

Source : Wikipedia

 

Le morcellement de Madagascar // The fragmentation of Madagascar

En mars 2018, j’indiquais sur ce blog qu’une impressionnante faille de 15 mètres de profondeur et 20 mètres de large avait tranché la route entre Mai Mahiu et Narok, dans le Sud du Kenya, à quelques kilomètres de la capitale Nairobi. Autour de cette route, les plaines fertiles et les terres arables avaient, elles aussi, vu apparaître soudainement des fissures dans le sol.

En septembre 2005, une fracture géante s’était déjà ouverte dans la croûte terrestre au nord de l’Afar. Cet événement s’est produit en même temps qu’une série de séismes et une éruption sur le flanc du volcan Dabbahu. Depuis cette époque, une dizaine d’autres fissures plus modestes se sont ouvertes au sud de la région. Selon les scientifiques, cet épisode géologique de l’automne 2005 marque sans doute l’instant zéro de l’ouverture d’un océan dans cette partie du monde.

Ce chamboulement tectonique a des répercussions jusque sur l’île de Madagascar qui, selon une étude publiée dans la revue Geology, se divisera également en îles plus petites. L’étude confirme que le continent africain se sépare lentement en plusieurs grands et petits blocs tectoniques le long du système du rift est-africain.

Cette évolution des plaques tectoniques africaines est au cœur d’un travail mené par un groupe de chercheurs du Département de Géoscience du Virginia Tech. Pour parvenir à leur conclusion, les géologues ont effectué des relevés GPS à la surface de Afrique de l’Est, à Madagascar et sur plusieurs autres îles de l’Océan Indien. Ils ont constaté que l’île de Madagascar était en train de se morceler. Le sud, porté par la plaque Lwandle, se détache du reste de l’île tandis que le centre, porté par la plaque Somalienne, se déplace dans une autre direction.

Le reste de Madagascar est également soumis à un processus complexe de morcellement et de division qui s’étend jusqu’aux Comores, et qui s’achèvera par la formation d’archipels. Ce n’est toutefois pas pour tout de suite. Comme pour l’ouverture du rift est-africain, la séparation se fait à un rythme très lent, à raison de quelques millimètres par an. Les grands bouleversements prévus n’auront donc pas lieu avant quelques millions d’années. L’écartement des terres donnera alors naissance à de nouveaux océans.

En attendant, ce travail permettra de mieux appréhender l’activité sismique et volcanique dans les Comores, avec la naissance d’un nouveau volcan sous-marin à une cinquantaine de kilomètres à l’est de Mayotte.

Pour mémoire, rappelons que la dernière campagne océanographique menée du 1er au 26 octobre 2020 a permis d’identifier au nord-ouest du volcan de nouvelles coulées de lave sur le fond marin, signe que l’activité éruptive se poursuit.

Source : Yahoo News, Science & Avenir.

———————————————–

In March 2018, I indicated on this blog that an impressive 15-metre-deep and 20-metre-wide fissure had slashed the road between Mai Mahiu and Narok, in southern Kenya, a few kilometres from the capital Nairobi. Around this road, the fertile plains and the arable land had suddenly seen cracks appear in the ground.

In September 2005, a giant fissure had already opened in the earth’s crust north of Afar. This event occurred together with a series of earthquakes and an eruption on the side of the Dabbahu volcano. Since that time, a dozen other smaller cracks have opened in the south of the region. According to scientists, this geological episode in the autumn of 2005 probably marks the zero moment of the opening of an ocean in this part of the world.

This tectonic upheaval has repercussions as far as the island of Madagascar, which, according to a study published in the journal Geology, will also be divided into smaller islands. The study confirms that the African continent is slowly separating into several large and small tectonic blocks along the East African Rift System.

This evolution of the African tectonic plates is at the heart of a work carried out by a group of researchers from the Department of Geoscience at Virginia Tech. To reach their conclusion, geologists carried out GPS surveys on the surface of East Africa, Madagascar and several other islands in the Indian Ocean. They found that the island of Madagascar was in the process of being fragmented. The south, carried by the Lwandle plate, is detached from the rest of the island while the center, carried by the Somali plate, moves in another direction.

The rest of Madagascar is also subject to a complex process of fragmentation and division which extends to the Comoros, and which will end with the formation of archipelagos. However, this is not for now. As with the opening of the East African Rift, the separation is happening at a very slow pace, at the rate of a few millimetres per year. The major upheavals will therefore not take place before a few million years. The separation of the land will then give birth to new oceans.

In the meantime, this work will make it possible to better understand seismic and volcanic activity in the Comoros, with the birth of a new submarine volcano about fifty kilometres east of Mayotte.

As a reminder, the last oceanographic campaign conducted from October 1st to 26th, 2020 identified new lava flows on the seabed to the northwest of the volcano, a sign that eruptive activity is continuing.

Source: Yahoo News, Science & Avenir.

Cadre sismotectonique des Comores (Source : CCGM et UNESCO, 2002)

 

Sismicité de 2020 dans la Péninsule de Reykjanes (Islande) // 2020 seismicity in the Reykjanes Peninsula (Iceland)

La sismicité enregistrée sur la Péninsule de Reykjanes (Islande) en 2020 a soulevé pas mal de questions et beaucoup d’entre elles restent sans réponse.

Un article publié dans l’Iceland Monitor nous rappelle que l’année dernière, 22 000 secousses ont été enregistrées sur la Péninsule de Reykjanes, dans le sud-ouest de l’Islande. La plupart d’entre elles avaient des magnitudes inférieures à M 3,0. Il s’agit toutefois de la plus importante activité sismique depuis le début des mesures numériques en 1991.

L’activité sismique a commencé dans la ville de Grindavík le 26 janvier 2020. Elle a été suivie d’une inflation de la surface, d’abord de quelques centimètres, puis davantage. Les géologues islandais pensent que le phénomène était dû à l’accumulation de magma sous la surface. Cependant, curieusement, il n’y a pas eu d’émissions de gaz détectables pour confirmer cette hypothèse. Au moment du pic de sismicité, les scientifiques ont rappelé que la région est très complexe, avec la cohabitation d’une activité volcanique et tectonique potentielle.

Au début, l’activité sismique de l’année dernière est restée en grande partie concentrée dans une zone allant de la pointe sud-ouest de Reykjanes au lac Kleifarvatn à l’est. Cependant, au cours des derniers mois, la source des événements sismiques s’est déplacée vers l’est, en direction de Krýsuvík. Le 20 octobre 2020, l’épicentre d’un séisme de M 5,6 a été localisé à proximité du lac Djúpavatn. La limite entre les plaques tectoniques sur la Dorsale de Reykjanes s’étire d’ouest en est à travers la Péninsule de Reykjanes. C’est là que la plaque tectonique nord-américaine fait face à la plaque eurasienne, parfaitement visible au niveau du «Pont entre les Continents» près de Sandvík, un endroit très prisé des touristes.

En moyenne, les plaques tectoniques sur la Dorsale de Reykjanes s’écartent l’une de l’autre d’environ un centimètre par an, mais au cours des derniers semestres, l’accrétion dans certains secteurs de Reykjanes a atteint 16 cm.

Il semble que la pression s’accumule sous terre entre le lac Kleifarvatn et les montagnes de Bláfjöll, et cette pression s’évacue par l’intermédiaire d’un ou plusieurs puissants séismes. Deux d’entre eux se sont produits en 1929 et 1968, avec respectivement des magnitudes de M 6,3 et M 6,0. Leurs épicentres étaient situés près des montagnes de Brennisteinsfjöll, à l’est du lac Kleifarvatn.

Même si la sismicité a diminué dans la Péninsule de Reykjanes, la région est constamment sous surveillance. Une phase d’ « incertitude » (le niveau d’alerte le plus bas) restera en place tant que l’activité sismique restera au-dessus de la normale.

———————————————–

The seismicity recorded on the Reykjanes Peninsula (Iceland) in 2020 raised quite a lot of questions and many of them remain unanswered.

An article in the Iceland Monitor reminds us that last year, a total of 22,000 earthquakes were registered on the Reykjanes peninsula in Southwest Iceland. Most of them had magnitudes less than M 3.0. It was the largest seismic activity since digital measurements began in 1991.

The seismic activity began in the town of Grindavík on January 26th, 2020. It was followed by an inflation of the surface, first by a couple of centimetres, then more. Icelandic geologists believed it was caused by magma accumulating under the surface. However, strangely enough, there were no detectable gas emissions to confirm this hypothesis. At the time of the seismicity, scientists reminded the public that the region was very complex, with a cohabitation of potential volcanic and tectonic activity.

At the beginning, last year’s seismic activity was for the most part concentrated  in the area from the southwestern tip of Reykjanes to Kleifarvatn lake in the east. However, during the past few months, the source of the events has been moving farther east, toward Krýsuvík. On October 20th, 2020, the source of an M 5.6 earthquake was not far from Djúpavatn lake.

The tectonic plate boundary of the Reykjanes Ridge runs from west to east across the Reykjanes peninsula. This is where the North-American tectonic plate faces the Eurasian one, sparking the idea for the so-called ‘Bridge Across Continents’ near Sandvík, a popular spot among tourists.

On average, the tectonic plates at the Reykjanes Ridge move away from each other by about one centimetre a year, but during the past semesters, the movement in certain areas in Reykjanes has been up to 16 cm.

It looks as if pressure is building up in the earth between Kleifarvatn lake and Bláfjöll mountains, and this pressure can only be released in one or several large earthquakes. Two of them occurred in 1929 and 1968, with magnitudes of M 6.3 and M 6.0, respectively. Their epicentres were located near Brennisteinsfjöll mountains, east of Kleifarvatn lake.

Even though the seismicity has declined in the Reykjanes Peninsula, the region is constantly being monitored. A phase of « uncertainty” (the lowest alert phase) will remain in place there while seismic activity is above average.

Zone géothermale à Krisuvik (Photo : C. Grandpey)

Lac  Kleifarvatn (Photo : C. Grandpey)

Puissant séisme en Antarctique // Powerful earthquake in Antarctica

On observe en ce moment un essaim sismique remarquable dans le Détroit de Bransfield, en Antarctique. Le Détroit de Bransfield est un chenal océanique de 96 km entre les îles Shetland du Sud et la Péninsule antarctique. L’essaim a culminé avec un puissant événement à faible profondeur, d’une magnitude de M7,1, à 23 h 36 (UTC) le 23 janvier 2021. L’USGS a corrigé et indiqué une magnitude de M6,9 à une profondeur de 9,6 km. L’épicentre a été localisé près de la côte sud d’Elephant Island et à l’est de King George Island.

Plus de 30000 secousses ont été enregistrés dans le Détroit de Bransfield  entre août et décembre 2020.

La cause de la sismicité est purement tectonique. En effet, plusieurs plaques et microplaques se rencontrent dans cette zone (voir carte ci-dessous, ce qui provoque de fréquents séismes, mais la sismicité a été bien plus intense ces derniers mois.

En raison des mouvements de plaques, le Détroit de Bransfield s’écarte de la Péninsule antarctique à raison d’environ 15 centimètres par an. C’est près de 20 fois plus qu’auparavant lorsque l’accrétion n’atteignait que 7 à 8 millimètres par an.

Source: Université du Chili, The Watchers.

——————————————

 A remarkable seismic swarm is being observed in Bransfield Strait, Antarctica. The Bransfield Strait is a 96-km ocean channel between the South Shetland Islands and the Antarctic Peninsula. The swarm culminated with a very strong and shallow event with a magnitude of M7.1 at 23:36 (UTC) on January 23rd, 2021. USGS is reporting it as M6.9 at a depth of 9.6 km. The epicenter was located near the southern coast of Elephant Island and east of King George Island.

More than 30 000 earthquakes were registered in the Bransfield Strait from August to December 2020.

The cause of the seismicity is purely tectonic. Indeed, several tectonic plates and microplates meet in this area (see map below), leading to frequent earthquakes, but seismicity hs been far more intense during the past months.

Due to the plate movements, the Strait is expanding by about 15 centimetres each year from the Antarctic Peninsula. This is nearly 20 times faster than before when the expansion was measured at 7 to 8 millimetres per year.

Source : University of Chile, The Watchers.

Source : Prensa Antártica

Aucun lien entre la Montagne Pelée (Martinique) et La Soufrière (Saint Vincent)

Quand on regarde une carte, on s’aperçoit que les Petites Antilles, avec la Martinique, la Guadeloupe, St-Vincen-et-les-Grenadines, forment un arc. Il est façonné par la tectonique des plaques dans la région. La plaque Américaine se rapproche de la plaque Caraïbe à raison d’environ 2 cm/an. A l’aplomb de l’arc volcanique des Petites Antilles, la plaque nord-américaine, dans un processus de subduction, s’enfonce sous la plaque Caraïbe. Cette enfoncement de la plaque lithosphérique dans les profondeurs génère des séismes et participe à l’activité volcanique. Dans les zones de subduction, la répartition des séismes en profondeur permet d’imager la géométrie de la plaque plongeante qui suit le plan de Wadati-Benioff, souvent raccourci en plan de Benioff. Sous l’arc des Antilles, ce plan présente un pendage d’environ 60°.
A côté d’autres zones de subduction, comme au Japon ou au Chili, les Petites Antilles ont une activité sismique relativement réduite. Les derniers séismes importants datent de 1839 pour la Martinique et 1843 pour la Guadeloupe. Les sismologues pensent que cela s’explique par le fait que la subduction est lente dans cette région.

En revanche, l’activité volcanique est plus soutenue. On dénombre une vingtaine de volcans actifs dans les Petites Antilles dont 9 dans la seule île de Dominique. Soufrière Hills à Montserrat a connu une éruption dévastatrice en 1997. Le volcan sous marin Kick’Em Jenny à Grenade est sûrement le plus actif de la région avec près de onze éruption durant les 50 dernières années. La Soufrière de Guadeloupe est le volcan qui a connu le plus de manifestations éruptives depuis le 17ème siècle. Je ne reviendrai pas sur l’éruption phréatique de 1976 et la polémique qui l’a accompagnée.

L’éruption la plus meurtrière a été celle de la Montagne Pelée à la Martinique. Elle a causé le mort de 29 000 personnes. Au cours de cette même année, la Soufrière de St Vincent a tué 1565 personnes.

Le 4 décembre 2020, suite à une intensification de l’activité sismique et des remontées de gaz au cours des mois précédents, l’Observatoire Volcanologique et Sismologique de la Martinique (OVSM) a demandé à la Préfecture le placement de la Montagne Pelée en vigilance Jaune (niveau 3 sur une échelle de 5). Malgré tout, L’OVSM a précisé qu’une éruption n’est pas à l’ordre du jour dans le court terme.

Le 29 décembre 2020, c’était autour de la Soufrière de St Vincent de passer en vigilance Orange suite à l’apparition d’un dôme de lave à l’intérieur du cratère

Suite à ces des deux hausses des niveaux d’alerte, de nombreuses personnes se sont demandé s’il n’existait pas en lien entre le regain d’activité de ces deux volcans des Petites Antilles.

Jean-Christophe Komorowski, directeur scientifique des observatoires volcanologiques et sismologiques de l’Institut physique du globe de Paris est très clair à ce sujet. Il explique sur le site web Orange qu’il n’existe aucune relation entre l’activité de la Montagne Pelée et celle de la Soufrière : « Il n’y a aucun lien entre les différents volcans de l’arc des Petites Antilles. Il n’y a pas de connexion entre les réservoirs de stockage du magma de La Soufrière et celui de la Montagne Pelée. On ne peut pas craindre le déclenchement d’une éruption à la Montagne Pelée suite à l’activité en cours à Saint-Vincent, ou inversement. »

L’arc des Petite Antilles (Source : Google Maps)

L’archipel des Petites Antilles dans le contexte de la tectonique des plaques (Source : Centre de Données Sismologique des Antilles)

Modèle de la structure profonde de la zone de subduction au niveau des Petites Antilles, à partir des données sismiques (Source : IFREMER)

Nouvelle lumière sur la collision tectonique au Tibet // New light on tectonic collision in Tibet

De nouvelles données sismiques recueillies par des scientifiques de l’Université de Stanford et de l’Académie Chinoise des Sciences Géologiques montrent que deux processus entrent en action simultanément sous la zone de collision tibétaine. C’est la première fois que des scientifiques disposent d’images fiables des variations longitudinales dans la zone de collision de l’Himalaya. L’étude a été publiée dans les Proceedings of the National Academy of Sciences en septembre 2020.

En plus d’être un lieu idéal pour les aventuriers et les personnes à la recherche d’une retraite spirituelle, la région de l’Himalaya est un endroit extraordinaire pour comprendre les processus géologiques. Elle abrite des gisements de cuivre, de plomb, de zinc, d’or et d’argent, ainsi que des éléments plus rares comme le lithium, l’antimoine et le chrome. Le soulèvement du plateau tibétain affecte même le climat car il influence la circulation atmosphérique et le développement des moussons.
Cependant, les scientifiques ne maîtrisent pas totalement les processus géologiques qui contribuent à la formation de la région. L’étude de l’Himalaya est rendue difficile par les problèmes d’accès physique et politique au Tibet. En conséquence, la plupart des missions sur le terrain ont été trop limitées dans l’espace pour comprendre la situation dans son ensemble, ou bien elles n’ont pas eu suffisamment de résolution en profondeur pour bien comprendre les processus en jeu.
Aujourd’hui, les nouvelles données sismiques collectées par des géophysiciens de la School of Earth, Energy & Environmental Sciences de Stanford offrent la première vue ouest-est du sous-sol de la région où s’affrontent l’Inde et l’Asie. L’étude participe au débat en cours sur la structure de la zone de collision himalayenne, source de catastrophes comme le séisme de Gorkha en 2015 qui a tué environ 9 000 personnes et en a blessé des milliers d’autres.
Les nouvelles données sismiques montrent que deux processus concurrents entrent probablement en action simultanément sous la zone de collision: 1) le mouvement d’une plaque tectonique sous une autre, ainsi que 2) l’amincissement et l’effondrement de la croûte.
C’est la première fois que des scientifiques recueillent des images vraiment fiables de la variation longitudinale de la zone de collision de l’Himalaya. Lorsque la plaque indienne entre en collision avec l’Asie, elle forme le Tibet, le plus haut et le plus vaste plateau de haute montagne de la planète. Ce processus a commencé très récemment dans l’histoire géologique, il y a environ 57 millions d’années. Les chercheurs ont proposé diverses explications pour sa formation, comme un épaississement de la croûte terrestre qui serait causé par la plaque indienne en se frayant un chemin sous le plateau tibétain.
Pour vérifier ces hypothèses, les chercheurs ont installé de nouveaux sismomètres en 2011 afin de rechercher des détails qui auraient pu passer inaperçus auparavant. Surtout, les nouveaux sismos ont été installés d’est en ouest à travers le Tibet. Auparavant, ils n’avaient été déployés que du nord au sud parce que c’est dans cette direction que les vallées du pays sont orientées et c’est aussi la direction dans laquelle les routes ont été historiquement construites.
Au final, les images reconstituées à partir d’enregistrements par 159 nouveaux sismomètres étroitement espacés le long de deux profils d’un millier de kilomètres de long, révèlent les endroits où la croûte indienne présente des déchirures profondes provoquées par la courbure de l’arc himalayen.
Tandis que la plaque tectonique indienne se déplace à partir du sud, le manteau, qui constitue la partie la plus épaisse et la plus solide de la plaque, plonge sous le plateau tibétain. Les dernières analyses révèlent que ce processus provoque la rupture de petites parties de la plaque indienne sous deux des rifts de surface, ce qui crée probablement des déchirures dans la plaque, de la même manière qu’un camion traversant un espace étroit entre deux arbres arrache des morceaux d’écorce. L’emplacement de ces déchirures semble essentiel pour comprendre jusqu’à quelle distance un séisme majeur comme celui Gorkha va se propager.
La survenue de séismes très profonds, à plus de 60 kilomètres sous la surface, est un aspect surprenant du Tibet. En utilisant leurs données sismiques, les chercheurs ont détecté des relations entre les déchirures de la plaque et la survenue de ces séismes profonds.
La dernière étude explique également pourquoi la force de la gravité varie dans différentes parties de la zone de collision. Les co-auteurs ont émis l’hypothèse qu’après que les petits morceaux se soient détachés de la plaque indienne, un matériau plus tendre car plus chaud est remonté des profondeurs, créant des déséquilibres de masse dans la zone de collision Inde-Tibet.
Source: Université de Stanford.
Référence: « Localized foundering of Indian lower crust in the India–Tibet collision zone » – Shi, D. et al. – Proceedings of the National Academy of Sciences – https://doi.org/10.1073/pnas.2000015117

————————————————

New seismic data collected by scientists at Stanford University and the Chinese Academy of Geological Sciences suggests that two competing processes are simultaneously operating beneath a collision zone in Tibet. The research marks the first time scientists have gathered credible images of along-strike or longitudinal variation in the Himalaya collision zone. Itwas published in the Proceedings of the National Academy of Sciences in September 2020..

In addition to being the place to be for adventurers and spiritual seekers, the Himalaya region is a wonderful place for understanding geological processes. It hosts mineral deposits of copper, lead, zinc, gold and silver, as well as rarer elements like lithium, antimony and chrome. The uplift of the Tibetan plateau even affects global climate by influencing atmospheric circulation and the development of seasonal monsoons.

However, scientists still don’t fully understand the geological processes contributing to the region’s formation. The study of the Himalayas is made difficult by the physical and political inaccessibility of Tibet. As a consequence, most field experiments have either been too localized to understand the big picture or they have lacked sufficient resolution at depths to properly understand the processes.

Now, new seismic data gathered by geophysicists at Stanford’s School of Earth, Energy & Environmental Sciences provides the first west-to-east view of the subsurface where India and Asia collide. The research contributes to an ongoing debate over the structure of the Himalaya collision zone, the source of catastrophes like the 2015 Gorkha earthquake that killed about 9,000 people and injured thousands more.

The new seismic images suggest that two competing processes are simultaneously operating beneath the collision zone: 1) movement of one tectonic plate under another, as well as 2) thinning and collapse of the crust.

The study marks the first time that scientists have collected truly credible images of an along-strike, or longitudinal, variation in the Himalaya collision zone. As the Indian plate collides with Asia it forms Tibet, the highest and largest mountain plateau on the planet. This process started very recently in geological history, about 57 million years ago. Researchers have proposed various explanations for its formation, such as a thickening of the Earth’s crust caused by the Indian plate forcing its way beneath the Tibetan Plateau.

To test these hypotheses, researchers installed new seismic recorders in 2011 in order to resolve details that might have been previously overlooked. Importantly, the new recorders were installed from east to west across Tibet; traditionally, they had only been deployed from north to south because that is the direction the country’s valleys are oriented and thus the direction that roads have historically been built.

The final images, pieced together from recordings by 159 new seismometers closely spaced along two 1,000-kilometre long profiles, reveal where the Indian crust has deep tears associated with the curvature of the Himalayan arc.

As the Indian tectonic plate moves from the south, the mantle, the thickest and strongest part of the plate, is dipping beneath the Tibetan plateau. The new analyses reveal that this process is causing small parts of the Indian plate to break off beneath two of the surface rifts, likely creating tears in the plate, similar to how a truck barreling through a narrow gap between two trees might chip off pieces of tree trunk. The location of such tears can be critical for understanding how far a major earthquake like Gorkha will spread.

The occurrence of very deep earthquakes, more than 60 kilometres below the surface, is an unusual aspect of Tibet. Using their seismic data, the researchers found associations between the plate tears and the occurrence of those deep quakes.

The research also explains why the strength of gravity varies in different parts of the collision zone. The co-authors hypothesized that after the small pieces dropped off from the Indian plate, softer material from underneath bubbled up, creating mass imbalances in the India-Tibet collision zone.

Source: Stanford University.

Reference: « Localized foundering of Indian lower crust in the India–Tibet collision zone » – Shi, D. et al. – Proceedings of the National Academy of Sciences – https://doi.org/10.1073/pnas.2000015117

Environnement tectonique du Népal avec le séisme de Gorkha (Source : IPG, USGS)

Le dernier séisme en Islande probablement d’origine tectonique // Last earthquake in Iceland likely tectonic

Un séisme de M 5,6 a été enregistré à 13h43 le 20 octobre 2020 à Núpshlíðarháls, à environ 5 km à l’ouest de la zone géothermale de Seltún sur la Péninsule de Reykjanes. La secousse a été largement ressenti dans une grande partie du pays, en particulier dans le sud de la Péninsule de Reykjanes et dans la région de Reykjavik, à environ 25 km de l’épicentre. Plus de 250 répliques ont été détectées, les plus importantes entre 15h27 et 15h32.
Selon le Met Office islandais (IMO) certaines personnes ont remarqué une plus forte odeur de gaz près du lac Grænavatn. A noter que ce phénomène est parfois signalé dans les zones où se produisent de puissants séismes. Si c’est le cas l’IMO pense qu’il pourrait s’agir de mouvements de magma dans la croûte, mais cet information doit être vérifiée avant d’être confirmée. Pour l’instant, il n’y a aucun signe d’activité volcanique dans la région. Il n’y a eu aucun changement dans le comportement du tremor harmonique sur les stations de mesure à proximité.
Le dernier séisme est le plus significatif dans la Péninsule de Reykjanes depuis 2003.
Une grande partie de l’activité sismique est observée dans la Péninsule en 2020. Des secousses de M 5,0 ont été enregistrés en juillet de cette année à proximité de Fagradalsfjall, juste à l’ouest de l’épicentre du dernier événement.
L’origine de l’activité actuelle est difficile à déterminer car l’activité sismique et l’activité volcanique a déjà animé cette partie du pays.
Source: OMI.

———————————————–

An M 5.6 earthquake was recorded at 13:43 on October 20th, 2020in Núpshlíðarháls, about 5 km west of the geothermal area in Seltún on the Reykjanes peninsula. The earthquake was felt widely around the country, especially the southern part of the Reykjanes Peninsula and in the capital area, which is some 25 km from the epicentre. More than 250 aftershocks have been detected, the largest ones between 15:27 and 15:32.

It was reported by the Icelandic Met Office (IMO) that people had been noticing more gas smell close to Grænavatn. This phenomenon is sometimes reported in areas where large earthquakes are reported. IMO says this would suggest that magma might be on the move in the crust, but the news needs to be checked before being confirmed. For the time being, there are no signs of volcanic unrest in the area. There has not been any change in harmonic tremor on nearby measuring stations.

The last earthquake is the largest event measured in the Reykjanes Peninsula since 2003.

A great deal of earthquake activity has been ongoing in the peninsula in 2020. M 5.0 earthquakes were recorded in July this year, by Fagradalsfjall, just west of where the epicentre of the last event.

The origin of this activity is difficult to determine as both seismic and volcanic activity has already caused unrest in that part of the country.

 Source : IMO.

L’activité sismique sur la Péninsule de Reykjanes, avec l’événement du 20 octobre 2020 et ses nombreuses répliques (Source : IMO)