Eruption du Mayon (Philippines)

Voici un nouvel exemple confirmant que nous ne sommes pas en mesure de prévoir les éruptions volcaniques de la Ceinture de Feu.. Dans un bulletin publié à 8h00 le samedi 13 janvier 2018, le PHILVOCS indiquait que « le réseau de surveillance sismique du Mayon n’avait détecté aucun séisme volcanique au cours des dernières 24 heures. Des émissions modérées à volumineuses de panaches blancs chargés de vapeur ont été observées. Les dernières données inclinométriques entre le 7 et le 11 novembre 2017 indiquent une légère inflation de l’édifice par rapport à septembre 2017. Les émissions de dioxyde de soufre (SO2) atteignaient une moyenne de 856 tonnes / jour le 3 décembre 2017. Le niveau d’alerte 1 reste en vigueur sur le Mayon. »
Changement brutal de la situation quelque heures plus tard !Le site web The Watchers nous informe que « une puissante éruption phréatique a débutéé à 9:06 TU (17:06 heure locale) le samedi 13 Janvier 2018 sur le Mayon. Selon le VAAC de Tokyo, elle a généré une colonne de cendre atteignant jusqu’à 5.2 km d’altitude. La dernière éruption du Mayon a eu lieu en 2014. Des retombées de cendres ont été signalées dans plusieurs villes au sud-ouest du volcan. Des évacuations ont été décidées pour les personnes vivant dans 16 barangays (unités administratives) dans un rayon de 5 km du volcan. Les personnes évacuées logeront dans des écoles réquisitionnées par les autorités locales. Au moins 13 434 personnes vivant dans la zone de danger de 8 km sont susceptibles de subir les effets des retombées de cendre. Des masques anti-poussière ont été distribués à la population.

Le niveau d’alerte du Mayon a été élevé à 2.
Sources: The Watchers, PHILVOCS.
Toutes ces informations sont confirmées par les journaux philippins.

Une très violente éruption du Mayon a officiellement tué 1200 personnes à Cagsawa en 1814, mais le bilan est probablement beaucoup plus proche de 15 000 victimes dans la région. 77 personnes ont été tuées par l’éruption de 1993. (Voir mon livre Killer Volcanoes pour la description de ces événements).

————————————-

Here is another example confirming that we are not able to predict volcanic eruptions on the Ring of Fire. In a bulletin released at 8:00 a.m. on Saturday, 13 January 2018, PHILVOCS indicated that “Mayon Volcano’s seismic monitoring network did not detect any volcanic earthquake during the past 24 hours. Moderate to voluminous emissions of white steam-laden plumes were observed. Precise levelling data obtained on November 7th to 11th, 2017 indicated slight inflation of the edifice relative to September 2017. Su1phur dioxide (SO2) emission was measured at an average of 856 tonnes/day on 03 December 2017.Alert Level 1 remains in effect over Mayon Volcano,”

Sudden change of the situation a few hours later! The website The Watchers informs us that “a strong phreatic eruption started at 09:06 UTC (17:06 local time) on Saturday, January 13, 2018 at Mayon Volcano. It produced a column of ash reaching up to 5.2 km a.s.l., according to the Tokyo VAAC. The last eruption of this volcano took place in 2014.” Ashfall was reported in several towns downwind SW of the volcano. Evacuations were decided for people living in 16 barangays within a 5-km radius from the volcano. Evacuees will be staying at public elementary schools designated by the local government units. At least 13 434 residents living within the 8-km danger zone are at risk of effects of ashfall.

The alert level for Mayon Volcano was raised to 2.

Sources: The Watchers, PHILVOCS.

All this information is confirmed by the Philippine newspapers.

A very violent eruption officially killed 1,200 persons in Cagsawa in 1814 but the toll was probably about 15,000 casualties in the region. 77 persons died during the 1993 eruption. (see my book Killer Volcanoes).

Le Mayon, un volcan au cône parfait (Crédit photo: Wikipedia)

Tenorio (Costa Rica) [suite / continued]

J’aimerais revenir sur l’activité sismique observée ces derniers jours en Amérique Centrale. Tout a commencé avec un puissant séisme de M 7,6 enregistré à 02h51 (GMT) le mercredi 10 janvier 2018 au large du Honduras (voir carte ci-dessous), à 44 kilomètres à l’est des Iles Swan et à une profondeur de 10 kilomètres (Source : USGS). .

Le Réseau sismologique national (RSN) du Costa Rica indique que depuis le 9 janvier 2018, il a localisé 42 secousses sur le versant oriental du volcan Tenorio, considéré comme étant au repos. Ces séismes ont eu des magnitudes comprises entre M 2,2 et M 5,3. La sismicité a commencé le 9 janvier avec un séisme de magnitude M 4,7 à 20h56. 11 répliques ont par la suite été enregistrées avec des magnitudes comprises entre M 2,7 et M 4,3. Le 10 janvier, la sismicité a diminué et sept secousses ont été détectées, entre M 2,2 et M 3,5. Le 11 janvier, on a observé une reprise de la sismicité, avec 23 séismes dont trois avaient une magnitude supérieure à M 5,0.

Comme je l’ai indiqué précédemment, ces différents séismes avaient des hypocentres situés entre 2 et 15 km de profondeur, et des épicentres à proximité des failles Caño Negro et Chiquero, pas très loin du volcan Tenorio dont le Parc National a été fermé par crainte des glissements de terrain..

Il sera intéressant de voir l’évolution de la situation dans les prochains jours et les prochaines semaines. Selon le RSN, la sismicité observée ces derniers temps est probablement due aux mouvements des failles qui viennent d’être mentionnées, ainsi que d’autres dans la région.

Cette sismicité réveillera-t-elle le Tenorio ? Personne ne le sait. Le lien entre activité sismique d’origine tectonique et activité volcanique n’a jamais été formellement démontré. Par exemple, en mars 2011, les volcanologues japonais ont craint que le séisme de M 9,0 observé le 11 de ce même mois réveille le Mont Fuji. Il n’en fut rien et, à ce jour, le volcan – dont la dernière éruption remonte à 1707 – ne s’est toujours pas manifesté.

——————————————–

I would like to write again about the seismic activity observed in recent days in Central America. It all started with a powerful M 7.6 earthquake registered at 02:51 (GMT) on Wednesday, January 10th, 2018 off Honduras (see map below), 44 kilometers east of the Swan Islands and at a depth of 10 kilometres (Source: USGS). .
Costa Rica’s National Seismological Network (RSN) reports that since January 9th, 2018, it has located 42 tremors on the eastern slope of the Tenorio volcano, considered to be at rest. These earthquakes had magnitudes between M 2.2 and M 5.3. Seismicity began on January 9th with an earthquake of magnitude M 4.7 at 20:56. 11 aftershocks were subsequently recorded with magnitudes between M 2.7 and M 4.3. On January 10th, seismicity decreased and seven events were detected, between M 2.2 and M 3.5. On January 11th, there was a resumption of seismicity, with 23 earthquakes, three of which had a magnitude greater than M 5.0.
As I put it before, these different earthquakes had hypocentres located between 2 and 15 km deep, and epicentres near the Caño Negro and Chiquero faults, not far from the Tenorio volcano whose National Park was closed for fear of landslides ..
It will be interesting to see the evolution of the situation in the coming days and weeks. According to RSN, the seismicity observed recently was probably due to the movements of the faults I have just mentioned, as well as others in the region.
Will this seismicity wake up Tenorio? Nobody knows. The link between seismic activity of tectonic origin and volcanic activity has never been formally demonstrated. For example, in March 2011, Japanese volcanologists feared that the M 9.0 earthquake observed on the 11th of that month, might wake Mount Fuji. It was not so, and to date, the volcano – whose last eruption dates back to 1707 – has not shown any significant sign of activity.

Source: RSN / The Watchers

Les crues glaciaires en Islande // Glacial floods in Iceland

L’Islande est souvent appelée «Terre de glace et de feu». Plusieurs volcans se cachent sous les glaciers et leurs éruptions sont redoutées par la population. En effet, lorsqu’un volcan islandais sous la glace entre en éruption, la chaleur fait fondre la glace et déclenche des inondations impressionnantes. Ces rivières à l’eau impétueuse sont appelées «jökulhlaup» en islandais, ce qui signifie littéralement «course de glacier» ou « débâcle glaciaire ». Le mot « jökull » signifie glacier et on le trouve dans de nombreux noms de lieux en Islande. Par exemple, le Vatnajökull (« vatn » = eau + « jökull » = glacier) est le plus grand glacier d’Europe ; il est aussi grand que la Corse. D’autres glaciers islandais ont pour noms Öræfajökull ou Eyjafjallajökull qui est devenu très célèbre en 2010 en raison des perturbations causées au trafic aérien par l’éruption du volcan sous le glacier.
L’Öræfajökull a récemment causé des soucis parce que les instruments ont révélé que le volcan sous-glaciaire pourrait se réveiller. Si c’était le cas, la fonte de la glace provoquerait inévitablement un «jökulhlaup». Cette crue éclair est souvent déclenchée par l’apparition d’une importante source de chaleur sous le glacier. Bien que les processus conduisant à un «jökulhlaup» d’origine volcanique soient complexes et encore l’objet de recherches, le magma qui remonte vers la surface, ou bien les fluides géothermaux en surchauffe et en surpression, peuvent faire fondre assez rapidement la partie la plus profonde d’un glacier et provoquer une crue catastrophique. Un «jökulhlaup» peut prendre naissance là où un lac se forme sous un glacier. Sous la pression de l’eau qui s’est accumulée au fil du temps, le barrage de glace se fracture et l’inondation se produit.
Cependant, les «jökulhlaup» associés à une éruption sont souvent ceux qui causent le plus d’inquiétude. En effet, en faisant fondre la glace, les éruptions volcaniques peuvent produire des volumes d’eau impressionnants en très peu de temps.
Les statistiques historiques montrent qu’une quarantaine d’éruptions volcaniques ont généré des crues éclair glaciaires qui ont, entraîné la mort d’environ 37 000 personnes à travers le monde. Les « jökulhlaup » du volcan sous-glaciaire Katla sont parmi les plus importantes jamais observées par l’Homme. Leur débit peut être supérieur au débit moyen de l’Amazone.

Les Islandais ont compris qu’il heur fallait éviter les plaines côtières – « sandur » en islandais – qui sont souvent inondées par les « jökulhlaups », comme Mýrdalssandur et Skeiðarársandur.
Un système d’alerte a été mis en place par le Bureau Météorologique Islandais pour informer la Protection Civile de l’imminence d’un « jökulhlaup. » Des augmentations inhabituelles du niveau d’eau ou de la conductivité électrique détectées par les instruments de mesure déclenchent un système d’alerte qui est ensuite analysé par les scientifiques. Ainsi, la Protection Civile dispose de quelques heures pour avertir le public et prendre les dispositions nécessaires.
Sources:  Icelandic Meteorological Office, Live Science.

Voici une petite vidéo montrant un « jökulhlaup » provoqué par l’éruption sous-glaciare de l’Eyjafjallajökull le 14 avril 2010 :

https://youtu.be/fJII-u-41Lg

————————————–

Iceland is often called « The land of ice and fire ». Several volcanoes are hidden beneath glaciers and their eruptions are feared by the population. Indeed, when an Icelandic volcano lying under the ice starts erupting, the heat melts the ice above and inevitably triggers impressive floods. Such rivers of impetuous water are called “jökulhlaups” in Icelandic, which literally means “glacial run. The word “jökull” means glacier and you find it in many geographical names in Iceland. Vatnajökull, is the largest glacier in Europe, as large as Corsica. Its name means “water glacier”; other glaciers are called Öræfajökull or Eyjafjallajökull which became very famous in 2010 because of the traffic disruptions that were caused by the eruption of the volcano beneath the glacier.

Öræfajökull was recently a source of concern because the volcanologits’ instruments suggested that the volcano beneath the glacier might wake up. If it did, the melting of the ice would cause a “jökulhlaup.” It is a type of flash flood often triggered by the emergence of a significant heat source from beneath. Although the processes that lead to a volcanically induced “jökulhlaup” are complex and still under investigation, magma rising to the surface, or even superheated, highly pressurized groundwater fluids mobilized by the magma, can melt a glacier’s deepest layers quite rapidly. If lava begins to permeate up through the glacier itself, then catastrophic melting is always a possibility. In essence, a “jökulhlaup” can form anywhere in which a lake can build up beneath a glacier without the water being readily able to escape. Eventually, under the pressure of the water, an ice dam fragments and the flash flood commences.

However, eruption-associated “jökulhlaups” are often those that cause the most concern as volcanic eruptions can produce incredible volumes of water in a very short time.

Statistics show that about 40 volcanic eruptions in recorded history that have produced glacial flash floods, resulting in the deaths of around 37,000 people across the planet.

The “jökulhlaups” from the subglacial Katla volcano are among the largest floods that humans have witnessed. At their maximum, the discharge may be larger than the average discharge of the River Amazon.

Icelanders have learned to avoid the plains – “sandur” in Icelandic – that are frequently flooded by jökulhlaups, like Mýrdalssandur and Skeiðarársandur.

A warning system is operated by the Icelandic Meteorological Office that informs Civil Protection Authorities of impending “jökulhlaups”. Unusual increases in water level or electric conductivity at key water level gauges triggers a warning that is subsequently evaluated by scientists. Thus, Civil Protection Authorities may get a few hours’ head start in preventing public hazard.

Sources: Icelandic Meteorological Office, Live Science.

Here is a short video showing a “jökulhlaup” triggered by the subglacial eruption of Eyjafjallaökull on April 14th 2010:

https://youtu.be/fJII-u-41Lg

Capture d’image de la vidéo montrant des vagues à la surface du « jökulhlaup. »