Prévision et prévention volcaniques : Les défis de la communauté scientifique // Volcanic prevision and prevention : The challenges of the scientific community

Un rapport publié aux Etats-Unis par les Académies Nationales des Sciences, d’Ingénierie et de Médecine identifie de grands défis pour la communauté scientifique afin de mieux se préparer aux éruptions volcaniques
Malgré une meilleure compréhension des volcans, notre capacité à prévoir le moment, la durée, le type, la taille et les conséquences des éruptions volcaniques est limitée. Afin d’améliorer la prévision éruptive et sauver des vies, le rapport identifie les priorités de recherche pour un meilleur suivi des éruptions volcaniques et trois grands défis auxquels est confrontée la communauté volcanologique.
Le comité qui a mené l’étude a décrit les priorités de recherche dans des domaines tels que les processus qui gèrent le déplacement et le stockage du magma sous les volcans; comment les éruptions commencent, évoluent et finissent; comment un volcan entre en éruption; la prévision des éruptions; la transformation des paysages, des océans et de l’atmosphère face aux éruptions volcaniques; le comportement des volcans face aux changements à la surface de la Terre.
Sur la base de ces priorités de recherche, le comité a identifié trois grands défis majeurs pour faire progresser la science et le suivi des volcans:

Prévision de l’ampleur, de la durée et du risque induit par les éruptions en intégrant les observations avec des modèles.
Les prévisions actuelles sont basées sur la simple reconnaissance de données de surveillance volcanique. Ces approches ne sont pas toujours couronnées de succès parce que ces données de surveillance n’appréhendent pas la diversité des volcans ou leur évolution au fil du temps. Une approche basée sur des modèles de processus physiques et chimiques, s’appuyant sur le suivi des données de surveillance, comme cela se fait dans les prévisions météorologiques, pourrait améliorer la précision de la prévision éruptive. Une telle approche nécessite l’intégration de données et de méthodologies à partir de disciplines multiples.

Quantifier les cycles de vie des volcans et surmonter notre compréhension partielle actuelle.
La compréhension actuelle du cycle de vie d’un volcan est faussée car seulement un petit nombre de volcans sont étudiés. Une surveillance accrue depuis le sol, la mer et l’espace peut surmonter certaines de ces lacunes d’observation. L’amélioration des capacités de surveillance actuelles et la mise en place d’infrastructures permettant de rendre disponibles  les données historiques et de surveillance sont essentielles pour améliorer la compréhension des processus volcaniques et l’évaluation des risques volcaniques. Le comité a fait remarquer que des technologies innovantes telles que les capteurs peu coûteux, les drones et les nouvelles méthodes géochimiques micro-analytiques sont des outils prometteurs pour fournir de nouvelles connaissances sur l’activité volcanique.

Mettre en place une coordination au sein de la communauté volcanologique.
Près de 100 volcans entrent en éruption quelque part sur Terre chaque année. Le renforcement de la recherche pluridisciplinaire, de la recherche nationale et internationale, la mise en place de partenariats et de réseaux de formation peuvent aider la communauté scientifique à donner un nouvel élan aux progrès scientifiques résultant de l’étude des éruptions à travers le monde.

L’étude a été parrainée par la National Science Foundation, la NASA, l’USGS et les Académies Nationales des Sciences, d’Ingénierie et de Médecine. Le rapport complet peut être lu à cette adresse:
Http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=24650&_ga=1.36767842.396567824.1492636182

————————————————

A report published by the National Academies of Sciences, Engineering, and Medicine identifies grand challenges for the scientific community to better prepare for volcanic eruptions

Despite broad understanding of volcanoes, our ability to predict the timing, duration, type, size, and consequences of volcanic eruptions is limited. To improve eruption forecasting and warnings to save lives, the report identifies research priorities for better monitoring of volcanic eruptions and three grand challenges facing the volcano science community.

The committee that conducted the study outlined several key questions and research priorities in areas such as the processes that move and store magma beneath volcanoes; how eruptions begin, evolve, and end; how a volcano erupts; forecasting eruptions; the response of landscapes, oceans, and the atmosphere to volcanic eruptions; and the response of volcanoes to changes on Earth’s surface.

Based on these research priorities, the committee identified three overarching grand challenges for advancing volcano science and monitoring:

Forecasting the size, duration, and hazard of eruptions by integrating observations with models

Current forecasts are based on recognizing patterns in monitoring data. These approaches have had mixed success because monitoring data do not capture the diversity of volcanoes or their evolution over time. An approach based on models of physical and chemical processes, informed by monitoring data, as is done in weather forecasting, could improve the accuracy of eruption forecasts. Such an approach requires integrating data and methodologies from multiple disciplines.

Quantifying the life cycles of volcanoes and overcoming our current biased understanding

Current understanding of a volcano’s life cycle is skewed because only a small number of volcanoes are studied. Extended monitoring from the ground, sea, and space can overcome some of these observational biases. Expanding and maintaining monitoring capabilities and supporting the infrastructure to make historical and monitoring data available are critical for advancing understanding of volcanic processes and assessing volcanic hazards. The committee noted that emerging technologies such as inexpensive sensors, drones, and new micro-analytical geochemical methods are promising tools to provide new insights into volcanic activity.

Building a coordinated volcano science community

Close to 100 volcanoes erupt somewhere on Earth each year. Strengthening multidisciplinary research, domestic and international research and monitoring partnerships, and training networks can help the research community maximize scientific advances that result from the study of eruptions around the world.

The study was sponsored by the National Science Foundation, NASA, the U.S. Geological Survey, and the National Academies of Sciences, Engineering, and Medicine. The whole report can be read at this address :

http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=24650&_ga=1.36767842.396567824.1492636182

Les volcans de l’arc des Aléoutiennes sont parmi les moins équipés et donc les plus difficiles à surveiller dans le monde (Source: AVO).

 

La fonte du Groenland en photos // Photos of Greenland’s melting

La fonte du Groenland est visible au niveau des glaciers qui se fracturent et vêlent de plus en plus d’icebergs. Elle se produit aussi à la surface de la banquise où sont apparues des taches bleues qui trahissent des lacs de glace fondue qui sont de plus en plus nombreux et s’agrandissent chaque année. Chaque été, ils apparaissent aussi davantage à l’intérieur des terres et à de plus hautes altitudes que par le passé. Au travers de ses photos, le photographe aérien allemand Timo Lieber dévoile un paysage inattendu du Groenland.

Le projet photographique de Timo Lieber est intitulé Thaw (« fonte », en anglais). A la croisée de la photographie artistique et de la science, il est le fruit d’une collaboration entre le photographe et une équipe de glaciologues. Leur objectif est d’alerter sur la rapide et inquiétante fonte de la calotte glaciaire qui recouvre le Groenland, la plus importante de l’hémisphère Nord.

Timo Lieber explique que « dans ce paysage immaculé, dépouillé au strict minimum de couleurs et de formes, l’impact dramatique du changement climatique est plus manifeste que dans n’importe quelle autre partie du monde […] Cela fait peur à voir de ses propres yeux. Même depuis mon avion de ligne, lors de mon arrivée au Groenland, on pouvait déjà voir le bleu des lacs. On s’attend à un paysage complètement blanc, mais en fait, ce n’est pas du tout le cas ». C’est exactement ce que je me suis dit en survolant le Groenland en septembre 2016 alors que je me rendais en Alaska.

Même si elles traitent d’un sujet grave, les photos de Timo Lieber n’en restent pas moins belles. « Je n’essaie pas d’embellir le problème lui-même », confie Timo Lieber. « Je veux que les gens qui voient ces images se posent cette question : ‘Qu’est-ce qu’il y a derrière toute cette beauté ?' »

Le portfolio groenlandais de Timo Lieber est visible à cette adresse.

http://www.timolieber.com/thaw/view/thaw-1/

Source : France Info.

—————————————-

The melting of Greenland can be seen at the glaciers which fracture and calve more and more icebergs. It also occurs on the surface of the ice sheet, where blue spots have appeared, betraying melt lakes which are increasingly numerous and growing every year. Each summer, they also appear more inland and at higher altitudes than in the past. Through his photos, the German aerial photographer Timo Lieber unveils an unexpected landscape of Greenland.
The photographic project of Timo Lieber is entitled « Thaw ». At the crossroads of artistic photography and science, it is the fruit of a collaboration between the photographer and a team of glaciologists. Their objective is to alert to the rapid and worrying melting of the ice sheet covering Greenland, the largest in the northern hemisphere.
Timo Lieber explains that « in this immaculate landscape, stripped to the bare minimum of colours and shapes, the dramatic impact of climate change is more evident than in any other part of the world … It’s scary to be seen with one’s own eyes. Even from my airliner, when I arrived in Greenland, I could already see the blue of the lakes.We expect a completely white landscape, but in fact it is not at all the case ». That is exactly what I said to myself while flying over Greenland in September 2016.
Even if they deal with a serious subject, Timo Lieber’s photos remain no less beautiful. « I’m not trying to embellish the problem itself, » says Lieber. « I want people who see these images to ask themselves, ‘What’s behind all this beauty?' »
Tom Lieber’s Greenland portfolio can be seen at this address:
http://www.timolieber.com/thaw/view/thaw-1/

Source: France Info.

Photo: C. Grandpey

 

Les températures à la surface de la mer en 2016 // Sea surface temperatures in 2016

Au cours des derniers mois, on a beaucoup parlé d’El Niño et de son influence sur le climat de la planète. Une scientifique d’EUMETSAT – organisation européenne pour l’exploitation des satellites météorologiques – décrit à travers une animation les variations de température à la surface de la mer pendant l’année 2016. L’animation combine des données satellitaires fournies par le réseau géostationnaire de satellites et par les satellites en orbite polaire, ce qui couvre l’Europe, l’Amérique et le Japon.
L’animation montre l’évolution au cours de chaque mois de l’année, mettant en évidence des événements météorologiques spécifiques, les courants et les changements de températures dans différentes zones de la Terre, en particulier l’oscillation australe (ENSO) entre El Niño et La Niña.

https://youtu.be/thhFs8WYBrE

Comme je l’ai écrit précédemment, El Niño est un cycle naturel qui affecte les températures, les vents et la couverture nuageuse ​​de l’Océan Pacifique et qui influence le climat de la planète. Il se compose d’une bande d’eau chaude qui s’étend dans le Pacifique équatorial central et oriental. De son côté, La Niña est la phase froide qui fait suite à El Niño et génère des températures plus basses.
L’animation montre les changements de température et la façon dont l’énergie est répartie autour de notre globe, ce qui affecte le climat, les écosystèmes et toute notre vie quotidienne.
Source : EUMETSAT.

—————————————-

There has been a lot of talk in recent months about El Niño and its influence on the world’s climate. A scientist at EUMETSAT – a European Organisation that processes weather satellite data – describes through an animation a year of sea surface temperature in 2016. The animation combines satellite data from both the geostationary ring of satellites and polar orbiting data including Europe, America, and Japan.

The animation goes through each month of the year, highlighting specific weather events, currents and changes in temperatures in different zones of the Earth focussing especially on El Niño–Southern Oscillation (ENSO) and La Niña.

https://youtu.be/thhFs8WYBrE

As I put it previously, El Niño is a natural cycle in Pacific Ocean temperatures, winds, and cloud that influences climate all around the planet. It consists of a band of warm water developing in the central and east-central equatorial Pacific. On the other hand, La Niña is the cool phase that follows El Niño, bringing colder temperatures.

The animation shows the changes in temperature and how energy is distributed and spreads around our globe, affecting the climate, ecosystem and all our daily lives.

Source : EUMETSAT.

Source: EUMETSAT

Les émissions de gaz du Poás (Costa Rica) // The gas emissions of Poás Volcano (Costa Rica)

Le Poás a connu un nouvel épisode éruptif vendredi matin. Le panache a atteint une altitude de plus d’un kilomètre et pouvait facilement être vu depuis plusieurs localités. La majorité des explosions n’expulsent que la vapeur d’eau, mais certaines projettent aussi des sédiments, des blocs et de petites quantités de cendre.
Selon OVSICORI, les panaches de gaz et de vapeur émis par volcan ont une incidence sur la qualité de l’air dans les zones habitées, avec des niveaux supérieurs aux valeurs autorisées de l’Organisation Mondiale de la Santé (OMS).
Les habitants de San José, Alajuela, Heredia et Cartago inhalent des quantités élevées de dioxyde de soufre, de dioxyde de carbone et parfois des particules de cendre, qui peuvent avoir un effet négatif sur la santé.
La station de surveillance de la qualité de l’air située à Hatillo a enregistré en moyenne une concentration de CO2 de 81 parties par milliard, avec un pic maximum de 99,1, ce qui dépasse les limites de l’OMS de 75 ppb. Les stations de surveillance dans d’autres zones urbaines ont également enregistré de fortes concentrations de gaz. Les fortes émissions de SO2 et de CO2  mesurées près du cratère du volcan sont interprétées par les scientifiques comme un signe de magma juvénile près de la surface. La combinaison de ces gaz et des fortes pluies comme celle des derniers jours produit des pluies acides, qui causent des dégâts aux cultures, à la végétation et même aux structures métalliques.
En cliquant sur ce lien, vous verrez des images du Poás via la caméra thermique, ainsi que son activité le 21 avril 2017.
http://news.co.cr/gases-emanating-from-poas-volcano-are-affecting-the-quality-of-air-in-metropolitan-area-of-costa-rica/59712/

Source: The Costa Rica Star.

————————————-

Poás Volcano went through another eruption Friday morning. The eruptive plume reached an altitude of over 1 kilometre and could be easily seen from many spots of the metropolitan areas. The majority of the events expel only water vapour but some also carry sediments, small rocks and small quantities of ash.

According to OVSICORI, the vapours of the volcano are affecting the quality of the air in the metropolitan area, shooting up the contamination to levels that exceed the permitted values of the World Health Organization (WHO).

Residents of San José, Alajuela, Heredia and Cartago are breathing high levels of sulphur, carbon dioxide and occasionally ash particles, that can have a negative effect in health.

The air quality monitoring station located in Hatillo, registered in average a concentration of carbon dioxide of 81 parts per billion (ppb), with a maximum peak of 99.1 ppb, which exceeds the WHO limits of 75 ppb. Monitoring stations in other urban areas also marked high concentrations of gases. The high levels of sulfur dioxide and carbon dioxide measured near the crater of the volcano are interpreted by scientists as a sign of fresh magma near the surface. The combination of this gases in the air and heavy rains like the ones experienced in the last few days create  acid rain, which causes damage in crops, vegetation, and even metallic structures.

By clicking on this link, you will see images of the volcano through the thermal camera, as well as its activity on April 21st 2017.

http://news.co.cr/gases-emanating-from-poas-volcano-are-affecting-the-quality-of-air-in-metropolitan-area-of-costa-rica/59712/

Source: The Costa Rica Star.

Incandescence dans le cratère le 22 avril au matin (Source: RSN)

Crédit photo: Wikipedia.