La surveillance de La Soufrière de St Vincent // Monitoring of St Vincent’s La Soufriere

  Les données fournies par un drone le 9 janvier 2021 confirment que le dôme de lave continue de croître lentement dans le cratère sommital de La Soufrière. Des chercheurs du  Programme des catastrophes en sciences appliquées (Earth Applied Sciences Disasters Program – EASDP) de la NASA ont déclaré avoir récemment détecté une hausse de l’activité sismique sur le volcan La Soufrière à Saint-Vincent-et-les Grenadines, et sur la Montagne Pelée à la Martinique, avec possibilité d’éruptions à court terme.

Dans le cas de St Vincent, le magma a atteint la surface et forme un dôme en phase de croissance, tandis que le volcan émet également des gaz et de la vapeur. Le dôme a une forme ellipsoïde et croît en direction de l’ouest.

La NASA explique que l’activation du programme EASDP permettra de réduire les risques dans le cas d’une éventuelle éruption volcanique, grâce à une meilleure surveillance de la région.

À St Vincent, une équipe de l’Université des Antilles (UWI) a procédé à une observation visuelle du volcan, en particulier des émissions de gaz, avec la prise de photos et la réalisation de vidéos. Ces observations vont permettre de déterminer l’emplacement des instruments destinés à contrôler les émissions de gaz. Les données sismiques de la station Wallibou sont désormais diffusées dans le Centre de recherche sismique (SRC). Une webcam a été installée le 3 janvier 2021 à l’Observatoire de Belmont. Une deuxième caméra a également été installée à Georgetown. L’installation de caméras et de stations météorologiques est prévue au sommet du volcan.

Le programme EASDP de la NASA a répondu à une première demande d’assistance de l’Agence américaine pour le développement international (U.S. Agency for International Development – USAID) coordonnée par le programme SERVIR de Sciences Appliquées. Ce programme opère maintenant directement avec le programme d’assistance aux catastrophes volcaniques (Volcano Disaster Assistance Program – VDAP) de l’USGS.

En décembre 2020, les données infrarouges à ondes courtes du satellite Copernicus Sentinel-2 de l’Agence spatiale européenne (ESA) ont identifié une anomalie thermique sur le volcan  de La Soufrière, indiquant que le magma s’approchait de la surface.

Le niveau d’alerte du volcan reste à Orange, et la NEMO rappelle au public qu’aucun ordre d’évacuation n’a été émis. Environ 20 000 personnes pourraient être évacuées rapidement en cas d’éruption. Elles se trouvent dans la partie septentrionale de l’île. Des centres d’hébergement et des hôtels sont prévus dans le centre et le sud du pays pour recevoir des personnes si une évacuation est nécessaire. En cas d’évacuation, tous les protocoles COVID-19 seront respectés.

Les volcanologues locaux gardent à l’esprit l’éruption de 1979 qui a débuté par un violent séisme le 12 avril. L’activité éruptive a commencé par une série d’explosions de courte durée, qui ont généré de volumineux panaches de cendres le Vendredi Saint, le 13 avril 1979. On a ensuite observé deux semaines d’activité soutenue qui ont culminé avec un panache de 18 km de haut le 17 avril. L’éruption a pris fin le 29 avril.

Source: Médias d’information locaux.

———————————————-

  The analysis of footage collected from a drone flight over the volcano on January 9th, 2021 confirm that the lava dome is still growing slowly within the summit crater of La Soufriere. Researchers with NASA’s Earth Applied Sciences Disasters Program (EASDP) said they have recently detected increased seismic activity on both La Soufrière volcano on Saint Vincent and the Grenadines, and Mt. Pelée on Martinique, which may indicate an imminent volcanic eruption

In the case of St Vincent magma reaching the surface is forming a growing dome, while the volcano is also releasing gas and steam. The dome has an ellipsoid shape with growth expanding in a westerly direction.

NASA said that the activation of EASDP would aid risk reduction efforts for a potential volcanic eruption, as they closely monitor the region.

In St Vincent, a team from the University of the West Indies (UWI) did a visual observation of the mountain which included observing gas emissions and taking still photos and videos. These will help determine the location to place instruments to monitor the flow of gas.

Seismic data from the Wallibou station on St Vincent is now streaming into the Seismic Research Centre (SRC).

A webcam providing live feed was installed on January 3rd, 2021, at the Belmont Observatory. A second camera was successfully installed at Georgetown. Camera and weather station installations are on the way at the summit.

The NASA program responded to an initial request for assistance from the U.S. Agency for International Development (USAID) coordinated by the Applied Sciences SERVIR program and is now working directly with the USGS Volcano Disaster Assistance Program (VDAP).

In December 2020, Short wave infrared data from the European Space Agency (ESA) Copernicus Sentinel-2 satellite identified a thermal anomaly in the La Soufrière volcano, indicating magma close to the surface.

The La Soufriere volcano’s alert level remains at Orange, and NEMO is reminding the public that no evacuation order or notice has been issued. Roughly 20,000 citizens will be in the path for immediate evacuation if an eruption occurs. These citizens are located in the extreme north of the island. Shelters in the country’s central and southern belts and hotels will be used to house persons once evacuation becomes necessary. In the event of evacuations, all the necessary COVID-19 protocols will be adhered to.

Local volcanologists keep in mind the 1979 eruption which began with only a concise period of unrest, starting with a strong local earthquake on April 12th. Eruptive activity began with a series of short-lived explosions, which generated ash plumes, high into the sky on Good Friday, April 13th, 1979. This heralded two weeks of vigorous activity that peaked with an 18 km high plume on April 17th, and ended on April 29th.

Source : Local news media.

Source : UWI

Les mesures GPS à Hawaii // GPS measurements in Hawaii

Le Global Positioning System (GPS) est un système américain de navigation par satellite conçu à l’origine pour des applications militaires, mais qui est devenu extrêmement populaire et largement utilisé. En plus de la constellation américaine, il existe trois autres systèmes de navigation par satellite (GNSS) dans le monde : GLONASS (Russie), Galilée (Europe) et BeiDou (Chine). Les nouveaux récepteurs GNSS peuvent suivre simultanément plusieurs constellations de satellites, ce qui améliore la précision.
À Hawaii, le HVO exploite un réseau GNSS de 67 stations réparties sur toute l’île, mais avec priorité aux zones de déformation telles que les zones de rift. Ces stations GNSS de haute précision fournissent des données aux scientifiques 24 heures sur 24 et 7 jours sur 7.
Le principe de fonctionnement est le suivant : les satellites GNSS émettent des ondes radio qui se déplacent à la vitesse de la lumière et transmettent des informations sur la position exacte du satellite et l’heure actuelle. L’antenne au sol prend en compte les signaux radio de plusieurs satellites et les transmet au récepteur qui calcule l’emplacement exact selon un processus appelé trilatération. Un système GNSS de haute précision peut déterminer un emplacement avec une marge d’erreur de seulement quelques millimètres.

Actuellement, la constellation GPS américaine compte 33 satellites opérationnels en orbite à une altitude de 20 000 km. Pour localiser avec précision l’emplacement d’une station GNSS, le récepteur doit recevoir en continu des données pendant six heures au moment où les satellites traversent l’horizon en vue de la station. Quatre satellites sont nécessaires pour calculer un emplacement 3D, mais généralement un récepteur GNSS en suit huit ou plus pour calculer une position plus précise.
Plusieurs facteurs peuvent affecter le signal GNSS et la précision des emplacements qui en dépendent. L’ionosphère et la troposphère, couches de l’atmosphère à travers lesquelles se déplacent les ondes radio, peuvent retarder les signaux radio, mais cela peut être corrigé avec des modèles atmosphériques. Il est important que les antennes GNSS fonctionnent dans un environnement bien dégagé,  sans interférence d’objets comme des arbres ou des bâtiments.
Pour obtenir une vue globale des déformations d’un volcan, le HVO effectue également chaque année des mesures sur le terrain sur le Mauna Loa et le Kilauea. Au cours de ces missions, le personnel du HVO place des récepteurs GPS temporaires et des antennes sur des supports – des disques de laiton qui ont été arrimés au sol – et les scientifiques laissent l’équipement en place pendant quelques jours sur chaque site. Le support du récepteur montre généralement une croix à l’intérieur d’un triangle qui sert de point de référence pour le centrage de l’antenne.
Au cours de chaque mission de mesures, le personnel du HVO revient sur les sites de mesures afin de collecter les données et déterminer si la station a bougé. Les données ainsi collectées permettent de calculer à la fois la position horizontale et verticale – comme on le fait pour la latitude, la longitude et l’altitude – et ainsi d’évaluer les variations par rapport aux relevés précédents.
Des campagnes de levés GPS sont conduites sur le Mauna Loa et le Kilauea depuis le milieu des années 1990. Elles fournissent des données extraordinairement précises sur la déformation de ces volcans. En plus du Mauna Loa et du Kilauea, le Hualalai et l’Haleakala sont inspectés périodiquement (tous les trois à cinq ans) dans le cadre du programme de surveillance des volcans par le HVO.
Source: USGS / HVO.

———————————————–

The Global Positioning System (GPS) is a US satellite-navigation system originally designed for military use but now an extremely popular and widely used technology. In addition to the US constellation, there are three other Global Navigation Satellite Systems (GNSS): GLONASS (Russia), Galileo (European) and BeiDou (China). New GNSS receivers can simultaneously track multiple constellations of satellites , which provides improved accuracy.

In Hawaii, HVO operates a 67-station GNSS network spread out across the island but concentrated near persistent deforming features like rift zones. These high-precision GNSS stations give scientists a 24/7 record.

GNSS satellites send out radio waves that travel at the speed of light and transmit information about the exact position of the satellite and the current time. The antenna on the ground listens to the radio signals from multiple satellites and passes them to the receiver which calculates the exact location using a process called trilateration. High-precision GNSS equipment and analysis can determine a location down to less than a centimetre.

Currently, the American GPS constellation has 33 operational satellites orbiting at an altitude of 20 000 km. To accurately pinpoint the location of a high-precision GNSS station, the receiver must continuously receive data for six hours as satellites arc across the horizon in view of the station. Only four satellites are needed to calculate a 3-D location, but typically a GNSS receiver will track eight or more to calculate a more precise position.

There are several factors that affect the GNSS signal and accuracy of derived locations. The ionosphere and troposphere, layers of the atmosphere through which the radio waves travel, introduce delays in the radio signals that can be corrected with atmospheric models. It is important for GNSS antennas to have enough clear “sky view” without object interference suchas trees or buildings.

To get a more complete view of the deforming volcano, HVO also conducts yearly campaign surveys on Mauna Loa and Kilauea. During these surveys, HVO staff place temporary GPS receivers and antennas on benchmarks – permanent brass disks that have been drilled into the ground – and leave the equipment in place for a couple of days at each site. The benchmark typically has a cross inside a triangle that serves as a reference point for centering of the antenna.

During each survey, HVO staff returns to these benchmarks to collect data and determine how the point has moved. Data collected allow to calculate both a horizontal and vertical location, similar to latitude, longitude, and altitude and thus to evaluate the change from prior surveys.

Campaign of GPS surveys have been conducted on both Mauna Loa and Kilauea since the mid-1990s, providing extraordinary records of volcano deformation. Along with Mauna Loa and Kilauea, Hualalai and Haleakala are surveyed periodically (every three to five years) as part of HVO’s volcano monitoring program.

Source : USGS / HVO.

Station GPS sur le flanc sud du Kilauea (Crédit photo : USGS)

Péninsule de Reykjanes (Islande) : Au cas où…// Reykjanes Peninsula (Iceland) : Just in case…

Comme je l’ai écrit précédemment, la sismicité est toujours relativement importante sur la Péninsule de Reykjanes. Les scientifiques locaux ont renforcé la surveillance, en particulier celle concernant l’inflation du Mont Þorbjörn qui pourrait être causée par une accumulation de magma. .
De nouveaux instruments ont été installés par l’Icelandic Met Office (IMO) qui a désormais accès aux données fournies par d’autres équipements de surveillance. L’IMO prévoit d’installer deux GPS, un sur le Mt Þorbjörn et un autre à l’ouest de la montagne. L’inflation dans la région a atteint environ 3 cm, après avoir progressé de 3-4 mm par jour depuis le 21 janvier 2020
L’Icelandic Met Office possède un sismomètre à l’ouest de Grindavík, un autre à l’extrémité nord de la Péninsule de Reykjanes ainsi qu’à Vogar et Krýsuvík. De plus, l’IMO aura accès aux données de trois ou quatre sismomètres supplémentaires qui sont utilisés pour un projet de recherche indépendant.
Des images satellites ainsi que la technologie InSAR sont également utilisées pour contrôler et évaluer l’inflation.
L’Icelandic Met Office dispose d’un réseau GPS dans toute la péninsule afin de pouvoir mesurer les mouvements à la surface de la terre. Par ailleurs, il pourra accéder aux données GPS de l’Institut des Sciences de la Terre.
L’accélération de la gravité sera mesurée par l’Islande GeoSurvey (Ísor) pour déterminer si le magma est toujours en train de s’accumuler.
Si une éruption devait se produire, une station radar, située sur le plateau de Miðnesheiði, fournirait des informations sur les panaches de cendre volcanique. Une autre station radar, actuellement implantée ailleurs sur l’île, sera installée à Reykjanes. Enfin, un LiDAR, utilisé pour mesurer les concentrations de cendre volcanique dans l’air, sera installé dans la zone. En cas d’éruption, il sera important de décider si les aéroports peuvent rester ouverts.
Source: Iceland Monitor.

———————————————

As I put it before, seismicity is still significant on the Reykjanes Peninsula, and local scientists want to better monitor the situation, including the inflation of Mt Þorbjörn which might be caused by magma accumulation. .

Additional monitoring equipment has been installed by the Icelandic Met Office (IMO)  and access to data from other monitoring equipment will be obtained. IMO expects to install two GPS devices – one on Þorbjörn volcano, and another one west of the mountain. Inflation in the area has reached about 3 cm, after amounting to 3-4 mm a day since January 21st, 2020

The Icelandic Met Office has one seismometer west of Grindavík, another one on the northernmost tip of Reykjanes as well as in Vogar and Krýsuvík. In addition, the Met Office will obtain access to data from three or four additional seismometers that have been used for a special research project.

Satellite pictures as well as InSAR technology are used as well to assess the inflation.

The Icelandic Met Office has a system of GPS devices throughout Reykjanes, measuring movements on the earth’s surface. The Met Office will obtain access to GPS data from the Institute of Earth Sciences.

In addition, gravity acceleration of the earth will be measured by Iceland GeoSurvey (Ísor) to help determine whether magma is accumulating.

In xase of an eruption, a radar station, located on Miðnesheiði plateau, would provide information about volcanic ash plumes. Another radar station, currently located elsewhere, will be installed in Reykjanes. Finally, a LiDAR, used to measure volcanic ash in the air, will be installed in the area. It would be important when determining whether airports can remain open.

Source : Iceland Monitor.

Vue de Grindavík et du volcan Þorbjörn (Crédit photo mbl.is / Kristinn Magnússon)

La surveillance du volcan Taal (Philippines) // The monitoring of Taal Volcano (Philippines)

Comme je l’ai écrit précédemment, l’éruption du Taal est moins intense depuis quelques jours, mais ce n’est peut-être pas une bonne nouvelle. Les scientifiques surveillent la situation à distance, à l’aide d’instruments au sol et à bord de satellites, pour essayer de comprendre ce qui pourrait se passer dans les prochains jours.
L’image radar ci-dessous révèle que le lac qui se trouvait autrefois au cœur même de Volcano Island a maintenant presque complètement disparu. C’est l’interaction entre l’eau du lac et le magma qui a provoqué l’épisode explosif observé en début d’éruption. La ligne pointillée montre l’étendue du lac avant le début de l’éruption. La ligne continue montre le niveau du lac au moment de l’acquisition de l’image (16 janvier 2020 à 06h37 GMT).
Le lac Taal, beaucoup plus vaste, qui entoure l’édifice central n’a pas évolué. D’autres satellites analysent la déformation du sol autour du volcan. Cette technique interférométrique permet aux scientifiques de mieux comprendre comment le magma se déplace sous le volcan et ce que cela pourrait signifier pour l’activité future.
Les autorités philippines ont du mal à empêcher certaines personnes évacuées d’essayer de rentrer chez elles pour récupérer leurs biens et contrôler le bétail.
Les images satellites (voir ci-dessous) révèlent la quantité de cendre tombée sur la zone autour du volcan.
Source: BBC News.

————————————————–

As I put it before, the eruption of Taal Volcano has been less intense in the past few days, but this may not be good news. Scientists are monitoring the situation remotely, using ground and space instrumentation, to try to gauge what might happen next.

The data provided by the radar image below data reveals how the inner lake that once filled the very heart of the Taal Volcano Island has now almost completely disappeared. It was the interaction between this water and magma that drove the early explosive behaviour. The dashed line shows the extent of the lake before the onset of the eruption. The solid line traces the waterline at the time of the image acquisition (January 16th, 2020 at 06:37 GMT).

The much wider Lake Taal that surrounds the central edifice of the volcano remains in place.

Other radar satellites are looking at how the ground is deforming around the volcano. This interferometric technique can help scientists understand how magma is shifting below the volcano and what that might mean for future activity.

Philippine authorities have been struggling to keep some evacuated residents from trying to return to their homes to gather possessions and to check on livestock.

Satellite pictures (see below) reveal how much ash has fallen over the area around the volcano.

Source: BBC News.

Cet interférogramme du Taal montre la déformation du sol. Chaque frange de couleur correspond à un déplacement du sol de 2,8 cm. (Source : ESA)

 La photo de gauche montre le Taal en juillet 2019 ; celle de droite le volcan aujourd’hui (Source : CNES)

Le lac de lave du Mont Michael (Ile Saunders) // Mt Michael’s lava lake on Saunders Island

Dans une note publiée le 17 août 2019, j’indiquais qu’un nouveau lac de lave avait été détecté par des satellites dans le cratère du Mont Michael, un stratovolcan actif coiffé d’un glacier sur l’île Saunders, l’une des île Sandwich du Sud, un arc volcanique dans l’Atlantique sud. Le volcan se trouve à environ 2 500 km environ à l’est d’Ushuaia (Argentine) localité située à proximité de la pointe méridionale de l’Amérique du Sud.
Ce volcan insulaire se trouve à l’écart des voies maritimes et aériennes et il est souvent caché par de gros nuages. On aperçoit un panache de vapeur émanant du cratère sommital sur les images satellites et les rares images obtenues lors de survols effectués par le British Antarctic Survey. Ce panache est le signe d’une zone chaude au niveau du cratère, mais on ignore tout de l’activité de ce volcan.
Dans les anciens journaux de bord de navires, il est fait état de nuages de cendre en 1819 et une éruption a pu se produire vers la fin du 19ème et le début du 20ème siècle. Toutefois, les rapports d’activité du Mt Michael ont été très rares avant l’arrivée des satellites.
Dans les années 1990, l’image à la résolution grossière proposée par un satellite révélait une anomalie thermique susceptible d’être causée par un lac de lave temporaire, mais on n’en avait aucune certitude

Avec l’amélioration des satellites et la réduction de la taille des pixels sur les photos, on a obtenu une résolution d’image plus élevée et il est désormais possible de détecter de petites zones de forte chaleur, comme celles produites par les lacs de lave. Ainsi, grâce à la puissance des satellites et le nombre croissant d’observations, la présence d’un lac de lave sur le Mont Michael ne fait plus de doute.
Des chercheurs britanniques ont passé à la loupe plusieurs décennies d’images fournies par les satellites Landsat, Sentinel et ASTER. Elles confirment des températures persistantes supérieures à environ 1000°C, compatibles avec la présence de lave dans le cratère sommital du Mont Michael. De plus, la longévité des anomalies thermiques au cours des trois décennies d’observation laisse supposer que l’on a bien affaire à un lac de lave qui vient s’ajouter aux autres lacs de lave connus sur la Terre, même si très peu sont actifs en ce moment.
Le lac de lave au sommet du Mont Michael mesure environ 110 mètres de diamètre et couvre une superficie d’environ 10 000 mètres carrés. À titre de comparaison, le lac de lave dans Halema’uma’u avant sa disparition en mai 2018 avait un diamètre d’environ 300 mètres et couvrait un peu plus de 40 500 mètres carrés.
Source: USGS.

————————————————

In a post released on August 17th, 2019, I indicated that a new lava lake had been detected by satellites in the crater of Mount Michael, an active and exceedingly remote glacier-clad stratovolcano on Saunders Island in the South Sandwich Islands, a volcanic arc in the South Atlantic Ocean. The volcano is about 2,500 kilometres roughly east of Ushuaia, Argentina, near the southern tip of South America.

This island volcano is well-off the path of mariners and aircraft and is often obscured by heavy clouds. A vapour plume emanating from the crater at its summit is commonly visible in satellite images and rare fly-overs by the British Antarctic Survey. This plume and a generally hot area coincident with its summit crater have long suggested high heat flow at the summit, but little is known about the full extent of the volcano’s activity.

Looking back in history at ship logs, ash clouds were reported in 1819, and a lava eruption may have occurred near the end of the 19th and beginning of the 20th centuries. Overall, due to the island’s location, records of activity until the age of satellites are scant.

In the 1990s, a coarse-resolution satellite thermal anomaly further indicated a source of high heat that could have been a temporary lava lake, but it was not conclusive.

As satellites have become more sophisticated and the pixel size smaller – resulting in higher image resolution – finding small areas of high heat flux like a lava lake has become easier. And so, using the power of satellites and the increasing number of observations, the question of a lava lake at Mount Michael appears to be resolved.

British researchers looked at decades worth of imagery of this volcano from three different satellites: Landsat, Sentinel and ASTER. They were able to confirm persistent temperatures greater than about 1000°C, consistent with a pool of lava at the surface within the summit crater. They further argue that the longevity of satellite thermal anomalies and plumes over the three decades of observation suggests a long-lived lava lake. With this confirmation, it adds to the inventory of known persistent lava lakes on Earth, although very few are active at the moment.

The Mount Michael summit lava lake is about 110 metres wide covering an area of about 10,000 square metres. As a comparison, the lava lake within Halema‘uma‘u prior to its draining in May of 2018 was about 300 metres across covering just over 40,500 square metres.

Source: USGS.

Image de l’île Saunders et du lac de lave dans le cratère du Mont Michael fournie par le satellite Landsat 8 le 31 janvier 2018. La carte en encart montre la situation géographique de l’île Saunders. (Source: British Antarctic Survey)

Landsat 8 satellite image of Saunders Island and the lava lake within the crater of Mount Michael (image acquired on January 31st, 2018). Inset map shows the location of Saunders Island. (Source: British Antarctic Survey)

Image satellite du nouvel Anak Krakatau (Indonésie) // Satellite image of the new Anak Krakatau (Indonesia)

Jusqu’à présent, les mauvaises conditions météorologiques empêchaient les satellites survolant de Détroit de la Sonde d’observer correctement l’Anak Krakatau après l’effondrement du 22 décembre 2018 qui a déclenché un tsunami meurtrier. En ce début d’année 2019, les satellites Dove et SkySat de la plateforme d’observation Planet permettent enfin d’apprécier l’ampleur de l’effondrement du cône volcanique. Ce qui était autrefois un cratère au sommet de l’édifice s’est complètement éventré pour former une petite baie.
La société Planet en charge de d’observation de la Terre est basée à San Francisco. Elle exploite l’une des plus grandes constellations de satellites au monde. Le satellite Dove est capable d’observer des détails de 3 mètres au sol tandis que SkySat possède une résolution encore plus fine et détecte des détails de 72 centimètres.
La photo ci-dessous a été prise le 1er janvier 2019.

————————————————-

Up to now, poor weather conditions  prevented satellites from getting good views of Anak Krakatau after the 22 December 2018 collapse that triggered a tsunami. Finally, Planet’s Dove and SkySat platforms allow to appreciate the extent of the volcanic cone’s collapse. What was once a crater at the summit of the edifice has been completely broken open to form a small bay.

Earth observation company Planet, which is based in San Francisco, operates one of the world’s largest satellite constellations.The Dove spacecraft can capture 3-metre details on the ground while SkySat platforms have a high-resolution capability, capturing 72-centimetre details.

The photo below was taken on New Year’s Day.

Etna (Sicile): Approche scientifique de la dernière éruption // Scientific approach of the last eruption

Suite à l’éruption de l’ Etna qui a débuté le 24 décembre 2018 et de l’essaim sismique qui l’a accompagnée, les chercheurs de différents organismes scientifiques italiens ont mesuré les mouvements permanents du sol provoqués par ces derniers événements. Ils ont observé des valeurs maximales de déplacement dépassant 30 cm à l’ouest et 50 cm à l’est sur le sommet de l’Etna, ainsi qu’un déplacement maximal d’environ 13 cm vers l’est et de 16 cm vers l’ouest dans la zone affectée par le séisme de M 4,9.
L’éruption de l’Etna et la sismicité qui l’a accompagnée et l’accompagne encore aujourd’hui sont contrôlées en permanence par l’INGV de Catane et de Rome à l’aide des réseaux sismiques et géodésiques. Dans le cadre des activités de surveillance de l’Etna, effectuées à travers des réseaux gravimétriques et magnétiques, des analyses géochimiques, des caméras thermiques ainsi que des levés sur site, les scientifiques ont également procédé à une analyse préliminaire des données radar satellitaires liées à l’éruption et à l’essaim sismique, informations venant compléter celles fournies par d’autres systèmes de surveillance.
En utilisant des données radar fournies par les satellites Sentinel-1 (S1), du programme européen Copernicus, et de la constellation italienne COSMO-SkyMed (CSK) de l’Agence Spatiale Italienne (ASI) et du ministère de la Défense, une équipe de chercheurs du CNR-Irea et de l’INGV a pu analyser la fracture qui alimentait la coulée de lave provoquée par l’éruption et mesurer avec grande précision les mouvements permanents du sol en utilisant la technique d’Interférométrie SAR Différentielle. Cette technique permet, en comparant les images radar acquises avant et après des événements sismiques, de mesurer, le long de la ligne de visée du capteur, le déplacement du sol survenu dans l’intervalle de temps entre les deux acquisitions, avec une précision de l’ordre du centimètre. De plus, grâce aux passages des satellites sur des orbites différentes (ascendante et descendante), il est possible de reconstruire également la composante horizontale (dans la direction est-ouest) et  verticale du champ de déformation détecté.

Source : La Sicilia, INGV, CNR.

————————————————-

Following the eruption of Mt Etna, which began on December 24th, 2018, and the seismic swarm that accompanied it, researchers from different Italian scientific organizations measured the permanent ground movements caused by these recent events. They observed maximum movement values ​​exceeding 30 cm in the western part and 50 cm in the eastern part of the summit area of Mt Etna, as well as a maximum displacement of about 13 cm to the east and 16 cm to the west in the area affected by the M 4.9 earthquake.
The eruption of Mt Etna and the seismicity that accompanied and still accompany it today are constantly monitored by the INGV of Catania and Rome using seismic and geodesic networks. As part of Mt Etna’s monitoring activities, carried out through gravimetric and magnetic networks, geochemical analyses, thermal imaging cameras as well as on-site surveys, the scientists also carried out a preliminary analysis of satellite radar data related to the eruption and the seismic swarm, information supplementing that provided by other surveillance systems.
Using radar data provided by the Sentinel-1 (S1) satellites, the European Copernicus program, and the Italian constellation COSMO-SkyMed (CSK) of the Italian Space Agency (ASI) and the Ministry of Defense, a team researchers from CNR-Irea and INGV were able to analyze the fracture that fed the lava flow caused by the eruption and to measure with great accuracy the permanent movements of the soil using the technique of Differential SAR Interferometry. This technique makes it possible, by comparing the radar images acquired before and after seismic events, to measure, along the line of sight of the sensor, the ground displacement occurring in the time interval between the two acquisitions, with a precision of the order of the centimetre. In addition, thanks to the passage of the satellites in different orbits (ascending and descending), it is possible to reconstruct as well the horizontal component (in the east-west direction) and vertical component of the detected deformation field.
Source: La Sicilia, INGV, CNR.

La coulée de lave née de l’éruption du 24 décembre 2018 vue depuis l’espace (Source: ESA)