Etna (Sicile) : En route pour le 15ème paroxysm ! // 15th paroxysm !

19 mars 2021 – 7 heures (heure locale) : Le tremor et la sismicité sont sur la courbe ascendante. Le 15ème paroxysme de l’Etna depuis le 16 février 2021 ne devrait pas tarder.

9 heures: Le tremor continue à grimper. La visibilité n’est pas très bonne. Il va falloir se tourner vers la caméra thermique pour observer l’évolution de la crise éruptive.

Encore beaucoup de cendre semble-t-il. Les balais vont être de sortie, en particulier dans le secteur ENE du volcan….

10 heures : Le paroxysme suit son processus habituel. l’activité strombolienne dans le Cratère SE a évolué vers des fontaines et débordements de lave. Le volcan émet beaucoup de cendre ce matin. Au vu du tremor, le pic de l’événement ne devrait pas tarder.

11 heures : Le pic du tremor vient d’être atteint et l’activité éruptive du Cratère SE commence à décliner. Rendez-vous dans 48 heures pour une prochaine crise avec une meilleure visibilité?

++++++++++

En plus d’empoisonner la vie de la Sicile, la cendre de l’Etna également atteint la région des Marches à l’est de l’Italie, entre les Apennins et la mer Adriatique. Le phénomène a été enregistré notamment entre le 24 et le 27 février dernier, lors de la reprise des « paroxysmes » sur le volcan. Cette poussière volcanique est venue s’ajouter au sable du Sahara qui, poussé à l’époque par le sirocco, était observé dans tout le centre et le sud de l’Italie. A Ancône, la capitale des Marches, on a enregistré un pic de 223 µg / m3, à 20 heures le 27 février 2021. .

S’agissant de la cendre de l’Etna, elle a survolé les Marches, mais aussi d’autres régions italiennes. De plus, les crises éruptives du volcan ont émis des milliers de tonnes de SO2 dans l’atmosphère. Poussées par le sirocco, ces particules et la poussière de cendre ont affecté des régions comme la Sardaigne, le Latium, la Toscane, l’Émilie. Romagne, l’Ombrie et même les Marches. Ces nuages de gaz et de cendre sont restés à haute altitude et n’ont eu que peu ou pas de répercussions au sol. Le phénomène est loin d’être exceptionnel. On sait que lors de certaines éruptions majeures les nuages ​​volcaniques peuvent atteindre 12 ou 13 km de hauteur et pénétrer dans la stratosphère. Les vents forts qui soufflent dans cette zone, souvent à plus de 250 km / h, peuvent transporter de minuscules particules sur des centaines, voire des milliers de kilomètres.

Source : Presse italienne.

Photo : C. Grandpey

———————————————–

March 19th, 2021 – 7 :00 am : The tremor and seismicity are on the rise. Mt Etna’s 15th paroxysm since February 16th, 2021 should occur very soon.

°°°°°°°°°°

9 am: The tremor keeps rising. Visibility is not very good. The thermal camera will probably be the best way to observe the evolution of the eruptive crisis.

°°°°°°°°°°

10 am: The paroxysm follows its usual process. Strombolian activity in the SE Crater has developed into lava fountains and overflows. The volcano emits a lot of ash this morning. In view of the tremor, the peak of the event should not be long.

°°°°°°°°°°

11 am: The peak of the tremor has just been reached and eruptive activity at the SE Crater begins to decline. See you in 48 hours or so for a next crisis with better visibility?

++++++++++

In addition to disturbing life in Sicily, the ash from Mt Etna also reached the Marche region in eastern Italy, between the Apennines and the Adriatic Sea. The phenomenon was recorded in particular between February 24th and 27th, during the resumption of « paroxysms » on the volcano. This volcanic dust was added to the sand from the Sahara which, pushed at the time by the sirocco, was observed throughout central and southern Italy. In Ancona, the capital of Marche, a peak of 223 µg / m3 was recorded at 8 p.m. on February 27th, 2021.. As for Mt Etna’s ash, it passed over the Marche, but also other Italian regions. In addition, the eruptive crises of the volcano emitted thousands of tons of SO2 into the atmosphere. Driven by sirocco, all these particles affected regions such as Sardinia, Lazio, Tuscany, Emilia. Romagna, Umbria and even the Marche. These clouds of gas and ash remained at high altitude and had little or no impact on the ground. The phenomenon is far from exceptional. It is well known that during some major eruptions volcanic clouds can reach 12 or 13 km in height and penetrate into the stratosphere. The strong winds that blow in that area, often at over 250 km / h, can carry tiny particles for hundreds or even thousands of kilometres.

Source: Italian press.

Essaim sismique sur le Mauna Loa (Hawaii) mais pas d’éruption en vue // Seismic swarm on Mauna Loa (Hawaii) but no imminent eruption

Le 18 mars 2021, le HVO a enregistré un essaim sismique avec plus de 40 événements dans la partie supérieure de la zone sismique de Ka’oiki du Mauna Loa. Les secousses se sont produites dans un secteur d’environ 1,6 km de diamètre et à 800-6500 mètres sous la surface. L’événement le plus significatif avait une magnitude M 3,5. La plupart des autres secousses avaient une magnitude inférieure à M 2,0. Le HVO explique que la présence de foyers sismiques peu profonds dans cette zone ne signifie pas qu’une éruption est imminente. L’observatoire enregistre des séismes peu profonds dans cette zone depuis de nombreuses décennies. Ils ne montrent aucun signe d’ascension magmatique et font partie des « réajustements normaux en raison de l’évolution des contraintes à l’intérieur de l’édifice volcanique.»

————————————–

On March 18th, 2021, HVO recorded more than 40 earthquakes beneath Mauna Loa’s upper Ka‘ōiki seismic zone. These earthquakes occurred in a cluster about 1.6 km wide and 800-6,500 metres below the surface. The largest event had a magnitude M 3.5. The bulk of the events had a magnitude less than M 2.0.

HVO explains that clustering of shallow earthquakes in this region does NOT mean an eruption is imminent. The observatory has recorded shallow earthquakes in this area for many decades. They do not show any signs of magmatic involvement and are “part of normal re-adjustments of the volcano due to changing stresses within it.”

Vue du sommet du Mauna Loa (Crédit photo : HVO)

Le mystère des aurores boréales // The mystery of northern lights

Cette note n’a pas pour sujet les volcans ou les glaciers mais les aurores boréales – aurora borealis – un phénomène qui fascine ceux qui visitent l’Arctique ou l’Antarctique où l’on peut observer les glaciers et les calottes glaciaires.

On peut lire sur l’excellent site Web The Watchers qu’une nouvelle étude conduite par des scientifiques de l’Institut de recherche environnementale Espace-Terre de l’Université de Nagoya (Japon) a révélé un mécanisme inconnu de la magnétosphère dans lequel les électrons en provenance du Soleil sont propulsés par une énergie électrique plus puissante qu’on ne le pensait jusqu’à présent.

La formation des aurores boréales et australes commence lorsque du plasma est propulsé à très grande vitesse dans l’espace par le Soleil sous forme de particules chargées. Lorsque ces particules se rapprochent de la Terre, elles sont déviées et canalisées, et vont circuler le long des lignes de champ magnétique pour finalement se diriger vers les pôles. La plupart des électrons de la magnétosphère n’atteignent pas l’ionosphère (haute atmosphère) car ils sont repoussés par le champ magnétique terrestre.

Certaines particules accélèrent leur course dans la haute atmosphère terrestre où elles entrent en collision avec des atomes d’oxygène et d’azote qu’elles excitent à une altitude d’environ 100 km. Lorsque les atomes se défont de leur état d’excitation, ils produisent des aurores boréales.

Cependant, de nombreux détails sur ce processus sont encore mystérieux. Par exemple, on ne connaît pas avec précision la manière dont est généré le champ électrique qui accélère les électrons dans l’ionosphère, ni même sa hauteur au-dessus de la Terre. Les scientifiques pensaient jusqu’à présent que l’accélération se produisait à des altitudes comprises entre 1 000 et 20 000 km au-dessus de la Terre. La nouvelle étude montre que la zone d’accélération s’étend au-delà de 30 000 km. Elle montre aussi que le champ électrique qui accélère les particules aurorales peut exister à n’importe quelle hauteur le long d’une ligne de champ magnétique et n’est pas limité à la région de transition entre l’ionosphère et la magnétosphère à plusieurs milliers de kilomètres. Cela laisse supposer que des mécanismes magnétosphériques inconnus entrent en jeu.

L’équipe scientifique a étudié aux États-Unis et au Canada les données d’imageurs fournies par le détecteur d’électrons du satellite japonais Arase. Les données ont été collectées à partir de septembre 2017, au moment où Arase se trouvait à une altitude d’environ 30000 km et dans un mince arc auroral actif pendant quelques minutes.

Les chercheurs ont pu mesurer les mouvements ascendants et descendants des électrons et des photons, ce qui a révélé que la zone d’accélération des électrons commençait au-dessus du satellite et s’étendait en dessous.

Afin d’approfondir l’étude de la zone d’accélération à haute altitude, le prochain objectif de l’équipe scientifique sera d’analyser les données fournies par plusieurs événements d’aurores boréales, de comparer les observations de haute et de basse altitude et de réaliser des simulations numériques du potentiel électrique.

Les chercheurs expliquent que si l’on comprend comment se forme ce champ électrique, on comblera les lacunes dans la compréhension de la formation des aurores et dans le transport d’électrons sur Terre et d’autres planètes comme Jupiter et Saturne.

Référence :  « Active auroral arc powered by accelerated electrons from very high altitudes » – Imajo, S., et al. – Scientific Reports.

Source: The Watchers.

—————————————-

This post is not about volcanoes or glaciers but about Northern Lights – aurora borealis – a phenomenon that fascinates those who visit the Arctic or the Antarctic where glaciers and ice sheets can be observed.

We can read on the excellent website The Watchers that new research by scientists at Nagoya University’s Institute for Space-Earth Environmental Research has revealed an unknown mechanism of the magnetosphere in which electrons from the Sun are propelled by electrical energy higher than previously thought, ultimately creating displays of northern and southern lights.

The formation of auroras starts with supersonic plasma propelled from the Sun as high-speed, charged particles into space. When these particles get near Earth, they are deflected and funneled in streams along the magnetic field lines, flowing towards the poles eventually.

Most electrons in the magnetosphere don’t reach the ionosphere (upper atmosphere) because they are repelled by the Earth’s magnetic field.

Some particles are accelerated into the Earth’s upper atmosphere, where they collide with and excite oxygen and nitrogen atoms at an altitude of roughly 100 km. When the atoms relax from their state of excitation, they emit the auroras. However, many details about this process are still unknown. For instance, we don’t know all the details of how the electric field that accelerates electrons into the ionosphere is generated or even how high above Earth it is.

Scientists previously believed that acceleration happened at altitudes between 1 000 and 20 000 km above the Earth. The new research reveals that the acceleration region spreads beyond 30 000 km. It shows that the electric field that accelerates auroral particles can exist at any height along a magnetic field line and is not limited to the transition region between the ionosphere and magnetosphere at several thousand kilometres. This suggests that unknown magnetospheric mechanisms are at play.

The scientific team studied data from ground-based imagers in the U.S. and Canada from the electron detector on the Japanese satellite, Arase. The data was taken from September 2017, when Arase was at an altitude of about 30 000 km and located within a thin active auroral arc for a few minutes.

The researchers were able to measure the upward and downward movements of electrons and photons, eventually finding the acceleration region of electrons began above the satellite and extended below.

To further investigate the high-altitude acceleration region, the team’s next goal is to analyze data from multiple aurora events, compare observations of high and low altitudes, and conduct numerical simulations of electric potential.

The researchers explain that understanding how this electric field forms will fill in gaps for understanding aurora emission and electron transport on Earth and other planets, including Jupiter and Saturn.

Reference

« Active auroral arc powered by accelerated electrons from very high altitudes » – Imajo, S., et al. – Scientific Reports.

Source: The Watchers.

Photo : C. Grandpey

La vie sous la banquise antarctique // Life beneath the Antarctic ice shelf

Le 26 février 2021, un énorme iceberg baptisé A74, d’une superficie d’environ 1290 km2, s’est détaché de la plateforme glaciaire de Brunt en Antarctique. Quelques jours plus tard, le Polarstern, un navire scientifique géré par l’Institut Alfred Wegener, qui effectuait des recherches dans l’est de la mer de Weddell, a réussi à se frayer un passage dans la zone étroite entre l’A74 et la plateforme Brunt. Les scientifiques ont pu étudier les fonds marins qui venaient d’être libres de glace suite au vêlage de l’iceberg.

Les équipes scientifiques essaient fréquemment de sonder les eaux sous les plateformes glaciaires juste après un vêlage pour mieux comprendre la vie de ces écosystèmes uniques, mais la tâche n’est pas facile. Il faut être au bon endroit au bon moment, et très souvent la glace de mer empêche un navire de recherche de se positionner au-dessus de sa cible.

Le Polarstern utilise un système d’observation et de bathymétrie du plancher océanique (OFOBS). Il s’agit d’un ensemble d’instruments sophistiqués qui est remorqué en profondeur derrière le navire. En cinq heures, les instruments ont pu collecté près de 1 000 images haute résolution et de longues séquences vidéo.

La glace avait recouvert pendant de longues années la zone où se trouvait l’A74. Malgré cela, une vie riche et diversifiée a pu s’établir sur le fond marin. Sur les images, on peut voir de nombreux animaux sessiles agrippés à un grand nombre de petites pierres éparpillées sur le fond marin recouvert de sédiments. La majorité de ces êtres vivants sont des organismes filtreurs qui parviennent à vivre sur des matériaux fins transportés sous la glace au cours des dernières décennies. Une faune mobile comprenant des holothuries, des ophiures, divers mollusques, ainsi qu’au moins cinq espèces de poissons et deux espèces de poulpes a également été observée.

Selon les chercheurs, il n’est pas vraiment surprenant de trouver ce genre de communauté aussi profond sous la banquise, mais cela montre qu’il existe une bonne réserve de nourriture à une telle profondeur. Cette nourriture est produite par le plancton qui prolifère à la surface de la mer grâce à la lumière du soleil et qui est ensuite entraîné sous la banquise par les courants de la mer de Weddell. Ce sont ces mêmes courants qui déplaceront l’iceberg A74 vers l’ouest. Il fera le tour de la mer de Weddell puis se dirigera vers le nord avant d’aller mourir dans l’Océan Austral.

La partie orientale de la mer de Weddell est intéressante car elle n’a pas subi les effets du réchauffement climatique autant que le secteur ouest à proximité de la Péninsule Antarctique. Cette situation ne durera peut-être pas car des modèles informatiques montrent qu’il pourrait y avoir des incursions régulières d’eau chaude océanique en provenance du nord d’ici la fin du siècle.

Source: La BBC.

———————————————–

On February 26th, 2021, a huge iceberg called A 74 with an area of about 1,290 sq km, broke away from the Brunt ice shelf in Antarctica. A few days later, the Polarstern, a scientific vessel run by the Alfred Wegener Institute, which was doing research in the eastern Weddell Sea, managed to visit the narrow area of seafloor between A74 and the Brunt Ice Shelf which had just been exposed by the calving iceberg.

Research groups frequently try to probe waters below freshly calved ice shelves, to better understand how these unique ecosystems operate, but success is not easy. You have to be in the right place in Antarctica at just the right time, and often the sea-ice conditions simply won’t let a research ship get into position above the target site.

The Polarstern employs an Ocean Floor Observation and Bathymetry System (OFOBS). This is a sophisticated instrument package that is towed behind the ship at depth.

Over five hours, the system collected almost 1,000 high-resolution images and long sequences of video.

Despite the years of continuous ice coverage, a developed and diverse seafloor community was observed. In the images, numerous sessile animals can be seen attached to various small stones scattered liberally across the soft seafloor. The majority of these are filter-feeding organisms, presumably subsisting on fine material transported under the ice over these last decades. Some mobile fauna, such as holothurians, ophiuroids, various molluscs, as well as at least five species of fish and two species of octopus were also observed.

According to the researchers, finding this kind of community this far under the ice shelf is not surprising but it is a good indication that there is a rich supply of food reaching very deep under the ice shelf. This food is produced by plankton in the sunlit sea surface nearby, then dragged under the ice shelf by the currents of the Weddell Sea. These same currents will eventually move the iceberg westward around the Weddell Sea and then northwards to its doom in the Southern Ocean. .

The Weddell Sea’s eastern side is interesting because it has not witnessed the warming effects that have been observed in its western sector, next to the Antarctic Peninsula. This situation may not last, however, with computer models suggesting there could be regular incursions of warm ocean water from the north by the century’s end.

Source: The BBC.

Image satellite de l’iceberg A74 et du chenal emprunté par le Polarstern que l’on aperçoit sur la vignette (Source : Copernicus / Sentinel 2)