Vers une désintégration de l’Antarctique occidental ? // Toward a disintegration of West Antarctica ?

De nos jours, avec le réchauffement climatique, on craint de plus en plus que l’Antarctique occidental s’effondre et disparaisse dans l’océan. Cela déclencherait inévitablement une augmentation rapide du niveau des mers. Ce ne serait pas la première fois qu’une telle situation se produirait. Il y a 125 000 ans, au cours de la dernière brève période chaude – baptisée Eémien – entre les périodes glaciaires, les températures étaient à peine plus élevées qu’aujourd’hui et le niveau de la mer était de 6 à 9 mètres plus élevé que de nos jours, recouvrant d’immenses étendues de terres sèches aujourd’hui.
Les scientifiques ont révélé que la source de toute cette eau était un effondrement de l’inlandsis antarctique occidental et les glaciologues s’inquiètent de la stabilité fragile de cette énorme masse de glace. Sa base, située au-dessous du niveau de la mer, risque d’être minée par le réchauffement des océans. Les glaciers qui se trouvent en amont et qui sont retenus par cette masse de glace, accéléreraient leur course vers l’océan si la plateforme ouest antarctique disparaissait. J’ai décrit ce phénomène dans les notes précédentes. Lors d’une réunion de l’American Geophysical Union à Washington, D.C., des scientifiques de l’Oregon State University ont prouvé, au moyen de carottes de sédiments, que la calotte glaciaire avait disparu dans un passé géologique récent et dans des conditions climatiques analogues à celles d’aujourd’hui.
La forte perte de masse observée en Antarctique occidental au cours des deux ou trois dernières décennies pourrait marquer le début d’une nouvelle désintégration de la calotte glaciaire de l’Antarctique occidental. Si tel est le cas, le monde devra se préparer à une hausse du niveau des mers plus importante et plus rapide que prévu. En effet, après l’effondrement de l’ancienne calotte glaciaire de l’Ouest Antarctique, certains relevés sur le terrain montrent que la hausse de la mer atteignait 2,5 mètres par siècle.
Au cours de l’Eémien, les températures globales étaient supérieures de 2°C à celles observées avant l’ère industrielle (contre 1°C aujourd’hui). Cependant, le réchauffement n’était pas dû aux gaz à effet de serre, mais à de légers changements dans l’orbite et l’axe de rotation de la Terre. L’Antarctique était probablement plus froid qu’aujourd’hui. La cause de la montée du niveau de la mer, enregistrée par les coraux fossiles situés aujourd’hui bien au-dessus de la marée haute, est longtemps restée un mystère.
Les scientifiques ont commencé par accuser la fonte de la calotte glaciaire du Groenland. Cependant, en 2011, des chercheurs ont disculpé le Groenland après avoir identifié des empreintes isotopiques de son substrat rocheux dans des sédiments provenant d’une carotte océanique forée au large de son extrémité sud. Les isotopes ont montré que la glace continuait à éroder le substrat rocheux au cours de l’Eémien. Si la calotte glaciaire du Groenland n’avait pas disparu et ne contribuait donc pas à la hausse du niveau de la mer, la suspicion se dirigeait vers calotte glaciaire de l’Antarctique occidental.
Les chercheurs de l’Université de l’Oregon ont décidé d’appliquer leur technique isotopique à l’Antarctique. Ils ont d’abord analysé les carottes de sédiments marins extraites le long de la partie occidentale de la banquise. Ils ont examiné 29 carottes et identifié des signatures géochimiques pour trois régions sources différentes du substrat rocheux: la partie montagneuse de la Péninsule Antarctique; la province d’Amundsen, près de la mer de Ross; et la zone intermédiaire, autour du glacier Pine Island, particulièrement vulnérable.
Avec ces empreintes à leur disposition, ils ont ensuite analysé les sédiments marins contenus dans une carotte prélevée au large dans la mer de Bellingshausen, à l’ouest de la Péninsule Antarctique. Un courant marin continu longe la plateforme continentale de l’Ouest Antarctique et transporte les sédiments provenant de l’érosion glaciaire en cours de route. Le courant fait s’accumuler une grande partie de ces sédiments près du site où la carotte a été prélevée. Ces sédiments s’accumulent rapidement et piègent des microorganismes à coquilles appelées foraminifères, protozoaires unicellulaires qui peuvent être datés en comparant leurs rapports isotopes d’oxygène à ceux des carottes avec des dates connues. Sur une longueur de 10 mètres, la carotte contient 140 000 ans d’accumulation de sédiments. Pendant la majeure partie de cette période, les sédiments contiennent les signatures géochimiques des trois régions du socle rocheux de l’Antarctique occidental, ce qui révèle une érosion continue provoquée par la glace. Toutefois, dans une section datant du début de l’Eémien, les empreintes disparaissent en deux endroits  tout d’abord au niveau du glacier de Pine Island, puis de la province d’Amundsen. Il ne subsiste que des sédiments de la partie montagneuse de la péninsule où les glaciers ont peut-être persisté. La datation de la carotte n’est pas très précise, ce qui signifie que la pause dans l’érosion glaciaire n’a peut-être pas eu lieu pendant l’Eémien. Il se peut aussi que la pause proprement dite soit illusoire, ou que les courants marins se soient temporairement déplacés, avec un transfert des sédiments vers un autre site.
D’autres recherches sont en cours. Le mois prochain, un navire de recherche entamera une mission de trois mois avec comme but l’extraction d’au moins cinq carottes au large de l’Antarctique occidental. Dans le même temps, le chercheur responsable de l’étude mentionnée dans cet article espère la faire publier à temps pour qu’elle fasse partie du prochain rapport des Nations Unies sur le climat. Dans les rapports de 2001 et 2007, le risque de désintégration de l’Antarctique occidental n’a pas été pris en compte dans le cadre des estimations de hausse du niveau de la mer dans les prochaines années. Ce n’est qu’en 2013 que les auteurs du rapport ont commencé à mentionner l’Antarctique.
Source: Science.

————————————————————–

Today, with global warming, there are increasing fears that West Antarctica might collapse and disappear in the ocean. This would inevitably trigger a rapid increase of ocean levels. This would not be the first time such a situation happened. Some 125,000 years ago, during the last brief warm period between ice ages – it was called the Eemian – ttemperatures were barely higher than in today’s and sea levels were 6 to 9 metres higher than they are today, drowning huge areas of land that is dry today.

Scientists have revealed that the source of all that water was a collapse of the West Antarctic Ice Sheet and glaciologists worry about the present-day stability of this formidable ice mass. Its base lies below sea level, at risk of being undermined by warming ocean waters, and the glaciers behind it would accelerate their forward movement of this mass of ice disappeared. I described this phenomenon in previous notes. Scientists from Oregon State University at a meeting of the American Geophysical Union in Washington, D.C., have provided evidence, by means of a sediment core, that the ice sheet disappeared in the recent geological past under climate conditions similar to today’s.

The big increase in mass loss observed in West Antarctica in the past decade or two might be the start of a new collapse of the West Antarctic Ice Sheet. If so, the world may need to prepare for sea level to rise farther and faster than expected: Once the ancient ice sheet collapse got going, some records show that ocean waters rose as fast as some 2.5 metres per century.

During the Eemian, global temperatures were some 2°C above preindustrial levels (compared with 1°C today). But the cause of the warming was not greenhouse gases, but slight changes in Earth’s orbit and spin axis, and Antarctica was probably cooler than today. What drove the sea level rise, recorded by fossil corals now marooned well above high tide, was a mystery.

Scientists once blamed the melting of Greenland’s ice sheet. But in 2011, researchers exonerated Greenland after identifying isotopic fingerprints of its bedrock in sediment from an ocean core drilled off its southern tip. The isotopes showed ice continued to grind away at the bedrock through the Eemian. If the Greenland Ice Sheet didn’t vanish and push up sea level, the vulnerable West Antarctic Ice Sheet was the obvious suspect.

The Oregon University researchers set out to apply their isotope technique to Antarctica. First, they analysed archived marine sediment cores drilled from along the edge of the western ice sheet. Studying 29 cores, they identified geochemical signatures for three different bedrock source regions: the mountainous Antarctic Peninsula; the Amundsen province, close to the Ross Sea; and the area in between, around the particularly vulnerable Pine Island Glacier.

Armed with these fingerprints, they then analyzed marine sediments from a core drilled farther offshore in the Bellingshausen Sea, west of the Antarctic Peninsula. A stable current runs along the West Antarctic continental shelf, picking up ice-eroded silt along the way. The current dumps much of this silt near the core’s site, where it builds up fast and traps shelled microorganisms called foraminifera, which can be dated by comparing their oxygen isotope ratios to those in cores with known dates. Over a stretch of 10 metres, the core contained 140,000 years of built-up silt. For most of that period, the silt contained geochemical signatures from all three of the West Antarctic bedrock regions, suggesting continuous ice-driven erosion. But in a section dated to the early Eemian, the fingerprints winked out: first from the Pine Island Glacier, then from the Amundsen province. That left only silt from the mountainous peninsula, where glaciers may have persisted. The dating of the core is not precise, which means the pause in erosion may not have taken place during the Eemian. It is also possible that the pause itself is illusory, that ocean currents temporarily shifted, sweeping silt to another site.

More research is on the way. Next month, a research ship will begin a 3-month voyage to drill at least five marine cores off West Antarctica. Meanwhile, the head of the research hopes to get his own study published in time to be included in the next United Nations climate report. In the 2001 and 2007 reports, West Antarctic collapse was not even considered in estimates of future sea level; only in 2013 did authors start mentioning Antarctica.

Source: Science.

La fonte accélérée des glaciers asiatiques // The fast melting of Asian glaciers

Je viens de lire plusieurs articles dans la presse scientifique – dont notre CNRS – qui confirment que les glaciers de l’Asie, en particulier ceux de l’Himalaya sont en train d’accélérer leur fonte. Cela fait longtemps que le phénomène est en cours, comme je l’ai expliqué dans mon dernier livre « Glaciers en péril ».

Dans le chapitre dédié à l’Himalaya, j’ai écrit que les glaciers qui recouvrent les montagnes les plus élevées du monde jouent un rôle essentiel car ils alimentent les fleuves d’Asie, ressources en eau pour plusieurs centaines de millions de personnes. Alors que la planète se réchauffe, il est important de comprendre comment ces glaciers répondent aux variations climatiques, pour mieux anticiper leur contribution future aux ressources en eau.

Trente années d’images satellitaires apportent un nouvel éclairage sur l’évolution de ces glaciers. On s’aperçoit qu’ils ont nettement ralenti au cours des deux dernières décennies. A noter que je n’ai pas eu besoin des satellites, mais de mes seules photos, pour montrer le désastre de la fonte glaciaire en Alaska ! Il est vrai aussi que les glaciers alaskiens sont plus faciles d’accès et que des survols en avion ou des approches en bateau suffisent pour se rendre compte de leur évolution

Les montagnes qui encerclent le plateau tibétain forment collectivement les Hautes Montagnes d’Asie (HMA) et s’étendent de l’Afghanistan à la Chine en passant par l’Inde. C’est le plus grand volume de glace en dehors des régions polaires et ce réservoir permet de réguler les fluctuations du débit des cours d’eau, un rôle qui peut s’avérer crucial en périodes de sécheresse.

Les données satellitaires ont permis de documenter les changements de masse des glaciers des HMA sur les dernières décennies. De 2000 à 2016, la perte totale de masse de ces glaciers a été de 260 gigatonnes. Ce que l’on ne connaissait encore pas, c’est la façon dont les glaciers ajustent leur vitesse d’écoulement en réponse à cet amincissement. Le recul des glaciers dans les décennies à venir dépendra de cet ajustement de leur dynamique.

Grâce à des techniques de corrélation d’images, les glaciologues peuvent suivre automatiquement le déplacement de motifs à la surface des glaciers, tels que les crevasses ou des blocs rocheux. Cela a permis de constater que les écoulements des glaciers himalayens ont en moyenne fortement ralenti, avec des pertes de vitesse atteignant 37% par décennie, là où les glaciers s’amincissent le plus.

Le processus de déplacement des glaciers est bien connu : ils se forment par accumulation de neige en haute altitude, puis s’écoulent sous l’effet de la gravité vers les basses altitudes où ils fondent en raison des températures plus élevées. Le poids de la glace la force à glisser sur le socle rocheux et à se déformer le long des pentes. Lorsque le glacier s’amincit et perd de la masse, le glissement et la déformation de la glace deviennent tous les deux plus difficiles, et le glacier ralentit. Les régions où les glaciers s’amincissent le plus sont celles où ils ralentissent le plus. Dans les rares régions comme le Karakorum ou le Kunlun où les glaciers sont stables ou s’épaississent, les observations montrent que les glaciers ont légèrement accéléré.

Cette conclusion qui semble intuitive ne faisait pourtant pas, jusqu’à présent, l’unanimité de la communauté scientifique. D’autres facteurs contrôlent l’écoulement des glaciers, comme la lubrification du socle rocheux par l’eau de fonte, ce qui permet au glacier de glisser plus rapidement vers l’aval, accentuant ainsi sa fonte.

Le fait que les glaciers ralentissent signifie que le transport de glace vers les basses altitudes diminue et les glaciers ont tendance à rester plus haut en altitude, où les températures sont plus basses et la fonte réduite. En dépit du fait que les glaciers vont continuer à perdre de la masse avec l’augmentation des températures, cette perte de vitesse devrait permettre aux glaciers de se protéger quelque temps.

NDLR : Il est intéressant ici de comparer les glaciers himalayens à leurs homologues alpins. Tout se joue au niveau de la zone d’accumulation qui s’élève de plus en plus en raison du réchauffement climatique. Elle se situe actuellement à environ 3000 mètres d’altitude. La chaîne himalayenne étant beaucoup plus haute que nos Alpes, avec une bonne quinzaine de sommets culminant à plus de 8000 mètres, il est normal que les glaciers les plus hauts résistent encore au réchauffement de la planète alors que chez nous ils ne peuvent guère grimper au-dessus de 4000 mètres, ce qui explique leur recul rapide.

L’avantage des satellites est de pouvoir observer les régions difficilement accessibles depuis l’espace et sur de longues périodes de temps. La mise à disposition d’images satellite telles que celles fournies par Landsat et ASTER ou les données européennes Sentinel joue un rôle crucial dans cette mission d’observation..

Source : CNRS.

————————————————

I have just read several articles in the scientific press – including our CNRS – which confirm that Asian glaciers, especially those of the Himalayas, are accelerating their melting. The phenomenon has been going on for a long time, as I explained in my last book « Glaciers en péril ».
In the chapter dedicated to the Himalayas, I wrote that the glaciers that cover the highest mountains in the world play an essential role because they feed the rivers of Asia which provide water resources for several hundred million people. As the planet heats up, it is important to understand how these glaciers respond to climate variations, to better anticipate their future contribution to water resources.
Thirty years of satellite images shed new light on the evolution of these glaciers. We can see that they have slowed down considerably over the past two decades. Editor’s note: I did not need satellites, but my only photos, to show the disaster of glacial melting in Alaska! It is also true that Alaskan glaciers are easier to access and that overflights by plane or boat approaches are enough to be aware of their evolution.
The mountains that encircle the Tibetan Plateau collectively form the High Mountains of Asia (HMA) and extend from Afghanistan to China via India. This is the largest volume of ice outside polar regions and this reservoir helps regulate fluctuations in river flow, a role that can be crucial in times of drought.
Satellite data have documented the mass changes in HMA glaciers over the last decades. From 2000 to 2016, the total mass loss of these glaciers was 260 gigatonnes. What we did not know yet is how glaciers adjust their flow velocity in response to this thinning. The retreat of glaciers in the coming decades will depend on this adjustment of their dynamics.
Through image correlation techniques, glaciologists can automatically follow the movement of features on the surface of glaciers, such as crevices or boulders. This shows that Himalayan glacier flows have on average slowed sharply, with speed losses reaching 37% per decade, where glaciers are shrinking the most.
The process of glacier flow is well known: they are formed by the accumulation of snow at high altitude, then flow under the effect of gravity to low altitudes where they melt due to higher temperatures. The weight of the ice forces it to slide on the bedrock and to deform along the slopes. As the glacier becomes thinner and loses mass, both ice sliding and deformation become more difficult, and the glacier slows down. The areas where glaciers are getting thinner are those where they slow down the most. In the few areas such as Karakorum or Kunlun where glaciers are stable or thicker, observations show that glaciers have slightly accelerated.
This conclusion, which seems intuitive, did not, however, until now, have the unanimity of the scientific community. Other factors control the flow of glaciers, such as the lubrication of bedrock by meltwater, which allows the glacier to slide more rapidly downslope, thus accentuating its melting.
The fact that glaciers slow down means that ice transport to lower altitudes is decreasing and glaciers tend to stay higher at higher altitudes, where temperatures are lower and melting is reduced. In spite of the fact that glaciers will continue to lose mass with increasing temperatures, this loss of speed should allow glaciers to protect themselves for some time.
Editor’s note: It is interesting here to compare the Himalayan glaciers to their alpine counterparts. The essential part is the area of ​​accumulation that rises more and more because of global warming. It is currently about 3000 meters above sea level. The Himalayan range being much higher than our Alps, with a good fifteen peaks culminating at more than 8000 meters, it is normal that the highest glaciers still resist global warming whereas in Europe they can hardly climb to above 4000 meters, which explains their rapid decline.
The advantage of satellites is to be able to observe regions that are difficult to access from space and over long periods of time. The numerous satellite images, such as those provided by Landsat and ASTER or the European Sentinel data, play a crucial role in this observation mission.
Source: CNRS.

Glaciers de l’Himalaya vus depuis l’espace (Crédit photo: NASA)

Les glaciers andins sont menacés // Andean glaciers are in danger

Les conclusions de l’Andean Glacier and Water Atlas [L’Atlas de l’eau et des glaciers andins] commandité par l’UNESCO et la fondation norvégienne GRID-Arendal confirment le mauvais état des glaciers de la Cordillère des Andes. Le rapport, publié le 6 décembre 2018 dans le cadre de la COP 24 de Katowice (Pologne) indique que si le recul se poursuit au rythme actuel (il a commencé dans les années 1950), certains glaciers de basse altitude des Andes tropicales pourraient perdre entre 78 et 97% de leur volume d’ici la fin du siècle, privant les populations de la région d’une partie de leurs ressources en eau.

Comme je l’ai écrit dans une note précédente, le seul glacier que compte encore le Venezuela devrait disparaître d’ici 2021.

Au Pérou, pays qui abrite le plus grand nombre de glaciers tropicaux du continent, ceux de la Cordillera Blanca ont nettement reculé au cours des dernières décennies. J’ai largement expliqué la situation dans ce pays dans un chapitre de mon dernier livre « Glaciers en péril » (voir vignette dans la colonne de droite de ce blog).

Un recul rapide des glaciers est également observé en Bolivie depuis les années 1980 et certains d’entre eux ont perdu près des deux tiers de leur masse.

Au Chili et en Argentine, le recul des glaciers de basse altitude situés en Patagonie et en Terre de Feu s’accélère.

En Colombie, il est probable que d’ici les années 2050, seuls subsisteront les glaciers situés sur les sommets les plus élevés.

En Equateur, le recul des glaciers est spectaculaire depuis une cinquantaine d’années.

Le problème, c’est que les eaux de fonte glaciaire constituent une ressource essentielle pour des millions de personnes, notamment pour les habitants des hauts plateaux andins de Bolivie, du Chili et du Pérou. Elles représentent environ 5% de l’approvisionnement en eau à Quito (Équateur), 61% à La Paz (Bolivie) et 67% à Huaraz (Pérou). Les années de sécheresse, cette proportion peut atteindre 15% à Quito, 85% à La Paz et 91% à Huaraz.

La situation est d’autant plus inquiétante que la température moyenne annuelle est en hausse dans la plupart des pays des Andes tropicales. Elle a augmenté d’environ 0,8°C au cours du siècle dernier et pourrait encore grimper de 2 à 5°C d’ici la fin du 21ème siècle. Selon les dernières estimations, la température pourrait augmenter de 1 à 7°C dans les Andes du sud, ce qui est énorme et fera inévitablement réagir les glaciers. .

Pour faire face aux défis de l’approvisionnement en eau des populations qui dépendent des glaciers, l’Andean Glacier and Water Atlas formule une série de recommandations à destination des décideurs de la région. Il prône notamment une meilleure intégration des données scientifiques dans la prise de décisions politiques, l’amélioration des infrastructures de surveillance des changements climatiques, la mise en œuvre d’une bonne gouvernance de l’eau ou encore le renforcement de la coordination entre les pays andins.

Source : notre-planète.info.

————————————————–

The findings of the Andean Glacier and Water Atlas commissioned by UNESCO and the Norwegian GRID-Arendal Foundation confirm the poor state of the glaciers in the Andes Cordillera. The report, published on 6 December 2018, as part of COP 24 in Katowice, Poland, indicates that if glacier retreat continues at the current rate that began in the 1950s, some lowland glaciers in the tropical Andes could lose between 78 and 97% of their volume by the end of the century, depriving people in the region of some of their water resources.
As I put it in a previous post, the only glacier in Venezuela is expected to disappear by 2021.
In Peru, home to the largest number of tropical glaciers on the continent, the Cordillera Blanca glaciers have declined significantly in recent decades. I have largely developed the situation in this country in a chapter of my latest book « Glaciers en Péril. »
A rapid retreat of the glaciers has also been observed in Bolivia since the 1980s when some of them lost nearly two-thirds of their mass.
In Chile and Argentina, the retreat of lowland glaciers in Patagonia and Tierra del Fuego is accelerating.
In Colombia, it is likely that by the 2050s, only glaciers on the highest peaks will remain.
In Ecuador, the retreat of glaciers has been spectacular for about fifty years.
The problem is that glacial meltwater is an essential resource for millions of people, especially for the inhabitants of the Andean highlands of Bolivia, Chile and Peru. They represent about 5% of the water supply in Quito (Ecuador), 61% in La Paz (Bolivia) and 67% in Huaraz (Peru). In the years of drought, this proportion can reach 15% in Quito, 85% in La Paz and 91% in Huaraz.
The situation is all the more disturbing as the average annual temperature is rising in most countries of the tropical Andes where it increased by about 0.8°C during the last century and could still rise by 2 to 5°C by the end of the 21st century. According to the latest estimates, it could increase by 1 to 7°C in the southern Andes, which is quite significant and will inevitably make glaciers react.
To address the water supply challenges of glacier-dependent populations, the Andean Glacier and Water Atlas makes a series of recommendations for decision-makers in the region. It calls for better integration of scientific data into political decision-making, improvement of climate change monitoring infrastructures, implementation of good water governance and strengthening of coordination between Andean countries.

Source: notre-planète.info.

Vue de la Cordillera Blanca au Pérou (Crédit photo: NASA)

L’agonie du dernier glacier du Venezuela // The slow death of Venezuela’s last glacier

Cela peut paraître anecdotique mais confirme une tendance observée ailleurs dans le monde. Le Glacier du Pic Humboldt est le dernier des cinq principaux glaciers tropicaux du Venezuela. Il se trouve dans l’ouest du pays, au sein de la Sierra Nevada de Mérida. Avec le changement climatique, le Venezuela est en train de devenir le premier pays à perdre tous ses glaciers.

Contrairement au Groenland et à l’Antarctique, les glaciers qui ne sont pas des inlandsis, comme ceux qui ornent les flancs des montagnes, représentent environ 1 % des glaciers du monde. Leur contribution à l’élévation du niveau de la mer n’est donc pas très importante. Toutefois, comme la plupart d’entre eux se trouvent dans des régions où les températures dépassent fréquemment les 0°C, ils sont plus sensibles aux variations de température.

La Cordillère des Andes abrite plus de 95 % des glaciers tropicaux au monde. Dans certains pays comme le Pérou et la Colombie, les glaciers constituent une source essentielle d’approvisionnement en eau, que ce soit pour être bue, pour produire de l’électricité et pour des besoins agricoles. La perte de cette ressource aura de graves répercussions sur ces pays. C’est un problème que j’ai largement développé dans mon livre « Glaciers en péril

Il y a peu de temps encore, les seules études menées sur le terrain concernant les glaciers du Venezuela dataient de 1971 et 1992. D’après de nouvelles mesures datant de 2011, le Glacier du Pic Humboldt recouvrait une superficie de 0,10 km², soit 0,05 km² de moins qu’en 2009. En l’espace de trois ans, de nombreuses fissures s’étaient formées à travers le glacier et de l’eau de fonte coulait à sa base.

Les scientifiques pensent que le principal responsable du recul actuel des glaciers est l’augmentation des températures. Les glaciers situés à faible altitude, comme le Glacier du Pic Humboldt, sont plus petits, plus vulnérables et risquent de disparaître les premiers. Il est utile de préciser ici que la zone d’accumulation de la neige qui constitue la source des glaciers a tendance a remonter sous l’effet du réchauffement climatique. Cela signifie que les glaciers situés en moyennent altitude sont sérieusement menacés. On s’en rend compte dans l’Himalaya où les glaciers haut perchés résistent bien alors que leurs homologues situés plus en aval connaissent des difficultés.

Le Glacier du Pic Humboldt repose au sommet d’une montagne qui doit son nom à Alexandre von Humboldt, un naturaliste et explorateur du 19ème siècle. C’est en 1799 qu’Humboldt a vu pour la première fois le Venezuela alors qu’il naviguait vers le littoral du pays, avec des montagnes recouvertes de nuages qui se dressaient à l’horizon. Humboldt constate les répercussions dévastatrices de la déforestation dans la colonie espagnole pour faire place aux plantations. À la suite de cela, il devient le premier scientifique à aborder le lien entre l’activité humaine et le changement climatique.

Aujourd’hui, seuls les alpinistes peuvent se rapprocher suffisamment pour voir le Glacier du Pic Humboldt. Le Venezuela étant considéré comme un pays trop dangereux pour s’y rendre, les scientifiques sont dissuadés de s’y rendre ou ne souhaitent tout simplement pas proposer des voyages de recherche là-bas. En plus de cela, le Glacier du Pic Humboldt n’est pas le plus attrayant au monde. Il fait pâle figure face aux champs de glace de la Patagonie et il est facile de comprendre pourquoi l’obtention de financements pour la recherche peut être difficile.

Adapté d’un article paru dans le National Geographic.

——————————————————–

This may sound anecdotal but confirms a trend observed elsewhere in the world. The Humboldt Peak Glacier is the last of the five major tropical glaciers in Venezuela. It is located in the western part of the country, in the Sierra Nevada de Mérida. With climate change, Venezuela is becoming the first country to lose all its glaciers.
Unlike Greenland and Antarctica, glaciers that are not ice sheets, such as those on the mountainsides, account for about 1% of the world’s glaciers. Their contribution to sea-level rise is therefore not significant. However, since most of them are in areas where temperatures frequently exceed 0°C, they are more sensitive to temperature changes.
The Andean Cordillera is home to over 95% of the world’s tropical glaciers. In some countries, such as Peru and Colombia, glaciers are an essential source of water supplies, be it for drinking, for generating electricity and for agricultural needs. The loss of this resource will have a serious impact on these countries. This is a problem that I have largely developed in my book « Glaciers in Peril. »
Until recently, the only field studies of Venezuela’s glaciers were from 1971 and 1992. According to new measurements from 2011, the Humboldt Peak Glacier covered an area of ​​0.10 km², or 0, 05 km² less than in 2009. In the space of three years, numerous cracks had formed across the glacier and meltwater was flowing at its base.
Scientists believe that the main contributor to the current retreat of glaciers is rising temperatures. Low-lying glaciers, such as the Humboldt Peak Glacier, are smaller, more vulnerable and may disappear first. It is useful to specify here that the area of ​​accumulation of snow that is the source of glaciers tends to rise under the effect of global warming. This means that medium altitude glaciers are seriously threatened. This is evident in the Himalayas, where high-altitude glaciers are resilient, while their downslope counterparts are struggling.
The Humboldt Glacier lies atop a mountain named after Alexander von Humboldt, a naturalist and explorer of the 19th century. It was in 1799 that Humboldt saw Venezuela for the first time as he sailed to the coast of the country, with mountains covered with clouds that stood on the horizon. Humboldt noted the devastating impact of deforestation in the Spanish colony to make way for plantations. As a result, he became the first scientist to address the link between human activity and climate change.
Today, only mountaineers can get close enough to see the Humboldt Peak Glacier. Venezuela being considered too dangerous a country to visit, scientists are dissuaded from going there or simply do not want to undertake research trips there. On top of that, the Humboldt Peak Glacier is not the most attractive in the world. It really looks small compared with the ice fields of Patagonia and it is easy to understand why obtaining funding for research can be difficult.
Adapted from an article published in National Geographic.

Vue du Glacier du Pic Humboldt (Crédit photo: Hendrick Sanchez / Wikimedia)

La menace des lacs de fonte glaciaire au Népal // The threat of glacial melt lakes in Nepal

On peut lire actuellement dans la presse des articles faisant état d’une menace pour les hautes vallées du Népal suite à la fonte et au recul des glaciers sous l’effet du réchauffement climatique. J’ai développé ce problème dans le chapitre de mon dernier livre « Glaciers en péril » consacré à l’Himalaya.

Avec le réchauffement climatique, la fonte et le recul des glaciers népalais entraînent la formation de lacs glaciaires toujours plus nombreux. L’eau de fonte s’accumule derrière des moraines qui peuvent se rompre à tout moment sous la pression de cette eau. Ces masses liquides sont susceptibles de dévaler les montagnes et provoquer des inondations dévastatrices.

Le risque est d’autant plus élevé que le Népal est situé sur une ligne de faille tectonique, comme est venu le rappeler le séisme de magnitude M 7,8 qui a fait plus de 9000 morts en avril 2015.

Cela peut paraître surprenant, mais le Népal est l’un des pays les plus vulnérables et les plus affectés par le changement climatique. Il subit en particulier la pollution en provenance de l’Inde et on relève dans la neige et la glace des traces importantes de carbone noir.

Le site web Science et Avenir donne l’exemple d’un village situé en contrebas du lac glaciaire Imja qui s’est formé à seulement 10 kilomètres au sud de l’Everest. Là où l’on n’observait que quelques mares de glace fondue dans les années 1980, le lac s’étire aujourd’hui sur près de deux kilomètres. Plus de 12 000 personnes vivent dans les 50 kilomètres en aval de cette pièce d’eau dont la vidange brutale pourrait déclencher des torrents capables d’atteindre les plaines du sud du pays. Le lac est donc une épée de Damoclès au-dessus de la tête des gens qui habitent dans cette région.

On a recensé 1466 lacs glaciaires au Népal en 2014, dont 21 potentiellement dangereux. On estime qu’il y en a aujourd’hui plus de 2000. La hausse des températures amplifie le phénomène en accentuant la fonte des glaciers. Le Népal en a perdu près d’un quart entre 1997 et 2010. Ceux qui se trouvent en haute altitude résistent encore bien, mais ceux qui sont situés en moyenne et basse altitude fondent rapidement.

Il y a deux ans, les habitants de la région du lac Imja ont poussé un soupir de soulagement lorsque les autorités ont fait baisser le niveau de ses eaux de 3,40 mètres grâce à un canal et mis en place un système d’alerte. Aujourd’hui, toute eau qui s’accumule est drainée. Imja est le second lac glaciaire à être équipé de la sorte. En 2000, le Népal avait déjà fait baisser le niveau du Tsho Rolpa dans le nord-est du pays. Tous les lacs d’altitude nés de la fonte des glaciers ne peuvent pas être mis en sécurité car leur accès est difficile et le processus de mise en sécurité est coûteux.

————————————————–

There are currently reports in the press about a threat to the high valleys of Nepal due to the melting and retreat of glaciers as a result of global warming. I developed this problem in the chapter of my latest book « Glaciers en péril » devoted to the Himalayas..
With global warming, the melting and retreating Nepali glaciers are leading to the formation of ever larger glacial lakes. Indeed, meltwater accumulates behind moraines that can break open under the pressure of this water. These liquid masses are likely to rush down the mountains and cause devastating floods.
The risk is even higher as Nepal is located on a tectonic fault line, as evidenced by the M 7.8 earthquake which killed more than 9,000 people in April 2015.
This may seem surprising, but Nepal is one of the most vulnerable countries and the most affected by climate change. In particular, it is subject to pollution from India and there are significant traces of black carbon in the snow and ice.
The Science et Avenir website gives the example of a village located below Imja Glacier Lake, which was formed just 10 kilometres south of Mt Everest. From a few pools of melted ice in the 1980s, the lake now stretches over nearly two kilometres. More than 12,000 people live within 50 kilometres downslope of this body of water whose sudden drainage could release torrents capable of reaching the plains to the south of the country. The lake is therefore a sword of Damocles above the heads of the people who live in this region.
There were 1,466 glacial lakes in Nepal in 2014, of which 21 were potentially dangerous. It is estimated that there are more than 2,000 today. The rise in temperatures amplifies the phenomenon by increasing the melting of glaciers. Nepal lost nearly a quarter of them between 1997 and 2010. Those at high altitude are still resilient, but those at low and medium altitudes are melting rapidly.
Two years ago, the people in the Lake Imja region breathed a sigh of relief when the authorities lowered the water level by 3.40 metres through a canal and set up an alert system. . Today, any water that accumulates is drained. Imja is the second glacial lake to be equipped in this way. In 2000, Nepal had already lowered the level of Tsho Rolpa in the north-east of the country. All high altitude lakes filled by melting glaciers can not be secured because access to them is difficult and the process of securing is expensive.

Vue du lac Imja au Népal (Crédit photo: Daniel Alton Byers / Wikipedia)

Début du chapitre consacré à l’Himalaya dans le livre « Glaciers en péril »…. :

L’Islande à Chaptelat (Haute Vienne) !

L’association Soleil Vert présentera ce soir, vendredi 7 décembre 2018 à 21 heures, à la Maison des Associations de Chaptelat, un diaporama intitulé « Voyage en Islande ». Il sera animé par Stéphane Lerouge, Marc Laroye et Claude Grandpey qui vous feront voyager à travers cette terre nordique.

Il se déroulera également dans le cadre de la journée consacrée au Téléthon.

J’aurai l’occasion de parler des éruptions qui ont secoué l’Islande, de la fonte des glaciers ainsi que des légendes islandaises.

J’apporterai quelques exemplaires de mon dernier livre « Glaciers en péril » que vous pourrez vous procurer au prix de 10 euros.

Photo: C. Grandpey

Livre…et conférence !

Comme je l’ai indiqué dans la présentation de mon nouveau livre Glaciers en péril, les effets du réchauffement climatique, mes pérégrinations à travers notre planète m’ont permis de me rendre compte de la vitesse à laquelle fondent les glaciers. J’ai décidé de m’éloigner un peu du monde chaud des volcans pour tirer la sonnette d’alarme au travers du livre que je propose désormais à l’issue d’une conférence qui porte le même titre.
La banquise et les glaciers fondent… Aucun continent ne semble épargné. Une prise de conscience est urgente, faute de quoi notre société sera confrontée à de graves problèmes.
Ma conférence est illustrée par un diaporama en fondu-enchaîné sonorisé : « Glaciers d’Alaska, un monde en péril. »

Si votre commune, votre association ou votre comité d’entreprise sont intéressés, ils peuvent me contacter par mail pour connaître les conditions de mon intervention :

grandpeyc@club-internet.fr

Photo: C. Grandpey