Le mystère des aurores boréales // The mystery of northern lights

Cette note n’a pas pour sujet les volcans ou les glaciers mais les aurores boréales – aurora borealis – un phénomène qui fascine ceux qui visitent l’Arctique ou l’Antarctique où l’on peut observer les glaciers et les calottes glaciaires.

On peut lire sur l’excellent site Web The Watchers qu’une nouvelle étude conduite par des scientifiques de l’Institut de recherche environnementale Espace-Terre de l’Université de Nagoya (Japon) a révélé un mécanisme inconnu de la magnétosphère dans lequel les électrons en provenance du Soleil sont propulsés par une énergie électrique plus puissante qu’on ne le pensait jusqu’à présent.

La formation des aurores boréales et australes commence lorsque du plasma est propulsé à très grande vitesse dans l’espace par le Soleil sous forme de particules chargées. Lorsque ces particules se rapprochent de la Terre, elles sont déviées et canalisées, et vont circuler le long des lignes de champ magnétique pour finalement se diriger vers les pôles. La plupart des électrons de la magnétosphère n’atteignent pas l’ionosphère (haute atmosphère) car ils sont repoussés par le champ magnétique terrestre.

Certaines particules accélèrent leur course dans la haute atmosphère terrestre où elles entrent en collision avec des atomes d’oxygène et d’azote qu’elles excitent à une altitude d’environ 100 km. Lorsque les atomes se défont de leur état d’excitation, ils produisent des aurores boréales.

Cependant, de nombreux détails sur ce processus sont encore mystérieux. Par exemple, on ne connaît pas avec précision la manière dont est généré le champ électrique qui accélère les électrons dans l’ionosphère, ni même sa hauteur au-dessus de la Terre. Les scientifiques pensaient jusqu’à présent que l’accélération se produisait à des altitudes comprises entre 1 000 et 20 000 km au-dessus de la Terre. La nouvelle étude montre que la zone d’accélération s’étend au-delà de 30 000 km. Elle montre aussi que le champ électrique qui accélère les particules aurorales peut exister à n’importe quelle hauteur le long d’une ligne de champ magnétique et n’est pas limité à la région de transition entre l’ionosphère et la magnétosphère à plusieurs milliers de kilomètres. Cela laisse supposer que des mécanismes magnétosphériques inconnus entrent en jeu.

L’équipe scientifique a étudié aux États-Unis et au Canada les données d’imageurs fournies par le détecteur d’électrons du satellite japonais Arase. Les données ont été collectées à partir de septembre 2017, au moment où Arase se trouvait à une altitude d’environ 30000 km et dans un mince arc auroral actif pendant quelques minutes.

Les chercheurs ont pu mesurer les mouvements ascendants et descendants des électrons et des photons, ce qui a révélé que la zone d’accélération des électrons commençait au-dessus du satellite et s’étendait en dessous.

Afin d’approfondir l’étude de la zone d’accélération à haute altitude, le prochain objectif de l’équipe scientifique sera d’analyser les données fournies par plusieurs événements d’aurores boréales, de comparer les observations de haute et de basse altitude et de réaliser des simulations numériques du potentiel électrique.

Les chercheurs expliquent que si l’on comprend comment se forme ce champ électrique, on comblera les lacunes dans la compréhension de la formation des aurores et dans le transport d’électrons sur Terre et d’autres planètes comme Jupiter et Saturne.

Référence :  « Active auroral arc powered by accelerated electrons from very high altitudes » – Imajo, S., et al. – Scientific Reports.

Source: The Watchers.

—————————————-

This post is not about volcanoes or glaciers but about Northern Lights – aurora borealis – a phenomenon that fascinates those who visit the Arctic or the Antarctic where glaciers and ice sheets can be observed.

We can read on the excellent website The Watchers that new research by scientists at Nagoya University’s Institute for Space-Earth Environmental Research has revealed an unknown mechanism of the magnetosphere in which electrons from the Sun are propelled by electrical energy higher than previously thought, ultimately creating displays of northern and southern lights.

The formation of auroras starts with supersonic plasma propelled from the Sun as high-speed, charged particles into space. When these particles get near Earth, they are deflected and funneled in streams along the magnetic field lines, flowing towards the poles eventually.

Most electrons in the magnetosphere don’t reach the ionosphere (upper atmosphere) because they are repelled by the Earth’s magnetic field.

Some particles are accelerated into the Earth’s upper atmosphere, where they collide with and excite oxygen and nitrogen atoms at an altitude of roughly 100 km. When the atoms relax from their state of excitation, they emit the auroras. However, many details about this process are still unknown. For instance, we don’t know all the details of how the electric field that accelerates electrons into the ionosphere is generated or even how high above Earth it is.

Scientists previously believed that acceleration happened at altitudes between 1 000 and 20 000 km above the Earth. The new research reveals that the acceleration region spreads beyond 30 000 km. It shows that the electric field that accelerates auroral particles can exist at any height along a magnetic field line and is not limited to the transition region between the ionosphere and magnetosphere at several thousand kilometres. This suggests that unknown magnetospheric mechanisms are at play.

The scientific team studied data from ground-based imagers in the U.S. and Canada from the electron detector on the Japanese satellite, Arase. The data was taken from September 2017, when Arase was at an altitude of about 30 000 km and located within a thin active auroral arc for a few minutes.

The researchers were able to measure the upward and downward movements of electrons and photons, eventually finding the acceleration region of electrons began above the satellite and extended below.

To further investigate the high-altitude acceleration region, the team’s next goal is to analyze data from multiple aurora events, compare observations of high and low altitudes, and conduct numerical simulations of electric potential.

The researchers explain that understanding how this electric field forms will fill in gaps for understanding aurora emission and electron transport on Earth and other planets, including Jupiter and Saturn.

Reference

« Active auroral arc powered by accelerated electrons from very high altitudes » – Imajo, S., et al. – Scientific Reports.

Source: The Watchers.

Photo : C. Grandpey