Etude des failles sous-marines de l’Etna // Study of Mt Etna’s submarine faults

Afin d’étudier l’évolution de la croûte terrestre dans l’une des zones géologiques les plus actives au monde, celle du complexe volcanique de l’Etna, plusieurs instituts de recherche viennent de lancer le projet «Focus.» Il suppose l’installation d’un nouveau système de surveillance des failles sous-marines à 2000 mètres de profondeur au large de Catane.

Le projet, financé par le Conseil Européen de la Recherche (ERC), est conduit par l’Université française de Brest en collaboration avec le CNRS, l’IFREMER et l’IDIL, avec le soutien de l’INGV, des Laboratoires Nationaux du Sud (LNS) et de l’Institut National de Physique Nucléaire (INFN). Le projet est en effet en relation avec le réseau optique sous-marin exploité par les LNS dans le cadre du projet IDMAR – financé par la région de Sicile – pour le développement d’infrastructures de recherche stratégiques.

Afin de détecter les déplacements de la croûte terrestre entre la côte et la structure sous-marine du Monte Alfeo, en relation avec une faille cartographiée il y a à peine quelques années à l’est de Catane, le projet Focus utilisera une technique innovante appelée BOTDR (Réflectométrie Optique avec technique Brillouin) capable de détecter tout mouvement des fibres sous-marines électro-optiques accrochées aux 25 kilomètres de câble qui composent l’infrastructure LNS. De cette manière les chercheurs pourront observer les déplacements des câbles sur le long terme et donc surveiller le glissement des failles sur lesquelles ils se trouvent. Ils pourront détecter des variations submillimétriques impossibles à observer avec les techniques de réflectométrie classiques.

Source: La Sicilia.

———————————————–

In order to study the evolution of the Earth’s crust in one of the most active geological zones in the world, that of Mt Etna’s volcanic complex, several research institutes have just launched the « Focus. » Project. It involves the installation of a new monitoring system for submarine faults 2000 metres deep off the coast of Catania. The project, funded by the European Research Council (ERC), is led by the French University of Brest in collaboration with the CNRS, IFREMER and IDIL, with the support of INGV, National Laboratories of South (LNS) and the National Institute of Nuclear Physics (INFN). The project is in fact in relation to the underwater optical network operated by LNS within the framework of the IDMAR project – funded by the region of Sicily – for the development of strategic research infrastructures.

In order to detect the shifts of the Earth’s crust between the coast and the submarine structure of Monte Alfeo, in relation to a fault mapped just a few years ago east of Catania, the Focus project will use an innovative technique called BOTDR (Optical Reflectometry with Brillouin technique) capable of detecting any movement of electro-optical submarine fibers attached to the 25 kilometres of cable that make up the LNS infrastructure. In this way, researchers will be able to observe the movements of the cables over the long term and therefore monitor the sliding of the faults on which they are located. They will be able to detect submillimetre variations that are impossible to observe with conventional reflectometry techniques.

Source: La Sicilia.

Source : LNS

Failles et sismicité sur le Kilauea (Hawaii) // Faults and seismicity on Kilauea Volcano (Hawaii)

Outre l’activité volcanique, la sismicité est présente sur la Grande Ile d’Hawaï. En particulier, le flanc sud du Kilauea est l’une des régions les plus sismiquement actives des États-Unis. Chaque année, le HVO enregistre des milliers de secousses dans cette partie de l’île.

Le réseau de failles de Koa’e relie les zones de Rift Est et de Rift Sud-ouest du Kilauea au sud de la caldeira. Cette zone de faille recoupe le Rift Est près du cratère Pauahi et s’étire sur près de 12 km dans une direction est-nord-est vers l’ouest, jusque près du Mauna Iki et la zone de Rift Sud-Ouest (voir carte ci-dessous).
Les failles apparaissent sous forme de petites falaises ou d’escarpements le long de Hilina Pali Road dans le Parc des volcans d’Hawaï. Ces falaises le long des failles glissent lors de séismes majeurs, comme celui du 4 mai 2018, avant le début de l’éruption du Kilauea.
Les mouvements des failles de Koa’e ont fait se déplacer de 1,50 mètre d’anciennes coulées de lave sur une période de plusieurs siècles. Cette zone fournit de bonnes indications sur les mouvements de failles sur le long terme car les coulées de lave ne l’ont pas recouverte, ce qui permet une bonne lisibilité du mouvement du flanc sud du Kilauea. Plus récemment, des failles ont décalé des routes ainsi que sentiers utilisés par les premiers Hawaïens. Il était donc intéressant de savoir si les failles avaient bougé pendant et après l’éruption de 2018.
La géodésie est encore utilisée pour étudier la morphologie des volcans hawaïens, même si les géologues ont souvent recours à des technologies plus modernes, telles que l’interférométrie par satellite et le GPS.
Une approche plus ancienne, le «nivellement», reste une méthode géodésique précieuse quelque 170 ans après son invention. Les scientifiques du HVO l’utilisent depuis des décennies pour étudier les volcans, avec des résultats intéressants.
Depuis l’éruption de 2018, le département de géologie de l’Université d’Hawaï à Hilo a collaboré avec des scientifiques du HVO pour effectuer des opérations de nivellement là où cette technique est la plus adaptée. Le nivellement utilise des théodolites pour mesurer avec précision les différences d’élévation entre des stations marquées par des repères ancrés dans le substrat rocheux. Si les altitudes et les distances entre les stations de mesure ont changé pendant le temps écoulé depuis les mesures précédentes, une répétition du nivellement détecte le changement jusqu’à l’échelle millimétrique. Le nivellement nécessite des équipes de personnes travaillant le long d’une grille établie sur le terrain, ce qui demande beaucoup de temps. Les stations de mesure sont généralement espacées d’environ 90 mètres.
Les scientifiques de l’USGS ont commencé le nivellement le long des failles de Koa’e dans les années 1960, ce qui a permis d’obtenir des mesures sur le long terme. Dans les années 1960, la bande de terre d’environ trois kilomètres au coeur du système de failles de Koa’e s’est élargie d’environ 1,5 cm chaque année. Les failles individuelles ne jouent en général que de quelques millimètres chacune. En revanche, lors des séismes de 2018, on a enregistré le plus important mouvement vertical le long d’une seule faille, avec un déplacement de plus de 40 cm.
Lorsque les failles de Koa’e bougent, elles glissent verticalement ou s’ouvrent en créant de profondes fissures. Un exemple spectaculaire de ce phénomène a été observé au niveau d’Hilina Pali Road en 2018 quand la faille a coupé la route en deux. Peu de temps après la fin de l’éruption de 2018, le nivellement a révélé que les mouvements le long des failles de Koa’e avaient retrouvé leur rythme normal, beaucoup plus lent.
La campagne de nivellement actuelle sur le réseau de failles de Koa’e a révélé que la majeure partie du relief le long de ces falaises est modelée par des événements majeurs. Très peu de nouvelles fissures se sont formées à la suite des grands événements géologiques de 2018. Au lieu de cela, le mouvement a tendance à se poursuivre de manière répétitive le long des fissures existantes ; elles s’ouvrent plus largement et augmentent leurs escarpements avec le temps. Le comportement du réseau de failles de Koa’e est également étroitement lié à ce qui se passe ailleurs sur le volcan, comme les séismes de 2018 sous le flanc sud du Kilauea et l’effondrement à répétition de la caldeira sommitale.
Source: USGS / HVO.

———————————————-

Beside volcanic activity, seismicity is present on Hawaii Big Island. In particular, Kilauea’s south flank is one of the most seismically active regions in the United States. Each year, HVO records thousands of earthquakes occurring beneath the flank.

The Koa‘e fault system connects Kilauea’s East and Southwest Rift Zones south of the caldera. The fault zone intersects the East Rift near the Pauahi Crater and extends nearly 12 km in an east-northeast direction towards the westernmost boundary near Mauna Iki and the Southwest Rift Zone (see map below).

Faults here appear as low cliffs, or “scarps” along Hilina Pali Road in Hawai‘i Volcanoes National Park. These fault-cliffs slip during major earthquakes, such as those of May 4th, 2018, before the beginning of Kilauea’s 2018 eruption.

Koa‘e fault movements have offset ancient lava flows by as much as 1.50 metres over a period of centuries. This area provides an important long-term record of motion due to the lack of recent lava flows covering the faults, which makes it an ideal location to study the motion of Kilauea’s south flank. More recently, faults have offset roads and footpaths used by early Hawaiians. So, it is interesting to know how much fresh offset took place during and after the 2018 eruption.

Geodesy is still used to measure the shape of Hawaiian volcanoes. New technologies, such as satellite interferometry and the Global Positioning System (GPS), depend on satellites to make geodetic measurements.

One older approach, “levelling,” remains a valuable geodetic method some 170 years after it was invented. HVO scientists have used it for decades to study volcanoes, with significant results.

Since the 2018 eruption, the Geology Department at the University of Hawaii at Hilo has collaborated with HVO scientists to perform levelling where it is the best approach available. Levelling uses theodolites to precisely measure elevation differences between stations marked by stainless steel bolts cemented into bedrock. If elevations and distances have changed during the time since the previous measurements, repeat levelling will detect it even down to the millimetre scale. Levelling requires teams of people working along an established grid in the field, and this work demands quite a lot of time. Field stations are commonly set around 90 metres apart.

USGS scientists first began levelling along the Koa‘e faults in the 1960s, providing a long-standing record of data and field stations already in place. In the 1960s, the roughly three-kilometre land strip encompassed by the Koa‘e fault system widened by about 1.5 cm each year. Individual faults move only a few millimetres each.. In contrast, the largest vertical movement recorded during the 2018 earthquakes along a single fault was over 40 cm.

When the Koa‘e faults move, they either slide vertically or open to create a deep crack. A dramatic example of opening occurred at the Hilina Pali Road 2018 faulting which split the road. Shortly after the end of the 2018 eruption, levelling revealed that the rates of change along the Koa‘e faults quickly returned to the much slower normal pace.

The current Koa‘e levelling campaign has revealed that most of the relief along these cliffs is created by large events. Very few new cracks formed as a result of the large geologic events of 2018. Instead, motion tends to continue repeatedly along existing cracks, opening them wider and making their scarps taller over time. The motions along the Koa‘e faults are also sensitively tied to what happens elsewhere on the volcano, such as the 2018 earthquakes underneath Kilauea’s south flank and the repeated collapse of the summit caldera.

Source : USGS / HVO.

Carte géologique de la zone sommitale du Kilauea, avec le système de failles de Koa’e (Source : USGS)

Nouvelle carte sismique des Etats Unis // New seismic map of the United States

Des scientifiques de l’Université de Stanford ont compilé la carte la plus détaillée à ce jour des contraintes sismiques en Amérique du Nord. La carte et l’étude qui l’accompagne fournissent des informations précises sur les régions les plus exposées aux séismes ainsi que les types de séismes susceptibles de se produire.
La nouvelle carte est apparue dans une étude publiée le 22 avril 2020 dans la revue Nature Communications. Grâce à l’incorporation de près de 2 000 «orientations de contraintes» (mesures indiquant la direction dans laquelle la pression s’exerce sous terre) ainsi que 300 mesures non incluses dans les études précédentes, la carte fournit une image de bien meilleure résolution de l’activité sismique régionale.
Pour élaborer la carte, les chercheurs ont compilé des mesures nouvelles et anciennes obtenues à partir de forages, puis ils ont utilisé des informations relatives aux séismes passés pour en déduire quels types de failles étaient susceptibles de se trouver en différents endroits.
Connaître l’orientation d’une faille et le niveau de contrainte à proximité permet de savoir dans quelle mesure elle est susceptible de s’activer et si les gens doivent s’inquiéter, que ce soit dans le cadre de scénarios de séismes naturels ou de ceux déclenchés par l’industrie. L’expression « séismes déclenchés par l’industrie» fait référence à l’activité sismique causée par l’homme, en particulier dans certaines parties de l’Oklahoma et du Texas où la fracturation hydraulique est monnaie courante. Il est utile de rappeler que cette méthode d’extraction du pétrole et du gaz consiste à injecter de l’eau en profondeur dans des couches de roches pour forcer l’ouverture de crevasses et extraire le pétrole ou le gaz qui se trouve à l’intérieur. Le risque, c’est que cette technique déstabilise le sol. En 2018, l’USGS a constaté que le niveau de risque sismique dans l’Oklahoma était à peu près le même qu’en Californie.
Tout en confirmant les connaissances existantes, certaines caractéristiques de la nouvelle carte donnent des indications supplémentaires sur les types de séismes les plus susceptibles de se produire à travers le continent. Ces informations peuvent jouer un rôle majeur dans la façon dont les régions se préparent aux catastrophes. Dans l’ouest des États-Unis, par exemple, les chercheurs ont observé que la direction des contraintes sous la surface de la Terre avait changé jusqu’à 90 degrés sur des distances de seulement 10 kilomètres. Cela signifie que les fluides injectés dans le sol dans le processus de fracturation hydraulique peuvent être chahutés, même à une courte distance de l’endroit où ils sont injectés.

Sur la carte ci-dessous, des lignes noires indiquent la direction de la pression dans les zones de contrainte maximale. Les zones bleues représentent des failles d’extension où la croûte s’étire horizontalement. Les zones vertes représentent des failles transformantes, comme la faille de San Andreas. Les zones rouges représentent les failles de chevauchement, où la Terre se déplace sur elle-même.
Source: Business Insider.

————————————————

Scientists at Stanford University have compiled the most detailed map to date of seismic stress across North America. The map and accompanying study offer precise information about the regions most at risk of earthquakes, and which types of quakes are likely to occur.

The new map was described in a study published on April 22nd, 2020 in the journal Nature Communications. By incorporating nearly 2,000 « stress orientations » (measurements indicating the direction that pressure gets exerted underground in high-stress areas) as well as 300 measurements not included in previous studies, the map provides a higher-resolution picture of regional seismic activity than ever before.

To make the map, the researchers compiled new and previously published measurements from boreholes, then used information about past earthquakes to infer which types of faults were likely to be found in different locations.

Knowing the orientation of a fault and the state of stress nearby allows to know how likely it is to fail and whether people should be concerned about it in both naturally triggered and industry-triggered earthquake scenarios. The term « industry-triggered » earthquakes refers to seismic activity caused by humans, which is most common in parts of Oklahoma and Texas where hydraulic fracturing, or « fracking, » commonly occurs. This method of oil and gas extraction involves injecting water deep into the Earth’s layers of rocks to force open crevices and extract the oil or gas buried inside. But it destabilizes the ground. In 2018, USGS found that Oklahoma’s earthquake threat level was roughly the same as California’s.

While some of the researchers’ findings in the new map reaffirm existing knowledge, they also reveal new discoveries about the types of earthquakes that are most likely to occur across the continent. That information could have profound implications for how regions prepare for disasters. In the Western US, for example, the researchers observed that the direction of pressure under the Earth’s surface changed by up to 90 degrees over distances as short as 10 kilometres. That means the fluids injected into the ground in the fracking process could get pushed around in completely different ways even just a short distance from where they get injected.

In the map below, black lines indicate the direction of pressure in maximum stress areas. Blue areas represent extensional, or normal faulting, where the crust extends horizontally. Green areas represent strike-slip faulting, where the Earth slides past itself, like the San Andreas fault. Red areas represent reverse, or thrust faulting, where the Earth moves over itself.

Source: Business Insider.

Source : Stanford University

Volcanisme et tectonique sur l’Etna // Volcanism and tectonics on Mt Etna

Une étude intitulée “Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics” publiée le 20 août 2019 dans les Scientific Reports nous explique l’ascension du magma à l’intérieur de l’Etna.

Le travail, effectué par des scientifiques de l’INGV et de l’Institut National d’Océanographie et de Géophysique Expérimentale (OGS) a permis de déterminer les conditions qui permettent au magma de remonter vers la surface.
L’Etna se trouve dans une zone de failles transformantes. Grâce aux données sismiques, gravimétriques et magnétiques les chercheurs ont pu obtenir des images permettant de »voir » les secteurs où se situent les failles et comment elles sont organisées. Il y a au moins 500 000 ans, l’activité tectonique dans une vaste zone de failles de la partie sud du volcan (entre Acireale et les environs d’Adrano) a entraîné la formation de zones « d’ouverture »de la croûte terrestre qui ont été les voies préférentielles choisies par le magma pour sortir par des fissures éruptives disséminées le long de la ligne de faille. Ces fissures, identifiées entre Aci Trezza et Adrano, ont caractérisé les premières phases d’activité de l’Etna.
La déformation continue le long de la même zone de faille et même plus au nord, ainsi que leur interaction mutuelle, « ont entraîné la migration des zones d’éruption du magma et la fermeture soudaine de conduits éruptifs précédemment actifs ». C’est ce qui explique le processus de migration du volcanisme du versant sud (actif d’au moins 500 000 à environ 200 000 ans) vers la région de la Valle del Bove (entre 100 000 et 70 000 ans) et vers les centres éruptifs actuels (d’il y a 60 000 ans à aujourd’hui). La déformation induite par les failles sur le substrat sur lequel repose le volcan a également influencé le glissement du flanc E de l’Etna, qui se caractérise par une forte sismicité, comme en témoigne le séisme de décembre 2018.

Vous trouverez l’intégralité de l’étude (en anglais ) à cette adresse :

 https://www.nature.com/articles/s41598-019-48550-1

————————————————-

 A study entitled « Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics » published August 20th, 2019 in the Scientific Reports explains the ascent of magma inside Mt Etna.
The work, carried out by scientists from INGV and the National Institute of Oceanography and Experimental Geophysics (OGS) has determined the conditions that allow magma to reach the surface.
Mt Etna is in a zone of strike-slip faults. Thanks to the seismic, gravimetric and magnetic data, the researchers were able to obtain images allowing to « see » the areas where the faults are located and how they are organized. At least 500,000 years ago, tectonic activity in a large fault zone in the southern part of the volcano (between Acireale and the Adrano area) resulted in the formation of « open » areas in the Earth’s crust which were the preferred pathways chosen by magma to exit through eruptive fissures scattered along the fault line. These fissures, identified between Aci Trezza and Adrano, characterized the first phases of activity of Mt Etna.
The continuous deformation along the same fault zone and even further north, as well as their mutual interaction, « have resulted in the migration of magma eruptive zones and the sudden closure of previously active eruptive ducts ». This accounts for the migration process of the southern slope volcanism (active from at least 500 000 to about 200 000 years ago) to the Valle del Bove region (between 100 000 and 70 000 years) and to the current eruptive centres (from 60,000 years ago to today). The deformation induced by the faults on the substrate on which the volcano rests has also influenced the sliding of the eastern flank of Mt Etna, which is characterized by a high seismicity, as evidenced by the earthquake of December 2018.
You will find the entire study at:
https://www.nature.com/articles/s41598-019-48550-1

Schémas illustrant l’évolution du volcanisme de l’Etna dans l’espace et dans le temps, en relation avec les systèmes de failles (Source : Scientific Reports)

Etna (Sicile) : Vers un retour à la normale ? // Back to normal ?

Au cours des dernières heures, on a observé une baisse de la sismicité ainsi que du tremor éruptif. Cela signifie que la pression du magma est moins forte dans les conduits d’alimentation du volcan et que l’activité strombolienne est en train de décliner dans les cratères sommitaux. La lave a cessé de couler depuis plusieurs jours dans la Valle del Bove. S’agit-il d’une simple pause ou d’un début de calme susceptible de durer plusieurs semaines, voire plusieurs mois ? Nul ne le sait. L’INGV reste vigilant car les scientifiques n’excluaient pas ces dernières heures une reprise d’activité à plus basse altitude.

Qu’il y ait reprise d’activité ou non, le dernier épisode éruptif laissera des marques. Le séisme de M 4,8 dont l’épicentre a été localisé dans la région de Viagrande n’était certes pas directement lié à l’activité volcanique mais, comme je l’ai indiqué précédemment, la secousse a probablement été provoquée par des contraintes et des déformations exercées sur les flancs du volcan par le magma au cours de son ascension. Il ne faudrait pas oublier que le versant oriental de l’Etna est parcouru de failles dont le mouvement a déjà provoqué des séismes dévastateurs (voir ma note précédente).

——————————————–

In recent hours, there has been a decline in both seismicity and the eruptive tremor. This means that magma pressure is lower in the volcano feeding system and strombolian activity is declining in the summit craters. The lava has stopped flowing for several days in the Valle del Bove. Is this a simple pause or the beginning of a period of quiescence likely to last several weeks, or even months? Nobody knows. INGV remains vigilant as scientists did not exclude a resumption of activity at lower altitude.
Whether there is resumption of activity or not, the last eruptive episode will leave marks. The M 4.8 earthquake whose epicentre was located in the Viagrande area was certainly not directly related to volcanic activity but, as I indicated earlier, the quake was probably caused by constraints and deformations exerted on the flanks of the volcano by the magma during its ascent. It should not be forgotten that the eastern slopes of Mount Etna are crossed by faults whose movement has already caused devastating earthquakes (see my previous note).

Profil du tremor éruptif au cours des dernières heures (Source: INGV)

Tenorio (Costa Rica) [suite / continued]

J’aimerais revenir sur l’activité sismique observée ces derniers jours en Amérique Centrale. Tout a commencé avec un puissant séisme de M 7,6 enregistré à 02h51 (GMT) le mercredi 10 janvier 2018 au large du Honduras (voir carte ci-dessous), à 44 kilomètres à l’est des Iles Swan et à une profondeur de 10 kilomètres (Source : USGS). .

Le Réseau sismologique national (RSN) du Costa Rica indique que depuis le 9 janvier 2018, il a localisé 42 secousses sur le versant oriental du volcan Tenorio, considéré comme étant au repos. Ces séismes ont eu des magnitudes comprises entre M 2,2 et M 5,3. La sismicité a commencé le 9 janvier avec un séisme de magnitude M 4,7 à 20h56. 11 répliques ont par la suite été enregistrées avec des magnitudes comprises entre M 2,7 et M 4,3. Le 10 janvier, la sismicité a diminué et sept secousses ont été détectées, entre M 2,2 et M 3,5. Le 11 janvier, on a observé une reprise de la sismicité, avec 23 séismes dont trois avaient une magnitude supérieure à M 5,0.

Comme je l’ai indiqué précédemment, ces différents séismes avaient des hypocentres situés entre 2 et 15 km de profondeur, et des épicentres à proximité des failles Caño Negro et Chiquero, pas très loin du volcan Tenorio dont le Parc National a été fermé par crainte des glissements de terrain..

Il sera intéressant de voir l’évolution de la situation dans les prochains jours et les prochaines semaines. Selon le RSN, la sismicité observée ces derniers temps est probablement due aux mouvements des failles qui viennent d’être mentionnées, ainsi que d’autres dans la région.

Cette sismicité réveillera-t-elle le Tenorio ? Personne ne le sait. Le lien entre activité sismique d’origine tectonique et activité volcanique n’a jamais été formellement démontré. Par exemple, en mars 2011, les volcanologues japonais ont craint que le séisme de M 9,0 observé le 11 de ce même mois réveille le Mont Fuji. Il n’en fut rien et, à ce jour, le volcan – dont la dernière éruption remonte à 1707 – ne s’est toujours pas manifesté.

——————————————–

I would like to write again about the seismic activity observed in recent days in Central America. It all started with a powerful M 7.6 earthquake registered at 02:51 (GMT) on Wednesday, January 10th, 2018 off Honduras (see map below), 44 kilometers east of the Swan Islands and at a depth of 10 kilometres (Source: USGS). .
Costa Rica’s National Seismological Network (RSN) reports that since January 9th, 2018, it has located 42 tremors on the eastern slope of the Tenorio volcano, considered to be at rest. These earthquakes had magnitudes between M 2.2 and M 5.3. Seismicity began on January 9th with an earthquake of magnitude M 4.7 at 20:56. 11 aftershocks were subsequently recorded with magnitudes between M 2.7 and M 4.3. On January 10th, seismicity decreased and seven events were detected, between M 2.2 and M 3.5. On January 11th, there was a resumption of seismicity, with 23 earthquakes, three of which had a magnitude greater than M 5.0.
As I put it before, these different earthquakes had hypocentres located between 2 and 15 km deep, and epicentres near the Caño Negro and Chiquero faults, not far from the Tenorio volcano whose National Park was closed for fear of landslides ..
It will be interesting to see the evolution of the situation in the coming days and weeks. According to RSN, the seismicity observed recently was probably due to the movements of the faults I have just mentioned, as well as others in the region.
Will this seismicity wake up Tenorio? Nobody knows. The link between seismic activity of tectonic origin and volcanic activity has never been formally demonstrated. For example, in March 2011, Japanese volcanologists feared that the M 9.0 earthquake observed on the 11th of that month, might wake Mount Fuji. It was not so, and to date, the volcano – whose last eruption dates back to 1707 – has not shown any significant sign of activity.

Source: RSN / The Watchers

Forte sismicité dans l’ouest de la Turquie // Strong seismicity in western Turkey

drapeau-francaisDes essaims sismiques à faible profondeur affectent en ce moment la pointe de la péninsule de Biga dans l’ouest de la Turquie. En particulier, on a enregistré quatre événements supérieurs à M 5 qui ont gravement endommagé plus de 350 bâtiments. Les séismes se produisent à l’intersection de la faille de Kestanbol et de la ligne de failles d’Edremit. L’événement le plus significatif jusqu’à présent a atteint une magnitude de M 5.4 le 6 février 2017, à une profondeur de 6 km. Il a été précédé d’un événement M 5.2. Le même secteur avait déjà été secoué par un séisme de M 5.3 le 7 février et un autre de M 5.0 le 12 février. Tous se sont produits à des profondeurs entre 6 et 10 km. Selon les données fournies par le CSEM, depuis le 1er janvier 2017 la région a enregistré un total de 1 096 séismes

Suite aux séismes ayant causé la plus de dégâts, le gouvernement turc a mis en place un petit village constitué de maisons de chantier pour les personnes ayant besoin d’un abri et il a été demandé aux habitants de ne pas pénétrer dans des bâtiment tant que l’évaluation officielle des risques n’a pas été effectuée.
Le dernier grand séisme sur la faille d’Edremit a atteint M 6.7 en 1944. Il ne serait donc pas surprenant qu’un puissant séisme se produise à nouveau dans cette région. La faille d’Edremit fait actuellement l’objet de toutes les attentions.
La région possède l’une des activités hydrothermales les plus remarquables de la Turquie, avec des températures de l’eau pouvant atteindre174 ºC. On a remarqué que les essaims sismiques se produisent souvent dans les zones géothermales où les failles sont lubrifiées par l’eau chaude, ce qui facilite leur glissement.
Source: The Watchers.
Https://watchers.news/2017/02/12/earthquake-swarm-western-turkey/

La Turquie est un pays souvent secoué par des séismes. Cela est dû à la présence de plusieurs failles actives. La plus célèbre est la faille nord-anatolienne qui traverse la Turquie d’est en ouest, de l’Iran à la Thrace. Même si, en général, on ne la considère pas comme une faille transformante comme la faille de San Andreas en Californie, elle résulte du jeu des mouvements des plaques lithosphériques, notamment de la plaque arabique qui s’enfonce dans la plaque eurasienne tout en ouvrant la Mer Rouge. En conséquence, le sud et le nord de la Turquie coulissent le long de cette fracture à une vitesse moyenne d’environ 2,5 cm par an, en remarquant que les mouvements se produisent de façon brutale, par à-coups, avec des déplacements pouvant atteindre 3 mètres en moins d’une minute dans la région d’Izmit où le séisme du 17 août 1999 a atteint une magnitude de 7,4. La sismicité de la faille nord-anatolienne a migré d’est en ouest au fil des décennies.

°°°°°°°°°°

A noter que, selon le maire d’Ankara, les séismes enregistrés actuellement en Turquie pourraient bien être provoqués par une main étrangère..! Vous aurez plus de détails en cliquant sur ce lien:

http://www.armenews.com/article.php3?id_article=137550

————————————–

drapeau-anglaisA series of shallow are shaking the tip of the Biga Peninsula in Western Turkey this month. The sequence includes four events above M 5 that seriously damaged more than 350 buildings. The quakes are occurring at the intersection of the Kestanbol Fault and the Edremit Fault Zone. The strongest quake so far was M 5.4 on February 6th, 2017at a depth of 6 km. It was preceded by an M 5.2 event. The same area was hit by an M 5.3 quake on February 7th and M 5.0 on February 12th. All quakes occurred at depths between 6 and 10 km. Since January 1st, the region has seen a total of 1 096 earthquakes, according to data provided by the EMSC.

As a result of the most damaging earthquakes, the Turkish Government has built a small village from container houses for those who needed shelter and asked residents not to enter any building before official building assessment.

The last large earthquake on the Edremit fault was an M 6.7 event in 1944. Therefore, a similar quake in the future would not be surprising. Thus, seismicity around the Edremit fault should be closely monitored.

The area is one of the most active geothermal regions in Turkey, with some water temperatures reaching 174 ºC.  It has been noticed that seismic swarms generally occur in geothermal areas where faults are lubricated by hot water, making them easier to slip.

Source: The Watchers.

https://watchers.news/2017/02/12/earthquake-swarm-western-turkey/

Turkey is a country which is often shaken by earthquakes. This is due to the presence of several active faults. The most famous is the North-Anatolian fault which crosses Turkey from east to west, from Iran to Thrace. Although it is not generally considered to be a transforming fault like the San Andreas fault in California, it results from the movement of the lithospheric plates, notably the Arabic plate which penetrates into the Eurasian plate while opening the Red Sea. As a result, southern and northern Turkey slide along this fracture at an average velocity of about 2.5 cm per year. The movements occur suddenly, with displacements up to 3 metres in less than a minute in the Izmit region where the earthquake of 17 August 1999 reached a magnitude of  M 7.4. The seismicity of the North-Anatolian fault has migrated from east to west over decades.

°°°°°°°°°°

According to the mayor of Ankara, the current earthquakes in Turkey might well be caused by « a foreign hand »! You’ll get more details by clicking on this link:

http://www.armenews.com/article.php3?id_article=137550

turquie-2

Les failles de la Turquie occidentale et les impacts sismiques actuels.

(Source: tremblor.net)