Mauna Loa: une éruption à court terme ? // A short-term eruption ?

34 séismes ont de nouveau été enregistrés sur le Mauna Loa le 11 avril 2021. Bien qu’ils n’aient que de faibles magnitudes, les scientifiques ont prévenu la population que la hausse de l’activité sismique observée depuis quelque temps peut annoncer une éruption dans un proche avenir. On a enregistré 155 séismes d’une magnitude supérieure à M 1,5 au cours des sept derniers jours et 740 événements au cours du mois dernier, dont une secousse de M 4,3 le 3 avril.

Le séisme le plus important du 11 avril avait une magnitude de M 3,2, avec son épicentre à Pahala, au sud du sommet du Mauna Loa. Un séisme de M 3.0 a également été enregistré dans l’après-midi de ce même jour.

En mars, au vu de la sismicité, l’USGS a déclaré que ce serait le bon moment pour la population de mettre à jour les plans d’urgence personnels en cas d’éruption. Les données historiques montrent que, lors des éruptions précédentes, les coulées de lave n’ont mis que quelques heures pour atteindre les zones habitées. On se trouve dans la même situation que celle qui précède la saison des ouragans. Il est conseillé d’avoir un plan d’urgence en cas d’éruption. Un «go-bag» (sac d’urgence) avec des articles essentiels et les documents importants est recommandé si des évacuations sont ordonnées dans l’urgence en cas d’éruption.

Les éruptions du Mauna Loa ont tendance à produire de grandes coulées de lave rapides qui peuvent avoir un impact sur les localités dans les parties est et ouest de la Grande Ile, de Kona à Hilo. Hilo, à l’est d’Hawaï, s’est trouvée sous la menace de sept coulées de lave depuis les années 1850. En 1984, la lave s’est arrêtée à environ 6 kilomètres de la ville. Sur les côtés sud et ouest de l’île, des coulées de lave ont atteint la côte à huit reprises, dont trois fois en 1950.

Source: Presse hawaiienne.

———————————————-

34 earthquakes were again recorded on Mauna Loa on April 11th, 2021. Though only registering small magnitudes, scientists have warned citizens that the mounting seismic activity could signal that an eruption may be possible in the near future. There have been 155 earthquakes greater than M 1.5 in the past seven days, and 740 in the past month, including an M 4.3 event on April 3rd.

The most significant quake on April 11th had a magnitude of M 3.2, with its epicentre in Pahala, south of the summit of Mauna Loa. An M 3.0 tremor also struck in the afternoon of that same day.

In March, USGS said that as the volcano continues to awaken from its slumber, it would be a good time for people to revisit their personal emergency plans in the event of an eruption. Historical data shows that in previous eruptions it could take just hours for lava flows to reach populated areas. Similar to preparing for hurricane season, having an eruption plan in advance helps during an emergency. A “go-bag” with essential items and important documents is recommended, should evacuations be ordered in the event of an eruption.

Mauna Loa eruptions tend to produce large, fast-moving lava flows that can impact communities on both the east and west sides of the Big Island from Kona to Hilo.

Hilo in the east of Hawaii has been threatened by seven lava flows since the 1850s. In 1984, the lava stopped approximately 6 kilometres from the city. On the south and west sides of the island, lava flows have reached the coast eight times, including three times in 1950.

Source : Hawaiian news media.

Impact prévisible des coulées de lave du Mauna Loa (Source : USGS)

Un nouveau Mauna Loa bientôt en Islande? // A new Mauna Loa soon in Iceland?

Voici une nouvelle prévision des volcanologues islandais ! Après avoir dit que la sismicité dans la Péninsule de Reykjanes pourrait – ou ne pourrait pas – déboucher sur une éruption; après avoir affirmé que l’éruption actuelle serait courte – puis qu’elle durerait longtemps – l’un d’eux prévoit maintenant que la lave très fluide qui s’écoule lentement dans la Geldingadalur pourrait finir par former un volcan bouclier semblable au Mauna Loa à Hawaii !

Cela fait seulement neuf jours que l’éruption a commencé avec un débit estimé entre 5 et 7 mètres cubes par seconde. Un professeur de volcanologie à l’Université d’Islande compare l’éruption actuelle à celle du Pu’u’O’o à Hawaii, qui a commencé en 1983 et a duré 35 ans. [A noter que les éruptions du Kilauea à Hawaii présentent des débits éruptifs qui n’ont rien à voir avec le petit débit de l’éruption actuelle en Islande]. Selon le professeur, «l’éruption peut se terminer demain ou elle peut encore durer quelques décennies.» (On appréciera la finesse de la prévision !) Il ajoute : « Si l’éruption continue, le volcan pourrait finir par devenir un volcan bouclier. » Il est bon de rappeler que les volcans boucliers sont des volcans à pente douce, souvent de très grandes dimensions, qui se forment sur de très longues périodes. Dire que l’éruption actuelle pourrait devenir un volcan bouclier après seulement quelques jours d’activité ne rime à rien ! Comme me disait ma mère quand j’étais môme, «quand on n’a rien à dire, on se tait!»

Pour le moment, une seule prévision reste valable: l’éruption a déjà attiré de nombreux visiteurs (environ 10 000 en un week-end) et il en attirera des milliers d’autres si elle continue.

Source: Iceland Review.

A titre de comparaison, l’éruption du Mauna Loa en 1950 a duré 23 jours et a émis 376 millions de mètres cubes de lave.

On a estimé que le volume de lave émis pendant les 22 jours d’éruption du Mauna Loa en 1984 a atteint 220 millions de mètres cubes.

En 2018 le débit de lave au niveau de la seule Fissure 8 pendant l’éruption du Kilauea a été estimé entre 50 et 150 mètres cubes par seconde selon les jours. Rien à voir, donc, avec le débit de l’éruption actuelle en Islande.

—————————————–

Here is a new prediction by Icelandic volcanologists. After saying the seismicity in the Reykjanes Peninsula might – or might not – lead to an eruption; after affirming the current eruption would be a short one – and then a long one – they now predict that the slow-flowing, highly fluid lava emitted in Geldingadalur could potentially form a shield volcano, like Hawaii’s Mauna Loa.

The eruption has now been ongoing for nine days with a steady rate of flow between 5-7 cubic metres per second. A volcanology professor at the University of Iceland compared the current eruption to that of Pu’u ‘O’o in Hawaii, which began in 1983 and lasted 35 years. “It could end tomorrow or it could still be going in a few decades.” (This is a highly reliable prediction!) The professor added: “If the volcano continues to erupt it could end up being categorised as a shield volcano.”

We are reminded that shield volcanoes are gently-sloping, often large volcanoes, usually formed over long periods of time. Saying the current eruption might become a shield volcano after only a few days’ activity is sheer nonsense! Like my mother used to tell me when I was a baby, “if you have nothing to say, you shut your mouth!”

For the moment, one prediction is clear: the eruption is very popular; it has already attracted many visitors (about 10,000 in one week-end) and it will draw thousands more if it goes on.

Source: Iceland Review.

As a comparison, the Mauna Loa 1950 eruption lasted for 23 days and erupted 376 million cubic metres of lava,

The volume of lava emitted during the 22-day eruption of Mauna Loa in 1984 was estimated at 220 million cubic metres.

In 2018, the lava output at Fissure 8 alone during the Kilauea eruption was estimated between 50 and 150 cubic metres per second depending on the day. Th current Icelandic eruption cannot rival with these figures.

Geldingadalur : Une éruption à faible débit

Essaim sismique sur le Mauna Loa (Hawaii) mais pas d’éruption en vue // Seismic swarm on Mauna Loa (Hawaii) but no imminent eruption

Le 18 mars 2021, le HVO a enregistré un essaim sismique avec plus de 40 événements dans la partie supérieure de la zone sismique de Ka’oiki du Mauna Loa. Les secousses se sont produites dans un secteur d’environ 1,6 km de diamètre et à 800-6500 mètres sous la surface. L’événement le plus significatif avait une magnitude M 3,5. La plupart des autres secousses avaient une magnitude inférieure à M 2,0. Le HVO explique que la présence de foyers sismiques peu profonds dans cette zone ne signifie pas qu’une éruption est imminente. L’observatoire enregistre des séismes peu profonds dans cette zone depuis de nombreuses décennies. Ils ne montrent aucun signe d’ascension magmatique et font partie des « réajustements normaux en raison de l’évolution des contraintes à l’intérieur de l’édifice volcanique.»

————————————–

On March 18th, 2021, HVO recorded more than 40 earthquakes beneath Mauna Loa’s upper Ka‘ōiki seismic zone. These earthquakes occurred in a cluster about 1.6 km wide and 800-6,500 metres below the surface. The largest event had a magnitude M 3.5. The bulk of the events had a magnitude less than M 2.0.

HVO explains that clustering of shallow earthquakes in this region does NOT mean an eruption is imminent. The observatory has recorded shallow earthquakes in this area for many decades. They do not show any signs of magmatic involvement and are “part of normal re-adjustments of the volcano due to changing stresses within it.”

Vue du sommet du Mauna Loa (Crédit photo : HVO)

Mauna Loa (Hawaii) : un géant endormi // A sleeping giant

L’éruption du Kilauea en 2021 n’est pas très spectaculaire et n’attire pas beaucoup de touristes car la surface active de la lave n’est pas visible depuis la terrasse d’observation.

En guise de compensation, le HVO nous rappelle qu’il existe un autre volcan potentiellement actif sur la Grande Ile d’Hawaii et l’Observatoire pose la question: «Quand le Mauna Loa va-t-il entrer à nouveau en éruption?» Le Mauna Loa n’est pas en éruption actuellement, mais on observe des signes d’activité au-dessus de la normale depuis juillet 2019 C’est pourquoi le HVO a fait passer le niveau d’alerte volcanique à ADVISORY (surveillance conseillée) et le la couleur de l’alerte aérienne au JAUNE.

Le Mauna Loa est le plus grand volcan actif sur Terre (les Américains sont vraiment friands de superlatifs!) et il occupe un peu plus de la moitié de l’île d’Hawaï. Volcan bouclier, il s’élève progressivement à 4170 m au-dessus du niveau de la mer, mais ses flancs descendent sur 5 km sous le niveau de la mer jusqu’au fond de l’océan, ce qui fait du Mauna Loa la plus haute montagne de la planète.

Comme le Kilauea, le Mauna Loa a une caldeira sommitale et deux zones de rift actives qui partent de son sommet. Les éruptions peuvent être de courte ou de longue durée et se produire au sommet, sur les zones de rift sud-ouest ou nord-est, ou à partir de bouches radiales sur les flancs nord et ouest du volcan.

L’histoire montre que les éruptions du Mauna Loa peuvent commencer sans pratiquement de signes avant-coureurs et produire d’impressionnants volumes de lave qui parcourent de longues distances sur de courtes périodes de temps, avec des dégâts facile à imaginer pour les localités présentes au pied du volcan.

La dernière éruption du Mauna Loa a commencé à son sommet le 25 mars 1984. Une série de fissures s’est ouverte le long de la zone de rift nord-est. Elles ont alimenté des coulées de lave qui sont arrivées à moins de 17 km de Hilo Bay en 5 jours. L’éruption s’est terminée le 15 avril.

L’éruption du Mauna Loa qui a émis les plus importants volumes de lave en un temps record a commencé le 1er juin 1950, lorsque des fissures se sont ouvertes dans la partie supérieure du Rift Sud-Ouest, avec une coulée de lave qui a parcouru 24 km et a atteint l’océan en moins de 3 heures! Au cours des 23 jours suivants, des coulées de lave sont descendues de part et d’autres de la zone de rift. Elles ont noyé le village côtier de Ho’okena-mauka et recouvert la Highway 11 en trois endroits.

En ce qui concerne la situation actuelle, les sismomètres du HVO ont enregistré entre le 15 et le 21 février 2021 271 petits séismes (magnitude inférieure à M 2,0) superficiels (moins de 6 km de profondeur) sur le Mauna Loa : 226 ont été localisés sous le sommet et sous les flancs supérieurs du volcan. Il s’agit d’une hausse relative de l’activité, mais qui reste dans la fourchette des événements observés ces des dernières années. Les scientifiques du HVO pensent que l’activité sismique peu profonde s’intensifiera avant une éruption.

L’examen des données de 1984 peut aider à mettre en perspective les observations récentes. Un signe annonciateur de l’éruption de 1984 a été une augmentation brutale du nombre de petits séismes et du tremor volcanique. Des centaines, et parfois plus de mille, secousses ont été enregistrées chaque jour par le réseau sismique du HVO. Dans les heures qui ont précédé l’éruption de 1984, l’activité sismique était telle que les télescopes astronomiques du Mauna Kea, à 42 km de distance, ne pouvaient pas être stabilisés en raison des vibrations constantes du sol.

Le HVO utilise des outils de surveillance à distance qui n’existaient pas en 1984. Le réseau GPS et les tiltmètres enregistrent la déformation du sol en continu. Cette dernière montre une inflation sommitale lente et sur le long terme, en relation avec l’alimentation de la chambre magmatique peu profonde. La légère hausse de l’inflation sommitale qui a débuté en janvier 2021 se poursuit. Les outils de surveillance actuels comprennent également des webcams haute résolution, des réseaux d’infrasons, des jauges de déformation, des capteurs d’émission de gaz, l’accès aux mesures satellitaires et l’imagerie thermique.

Quand le Mauna Loa entrera-t-il à nouveau en éruption? Il est malheureusement impossible de prévoir la date et l’heure de la prochaine colère du volcan. Les mesures géophysiques indiquent que la chambre magmatique du Mauna Loa se recharge depuis l’éruption de 1984 et qu’il y a des signes d’activité significatifs depuis 2019, mais la prochaine éruption du Mauna Loa ne semble pas imminente. Néanmoins, la récente augmentation de la sismicité et de la déformation du sol rappelle que Mauna Loa est un «géant endormi».

Source: USGS / HVO.

—————————————————

The 2021 eruption of Kilauea is not dramatic these days and does not attract many tourists as the active surface of the lava cannot be seen from the observation terrace.

As a compensation, HVO reminds us that there is another potentially active volcano on Hawaii Big Island. The Observatory askes the question: “When will Mauna Loa erupt next?”

Mauna Loa is not currently erupting, but there have been signs of unrest above background level since July 2019, which led HVO to increase the Volcano Alert Level to ADVISORY and the Aviation Colour Code to YELLOW.

Mauna Loa is the largest active volcano on Earth (Americans are really fond of superlatives!), covering just over half of the Island of Hawaii. A shield volcano, it rises gradually to 4,170 m above sea level, and its long submarine flanks descend 5 km below sea level to the ocean floor.

Mauna Loa, like Kilauea, has a summit caldera and two active rift zones extending from its summit. Eruptions may be short- or long-lived, and occur at the summit, on either the Southwest or Northeast Rift Zones, or radial vents on the north and western flanks on the volcano.

History shows that Mauna Loa eruptions can begin with very little warning and produce high volume lava flows that travel long distances in short periods of time, impacting communities on the flanks of the volcano.

Mauna Loa’s last eruption began at its summit on March 25th, 1984. A series of fissures opened along the Northeast Rift Zone, feeding lava flows that came to within 17 km of Hilo Bay in 5 days. The eruption ended on April 15th.

The fastest high-volume eruption from Mauna Loa in recorded history began on June 1st, 1950, when fissures opened from the uppermost Southwest Rift Zone, generating a lava flow that travelled 24 km and reached the ocean in less than 3 hours! Over the next 23 days, lava flows descended on both sides of the rift zone, inundating the coastal village of Ho’okena-mauka and covering Highway 11 in three places

As far as the current situation is concerned, HVO seismometers recorded approximately 271 small (under M 2.0), shallow (less than 6 km deep) earthquakes last week on Mauna Loa, 226 of which were beneath the summit and upper-elevation flanks. This is a relative increase in activity, but within the range of fluctuations observed over the past several years. HVO scientists expect that shallow seismic activity will become more sustained before an eruption.

Review of data from 1984 can help put recent observations into perspective. An immediate precursor to the 1984 eruption was an abrupt increase in the number of small earthquakes and volcanic tremor. Hundreds to over a thousand earthquakes were recorded by HVO’s seismic network each day. In the hours before the 1984 eruption, seismic activity increased to the point that the astronomical telescopes on Mauna Kea, 42 km, could not be stabilized because of the constant ground vibration.

HVO also uses remote monitoring capabilities that were not available in 1984. Global Positioning System (GPS) and tiltmeter stations record continuous ground deformation measurements that show slow, long-term summit inflation, consistent with magma supply to the volcano’s shallow storage system. A slight increase in the rate of inflation at the summit that began in January 2021 is continuing.

Current monitoring tools also include high resolution webcams, infrasound arrays, strainmeters, gas emission sensors, and access to spaceborne radar and thermal imaging measurements.

So, when will Mauna Loa erupt next? It is not possible to “predict” the exact date and time. Geophysical measurements indicate that Mauna Loa’s magma storage system has been recharging since the 1984 eruption, and there have been signs of elevated unrest since 2019, but the next Mauna Loa eruption does not appear to be imminent. Nevertheless, the recent slight increase in seismicity and ground deformation is a reminder that Mauna Loa is a “sleeping giant.”

Source: USGS / HVO.

Cette carte du Mauna Loa montre des coulées de lave émises depuis 1823 (en gris), le nombre approximatif d’heures ou de jours mis par une coulée pour aller depuis la bouche éruptive jusqu’à l’océan, ou la distance maximale parcourue par une coulée. Une coulée a dévalé les pentes abruptes du flanc ouest du Mauna Loa et a atteint l’océan en seulement 3 heures après l’ouverture d’une bouche éruptive en 1950.

Les chiffres en gras font référence au débit éruptif de la lave en millions de mètres cubes par jour. On remarquera que le flanc ouest a les pentes les plus raides (zones rouge-orange), la distance la plus courte entre la bouche éruptive et l’océan et le débit éruptif le plus élevé pendant les éruptions. Il reste donc peu de temps pour avertir la population lors d’une éruption dans la zone de rift sud-ouest du Mauna Loa. (Source: USGS)

—————————-

This map of Mauna Loa, shows lava flows erupted since 1823 (gray), the approximate number of hours or days it took for a flow to advance from the vent location to the ocean or maximum reach of a flow. One flow that moved down the steep slopes on west flank of Mauna Loa reached the ocean in as little as 3 hours after the vent started erupting in 1950. The bold numbers (for example, 12Mm3/d) are the average rates of lava effusion (outpouring of lava) in millions of cubic meters per day. Note the west flank has the steepest slopes (red-orange areas), shortest distance from vent to the ocean, and the highest average rate of effusion during eruptions, resulting in precious little time for warning residents during an eruption from the Southwest Rift Zone of Mauna Loa.  (Source : USGS)

Caldeira sommitale du Mauna Loa (Photo : C. Grandpey)

L’Observatoire du Mauna Loa, la Courbe de Keeling et les concentrations de CO2 // Mauna Loa Observatory, Keeling Curve and CO2 concentrations

Dans les notes expliquant l’évolution du réchauffement climatique, je fais très souvent référence à la Courbe de Keeling qui fait apparaître les concentrations de CO2 sur le Mauna Loa, un volcan qui culmine à 4169 mètres sur la Grande Ile d’Hawaii

Tout a commencé sur le Mauna Loa en 1956 quand a été construit un nouvel observatoire de haute altitude, le Mauna Loa Observatory (MLO), aujourd’hui géré par la National Oceanic and Atmospheric Administration (NOAA).

L’observatoire n’a pas été édifié au sommet de ce volcan actif car les éruptions qui le secouent de temps en temps auraient probablement perturbé les mesures. Il a donc été implanté un peu plu bas, sur le flanc nord, à 3397 mètres d’altitude. Les mesures atmosphériques du CO2 ont permis de voir puis de comprendre le changement climatique en cours.

Dès leur début en 1958, les mesures du CO2 effectuées au MLO par Charles Keeling montrent une très forte teneur (ou concentration) de l’atmosphère en dioxyde de carbone ou gaz carbonique. Elle est exprimée en ppm, ou partie pour million.

La Courbe de Keeling nous montre les concentrations de CO2 bien avant la construction du MLO. Les données ont été tirées des analyses de carottes de glaces anciennes. On remarquera qu’en mai 2019 la  Courbe a dépassé 415 ppm de C02 dans l’atmosphère, ce qui fait remonter au Pliocène, il y a 3 millions d’années. Les températures étaient alors de 3 à 4 °C plus élevées que de nos jours ; les arbres poussaient en Antarctique et le niveau des océans était 15 mètres plus haut qu’aujourd’hui.

Le 29 novembre 2020, la concentration de CO2 dans l’atmosphère, moyennée sur la Terre grâce à un réseau d’observatoires, atteignait 415,50 ppm. Toujours à l’échelle terrestre, l’augmentation du CO2 de cette dernière année, entre les 29 novembre 2019 et 2020, a été de 4,83 ppm (soit 1,18 %). C’est considérable et inquiétant.

En cliquant sur le lien ci-dessous, vous aurez accès à une petite vidéo dans laquelle le fils de Charles Keeling (décédé en 2005), Ralph, montre comment sont effectuées les mesures. La technique est la même que celle mise au point par son père. Quand les premiers prélèvements d’air ont été effectués en 1958, les concentrations de CO2 atteignaient 315 ppm  Elles étaient de 412,78 ppm le 3 décembre 2020 !

La vidéo est en anglais. En voici un résumé en quelques phrases pour les blogonautes qui ne comprennent pas la langue de Shakespeare :

Pour prélever l’air, Ralph utilise un récipient en verre dans lequel on a créé le vide. Quand il ouvre le robinet, l’air et son CO2 s’engouffrent dans le récipient qui est refermé et transporté jusqu’au laboratoire pour y être analysé. Grâce à mon permis de travail dans le Parc des Volcans d’Hawaii, j’ai eu la chance de pouvoir y pénétrer et de voir le « manomètre » utilisé par Charles Keeling dans les années 1960. Après évacuation de l’air et conservation du CO2, des analyses permettent de connaître la composition isotopique du gaz qui a été prélevé. Cela permet de connaître son origine (gaz d’échappement des voitures, usine, océan, etc.)

https://youtu.be/dXBzFNEwoj8

Source : CLIMAT’O : le blog d’Alain GIODA, historien du climat.

—————————————————-

In the posts explaining the evolution of global warming, I very often refer to the Keeling Curve which shows the concentrations of CO2 on Mauna Loa, a volcano which rises to 4,169 metres on Hawaii Big Island

It all started on Mauna Loa in 1956 when a new high altitude observatory was built, the Mauna Loa Observatory (MLO), now managed by the National Oceanic and Atmospheric Administration (NOAA).

The observatory was not built at the top of this active volcano because the eruptions that shake it from time to time would probably have disrupted the measurements. It was therefore implanted a little lower, on the northern flank, at an altitude of 3,397 metres. Atmospheric CO2 measurements have made it possible to see and then understand the ongoing climate change.

From their start in 1958, CO2 measurements carried out at MLO by Charles Keeling showed a very high content (or concentration) of carbon dioxide or CO2 in the atmosphere. It is expressed in ppm, or parts per million. The Keeling Curve shows us the CO2 concentrations long before the construction of the MLO. The data was obtained from analyzes of old ice cores. Note that in May 2019 the Curve exceeded 415 ppm of CO2 in the atmosphere, which dates back to the Pliocene, 3 million years ago. The temperatures were then 3 to 4 degrees Celsius higher than nowadays; trees were growing in Antarctica and the sea level was 15 metres higher than today.

On November 29th, 2020, the CO2 concentration in the atmosphere, averaged over the Earth by a network of observatories, reached 415.50 ppm. Also on a terrestrial scale, the increase in CO2 over the past year, between November 29th, 2019 and 2020, was 4.83 ppm (or 1.18%). It is huge and disturbing.

By clicking on the link below, you will have access to a small video in which Ralph, the son of Charles Keeling (deceased in 2005), shows how the measurements are made. The technique is the same as that developed by his father. When the first air samples were collected in 1958, CO2 concentrations reached 315 ppm They were 412.78 ppm on December 3, 2020!

The video is in English. Here is a short summary : To take a sample of the the air, Ralph uses a glass container with vacuum in it. When he opens the tap, the air and its CO2 flow into the container, which is closed and transported to the laboratory for analysis. Thanks to my permit to work in the Hawaii Volcanoes Park, I was lucky enough to be able to enter the lab and see the « manometer » used by Charles Keeling in the 1960s. After evacuation of the air and conservation of the CO2, analyzes make it possible to know the isotopic composition of the gas which has been sampled. This allows to know its origin (car exhaust, factory, ocean, etc.) https://youtu.be/dXBzFNEwoj8

Source : CLIMAT’O : le blog d’Alain GIODA, historien du climat.

Mauna Loa Observatory (Photo : C. Grandpey)

La Courbe de Keeling depuis ses origines

(Source : Scripps Institution of Oceanography / NOAA)

Séisme sur le Mauna Loa (Hawaii) // Earthquake on Mauna Loa (Hawaii)

L’Observatoire des volcans d’Hawaii (HVO) a enregistré un séisme de M 4.1 sous le flanc nord-ouest du Mauna Loa le 4 décembre 2020 à 7h44 (heure locale). L’épicentre a été localisé à environ 22 km à l’est-nord-est de Honaunau-Napo’opo’o, à une profondeur d’environ 5 km.

De légères secousses ont été ressenties sur la Grande Ile, sans qu’aucun dégât n’ait été signalé aux bâtiments ou aux structures.

Cependant, des répliques sont possibles.

Selon le HVO, le séisme n’a eu aucun effet apparent sur le comportement du Kilauea ou du Mauna Loa.

Le niveau d’alerte volcanique du Mauna Loa reste à Advisory (surveillance conseillée). Le dernier séisme survient alors que les scientifiques continuent de suivre les petits essaims qui se produisent de temps à autre sous le sommet du Kilauea. Le HVO explique que plus de 80 séismes ont été détectés entre le 29 et le 30 décembre 2020. L’événement le plus significatif avait une magnitude de M3,0, mais la plupart avaient une magnitude inférieure à M 1,0. Les scientifiques expliquent que ces essaims à faible profondeur ne signifient pas pour autant qu’une éruption est imminente.

——————————————

The Hawaiian Volcano Observatory (HVO) recorded an M 4.1 earthquake located beneath Mauna Loa’s northwest flank on December 4th, at 7:44 a.m. (local time).

The epicentre was located about 22 km east-northeast of Hōnaunau-Nāpō’opo’o, at a depth of about 5 km depth.

Light shaking has been reported across the Island of Hawai’I, with no damage reported to buildings or structures. However, aftershocks are possible.

According to HVO, the earthquake had no apparent effect on the behaviour of Kilauea or Mauna Loa volcanoes. The Volcano Alert Level for Mauna Loa will remain at Advisory.

This event comes as scientists continue to track clusters of quakes below Kilauea’s summit.

HVO said more than 80 quakes were detected between December 29th and 30th, 2020. The most significant event had a magnitude M3.0, but most were less than M 1.0. Scientists explain that the clusters of shallow quakes do not mean an eruption is imminent.

Source : HVO

De nouvelles caméras pour le Kilauea et le Mauna Loa (Hawaii) // New cameras for Kilauea and Mauna Loa (Hawaii)

Au cours des deux dernières décennies, l’Observatoire des Volcans d’Hawaii (HVO) a mis en place un réseau de caméras pour surveiller les changements de comportement du Kilauea et du Mauna Loa. Ce réseau était adapté à l’activité volcanique de l’époque. Cependant, de futures éruptions pourraient se produire sur d’autres sites et le HVO a donc commencé à reconfigurer son réseau de caméras pour couvrir une zone plus large et combler les vides possibles.
Le réseau actuel comprend une trentaine de caméras, dont sept sur le Mauna Loa, 21 regroupées autour du sommet du Kilauea et du Pu’uO’o sur la Middle East Rift Zone, et deux le long de Lower East Rift Zone.
Sur le Kilauea, le nouveau réseau de caméras élargira la couverture de surveillance, en particulier entre le sommet du Kilauea et le Mauna Ulu, entre le Pu’uO’o et la Lower East Rift Zone, et la Southwest Rift Zone.
En outre, d’autres caméras sont prévues pour surveiller les basses pentes de la zone de rift sud-ouest du Mauna Loa, près de la subdivision des Ocean View Estates, ainsi que toute la zone de rift nord-est de ce volcan. Alors que deux webcams surveillent déjà la partie sud de la caldeira Moku’āweoweo, le HVO va essayer d’améliorer leur transmission pour fournir des images en temps quasi réel, comme le reste du réseau. Enfin, de nouvelles caméras sont prévues pour surveiller la partie nord de Moku’āweoweo et les bouches radiales.
Le nouveau réseau de caméras du HVO est destiné à surveiller en permanence toutes les zones susceptibles d’être exposées aux coulées de lave, ainsi que celles où des bouches risquent de s’ouvrir lors d’une prochaine éruption. Le réseau permanent disposera toujours d’une trentaine de caméras.
En plus du réseau permanent, le HVO va également exploiter deux jeux de caméras temporaires. En effet, bien que le réseau permanent soit censé fournir une couverture la plus large, il n’est pas toujours possible de fournir les détails les plus intéressants et les plus utiles aux scientifiques, à la protection civile et au public. Ces caméras temporaires seront des webcams portables, pouvant être facilement déplacées, destinées à être installées dans des endroits éloignés. Elles enregistreront et montreront l’évolution de situations et de processus volcaniques locaux. Elles resteront en place pendant 1 à 5 ans selon les conditions.
Un troisième ensemble de caméras sera constitué de celles dédiées uniquement aux éruptions. Elles sont prévues pour une durée brève (celle d’une éruption). Ce sont des caméras d’intervention d’urgence pour la surveillance des risques, ainsi que pour des études scientifiques détaillées. Leur avantage est qu’elles peuvent être installées presque n’importe où. L’inconvénient est qu’elles ont des durées de vie courtes, demandent une maintenance fréquente et, comme le HVO l’a appris en 2018, ces caméras peuvent être dérobées.
Voici quelques liens vers les caméras du Kilauea et du Mauna Loa :

https://hvo.wr.usgs.gov/cams/panorama.php?cam=KIcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=KWcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=PScam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=PGcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=MOcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=M1cam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=M3cam

Source: USGS / HVO.

—————————————————–

Over the past two decades, the Hawaiian Volcano Observatory (HVO) has set up a camera network system to monitor visual changes at Kilauea and Mauna Loa volcanoes. This network was designed for the volcanic activity of the time. However, future eruptions could occur elsewhere and HVO has therefore begun to reconfigure its camera network to cover a wider area and to fill in “blind spots.”

The current camera network consists of about 30 cameras, including seven on Mauna Loa, 21 clustered around Kīlauea summit and Pu’uO’o on the middle East Rift Zone, and two along Kilauea’s lower East Rift Zone.

On Kilauea, the new camera network will widen the monitoring coverage to cover visual gaps between Kilauea summit and Mauna Ulu, between Pu’uO’o and the lower East Rift Zone, and Kilauea’s Southwest Rift Zone.

Additionally, more cameras are being planned to watch over the lower elevations of Mauna Loa’s lower Southwest Rift Zone near the subdivision of Ocean View Estates, and all elevations of Mauna Loa’s Northeast Rift Zone. While two webcams watch over the southern part of Moku‘āweoweo, HVO will try to improve their transmission to provide images in near real-time, like the rest of the network. Finally, new cameras are planned to watch over the northern part of Moku‘āweoweo and the radial vents.

The new HVO camera network is intended to permanently monitor all areas designated as lava-flow hazard zone 1, where vents are most likely to open in any eruption, not just the next one. The total camera count will remain around 30 cameras for the permanent network.

In addition to this first network of permanent cameras, HVO will also leverage two collections of temporary-deployment cameras. Indeed, while the permanent network is meant to provide the broadest coverage, it may not always provide the close-up details that are of most interest and value to scientists, emergency response agencies, and the public. These temporary cameras will be semi-portable webcams for installation in remote locations. They will record and document localized hazard evolution and volcanic processes. They will remain deployed for 1–5 years as conditions warrant.

The last set of cameras will be the “eruption cameras.” They are intended for short-term use (the duration of an eruption) as emergency-response cameras for hazard monitoring as well as detailed scientific studies. Their benefit is that they are easily deployed almost anywhere, but their drawbacks include short lifetime operations, frequent maintenance, and, as HVO learned in 2018, these cameras are more susceptible to theft.

Here are some links to the webcams of Kilauea and Mauna Loa :

https://hvo.wr.usgs.gov/cams/panorama.php?cam=KIcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=KWcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=PScam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=PGcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=MOcam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=M1cam

https://hvo.wr.usgs.gov/cams/panorama.php?cam=M3cam

Source : USGS / HVO.

Source : USGS / HVO.