Février 2020 : le deuxième mois de février le plus chaud ! // February 2020 : the second hottest February !

Les chiffres officiels de la NASA et de la NOAA viennent de tomber. On apprend que le mois de février 2020 a été le deuxième mois de février le plus chaud depuis le début des mesures de la NASA en 1880.. Le mois de janvier avait été le premier dans son domaine. La température globale en février 2020 approche les niveaux record de 2016 et ceci sans le concours d’El Niño qui est neutre en ce moment. C’est donc  particulièrement remarquable  Pour la quatrième fois de l’histoire instrumentale, un mois dépasse la barre des 1,5°C au-dessus de la période préindustrielle.

L’hiver (décembre-janvier-février) est aussi le 2ème plus chaud depuis 1880.

Source : global-climat.

——————————————–

Official NASA and NOAA figures have just been released. We learn that February 2020 was the second hottest month of February since the start of NASA measurements in 1880. January was the first in this field. The global temperature in February 2020 is approaching the record levels of 2016 and this without the assistance of El Niño which is currently neutral. It is therefore particularly remarkable For the fourth time in instrumental history, a month exceeds the 1.5°C mark above the pre-industrial period.
Winter (December-January-February) was also the second warmest since 1880.
Source: global-climat.

Anomalies thermiques pour l’hiver écoulé (Source: NASA)

La Mer de Glace n’a pas fini de fondre ! // The Mer de Glace will keep on melting!

Les statistiques de température mondiale que vient de publier la NASA sont toujours aussi alarmantes. On savait que l’année 2019 avait été la 2ème année la plus chaude des annales mais 2020 démarre encore plus fort. La température globale en janvier 2020 a atteint son niveau le plus élevé en 141 années d’archives, devançant le précédent maximum observé lors de l’épisode El Niño extrême de 2016.

Avec +1,18°C au-dessus de la moyenne 1951-1980, la température observée en 2020 est la plus élevée pour un mois de janvier depuis le début des mesures de la NASA en 1880. L’anomalie est en hausse par rapport à décembre 2019 (+1,10°C).

D’après la NASA, le record de 2016 a été battu de justesse, mais il ne faudrait pas oublier que début 2016 avait été marqué par un phénomène El Niño exceptionnel, peut-être le plus important jamais observé, avec celui de 1997-1998. En revanche, les conditions sont actuellement neutres dans la Pacifique, ce qui rend le record de janvier 2020 encore plus inquiétant. Le record n’est pas dû non plus à l’activité solaire puisque le cycle est en ce moment à son minimum. J’ai d’ailleurs personnellement annulé un déplacement dans le nord de la Norvège car les aurores boréales sont très rares et de faible intensité en ce moment.

Pour le mois de janvier, sur les 100 dernières années, le rythme du réchauffement est de +0,105°C par décennie. Depuis l’an 2000, on note une accélération à +0,257°C par décennie.

Source : global-climat.

——————————————–

The global temperature statistics just released by NASA are as alarming as before. We knew that 2019 had been the second hottest year in the archives, but 2020 did even better. Global temperature in January 2020 reached its highest level in 141 archive years, ahead of the previous maximum observed in the 2016 during an extreme El Niño episode.
With + 1.18°C above the 1951-1980 average, the temperature observed in 2020 has been the highest for January since the start of NASA measurements in 1880. The anomaly is up from December 2019 (+ 1.10°C).
According to NASA, the 2016 record was barely broken, but it should not be forgotten that early 2016 had been marked by an exceptional El Niño phenomenon, perhaps the most significant ever, with that of 1997-1998. On the other hand, conditions are currently neutral in the Pacific, which makes the January 2020 record even more worrying. The record was also not due to solar activity since the cycle is currently at its minimum. I personally cancelled a trip to northern Norway because the northern lights are very rare and weak at the moment.
For the month of January, over the last 100 years, the rate of warming is + 0.105°C per decade. Since 2000, there has been an acceleration to + 0.257°C per decade.
Source: global-climat.

Les 10 mois de janvier les plus chauds (Source : NASA / global-climat)

El Niño, un phénomène encore mal compris // El Niño, a poorly understood phenomenon

Au cours de ma conférence « Glaciers en péril », je fais référence à El Niño qui influe considérablement sur le climat de notre planète. Il s’agit d’un phénomène climatique étonnamment complexe dans l’Océan Pacifique, qui se traduit pas une hausse de la température à la surface de l’eau, sur une dizaine de mètres de profondeur, dans l’est de l’océan Pacifique, autour de l’équateur. Inversement, quand El Niño disparaît il est remplacé par La Niña qui produit un effet de refroidissement inverse. En 2017 et une grande partie de l’année 2018, on a observé une faiblesse d’El Niño ; malgré cela, les températures globales ont continué à augmenter sur Terre.

Le site web Radio-Canada nous apprend que des chercheurs australiens ont montré, grâce à l’étude de coraux vieux de quatre siècles, que certaines variantes du phénomène El Niño ont augmenté en nombre au cours des dernières années, tandis que d’autres ont augmenté en intensité.

Les coraux enregistrent une partie de leur vécu au cœur de leur structure, un peu comme le font les cernes sur un tronc d’arbre. En révélant ce vécu à l’aide d’une intelligence artificielle, les chercheurs australiens ont pu retracer le comportement d’El Niño au cours des 400 dernières années.

Le phénomène El Niño survient tous les deux à sept ans et il se caractérise par une hausse des températures de l’Océan Pacifique ainsi que des changements dans les courants marins et aériens de cette région. Ces changements dans la chaleur et l’humidité augmentent le rythme des événements extrêmes dans le monde. Certaines régions sont frappées par de grands ouragans ou des inondations, tandis que d’autres subissent davantage de sécheresses et des feux de forêt. Lorsque El Niño sévit, la fonte des glaciers se trouve accélérée.

La force et le rythme de ces événements ne sont toutefois pas constants. Certains épisodes, comme celui de 1997-1998, ont causé des dégâts importants à l’échelle du globe, tandis que d’autres n’ont eu qu’une faible influence sur les événements météorologiques extrêmes.

De plus, les chercheurs reconnaissent maintenant qu’il existerait deux variantes du phénomène, une qui débute au centre du Pacifique, et une autre qui débute dans l’est de cet océan, chacune touchant plusieurs régions de façon différente.

Jusqu’à maintenant, nos connaissances de l’histoire d’El Niño restaient limitées, et les chercheurs ne pouvaient qu’utiliser les données des événements qui ont été mesurés directement au cours du dernier siècle.

L’étude des coraux va changer la donne. Ces derniers possèdent un squelette de carbonate de calcium qu’ils assemblent à l’aide de minéraux dissous dans l’océan. Leur composition permet d’en apprendre plus sur la salinité et la température de l’eau où ils ont grandi. Ces informations pourraient permettre d’identifier les changements océaniques occasionnés par El Niño.

Les modifications subies par les coraux sont infiniment plus complexes que celles que l’on trouve dans les cernes des arbres. Beaucoup de scientifiques pensaient que les coraux ne pourraient guère venir en aide pour comprendre le comportement d’El Niño. Pour arriver à leurs fins, les chercheurs de l’Université de Melbourne se sont tournés vers l’intelligence artificielle. À l’aide d’échantillons de coraux provenant de 27 sites distincts à travers l’Océan Pacifique, les scientifiques ont entraîné leur algorithme à reconnaître les modifications des coraux et à les associer aux événements El Niño dont on connaissait les dates au cours du siècle dernier.

Une fois que leur système a été capable de faire cette association sans erreur, ils lui ont soumis des données de coraux plus anciens, échelonnées sur les quatre derniers siècles. Les chercheurs ont alors remarqué que le nombre d’occurrences d’El Niño originaires du centre du Pacifique a plus que doublé durant la deuxième moitié du 20ème siècle comparativement aux siècles précédents, avec 9 épisodes au lieu de 3,5 par période de 30 ans durant la même période.

En ce qui concerne les occurrences d’El Niño originaires de l’est du Pacifique, leur nombre semble plutôt avoir décliné durant les dernières décennies. Par contre, leur intensité semble suivre la tendance inverse, et les trois derniers phénomènes de ce type à avoir été enregistrés, ceux de 1982, 1997 et 2015, sont parmi les plus puissants El Niño des 400 dernières années.

Selon les chercheurs, cette méthode permet non seulement de mieux comprendre l’histoire du phénomène El Niño, mais aussi de mieux prévoir comment il pourrait se comporter au cours des prochaines années.

Source : Radio-Canada.

———————————————-

During my conference « Glaciers at Risk », I refer to El Niño, which has a major impact on the climate of our planet. It is a surprisingly complex climatic phenomenon in the Pacific Ocean, which results in a rise in the temperature of the surface of the water, about ten metres deep, in the eastern part of the Pacific Ocean, around the equator. Conversely, when El Niño disappears, it is replaced by La Niña, which produces a reverse cooling effect. In 2017 and much of 2018 El Niño has been weak; despite this, global temperatures continued to increase on Earth.
The Radio-Canada website informs us that Australian researchers have shown, through the study of four-century-old corals, that some variants of the El Niño phenomenon have increased in numbers in recent years, while others have increased in intensity.
Corals record some of their life in the heart of their structure, much like tree rings on a trunk. By revealing the coral life using artificial intelligence, Australian researchers have been able to trace the behaviour of El Niño over the last 400 years.
The El Niño phenomenon occurs every two to seven years and is characterized by rising temperatures in the Pacific Ocean as well as changes in the marine and air currents of this region. These changes in heat and humidity are increasing the pace of extreme events around the world. Some areas are hit by major hurricanes or floods, while others suffer more droughts and forest fires. When El Niño occurs, glacier melting is accelerated.
The strength and pace of these events, however, are not constant. Some episodes, such as the 1997-1998 episode, have caused significant global damage, while others have had little influence on extreme weather events.
In addition, researchers now reveal that there are two variants of the phenomenon, one that starts in the centre of the Pacific, and another that begins in the eastern part of this ocean, each affecting several regions in different ways.
Until now, our knowledge of El Niño history has been limited, and researchers could only use data from events that have been measured directly over the last century.
The study of corals will change the research. They have a skeleton of calcium carbonate which they assemble using minerals dissolved in the ocean. Their composition makes it possible to learn more about the salinity and the temperature of the water where they grew up. This information could help identify the oceanic changes caused by El Niño.
The changes in corals are infinitely more complex than those found in tree rings. Many scientists thought that corals could hardly help to understand the behaviour of El Niño. To achieve their ends, researchers at the University of Melbourne turned to artificial intelligence. Using coral samples from 27 distinct sites across the Pacific Ocean, scientists have trained their algorithm to recognize changes in corals and associate them with El Niño events that had known dates during the past century.
Once their system was able to make this association without error, they submitted to it older coral data over the last four centuries. The researchers noted that the number of El Niño occurrences from the central Pacific more than doubled during the second half of the 20th century compared to previous centuries, with 9 episodes instead of 3.5 per 30-year period. during the same period.
As for El Niño occurrences from the eastern Pacific, their numbers appear to have declined in recent decades. However, their intensity seems to follow the opposite trend, and the last three phenomena of this type to have been recorded, those of 1982, 1997 and 2015, are among the most powerful El Niño of the last 400 years.
According to the researchers, this method not only helps to better understand the history of the El Niño phenomenon, but also to better predict how it could behave over the next few years.
Source: Radio-Canada.

El Niño et La Niña influencent le climat de notre planète (Source: NOAA)

Impacts des éruptions volcaniques sur la formation des ouragans // Impact of volcanic eruptions on the formation of hurricanes

On peut lire sur le site web de The Weather Network un article très intéressant sur l’impact des éruptions volcaniques sur la formation des ouragans. Jusqu’à une étude récente, les scientifiques ne savaient pas exactement comment les deux phénomènes naturels interagissaient.
L’étude, dirigée par des chercheurs de l’Université du Québec à Montréal et de l’Université Columbia, montre pour la première fois dans quelle mesure les grandes éruptions volcaniques ont non seulement un impact immédiat sur la saison des cyclones tropicaux, mais également sur les années suivantes.
Il a fallu pas mal de temps aux chercheurs pour établir le lien entre les deux phénomènes naturels. En effet, la plupart des éruptions majeures de l’histoire récente se sont produites simultanément avec des événements El Niño ou La Niña (l’oscillation australe El Niño ou ENSO) qui ont eux-mêmes un impact sur les saisons cycloniques tropicales à travers le monde.
Cette étude, basée sur des simulations de dernière génération, s’est efforcée d’étudier les événements éruptifs majeurs indépendamment de tout impact ENSO, et les chercheurs ont réussi a obtenir un schéma très révélateur. Ils ont découvert que des éruptions importantes dans les hémisphères nord et sud avaient pour effet d’éloigner la zone de convergence intertropicale (ZCIT) de sa position habituelle – plus loin dans l’hémisphère sud en cas d’éruption de l’hémisphère nord et inversement, lors d’une éruption. au sud de l’équateur.
La ZCIT est la bande proche de l’équateur où convergent les alizés. Elle a été baptisée «pot au noir» par les marins parce que les vents à la surface de l’océan sont calmes à ce point de convergence. Cette région joue un rôle clé dans la formation de cyclones tropicaux lorsque la frontière se déplace vers le nord ou vers le sud au niveau du « pot au noir », et se dirige vers des régions plus propices au développement de cyclones, qu’il s’agisse d’ouragans pour l’Atlantique ou de typhons pour le Pacifique.
Une puissante éruption dans les régions tropicales de l’hémisphère nord entraîne un déplacement de la zone de convergence intertropicale vers le sud. Cela se traduit par une augmentation de l’activité des ouragans entre l’équateur et la latitude 10º N et une diminution plus au nord. Le déplacement de la zone vers le sud a d’autres effets dans l’hémisphère sud, car cela entraîne une baisse de l’activité sur les côtes australiennes, indonésiennes et tanzaniennes, tandis que Madagascar et le Mozambique connaissent une augmentation. En bref, une éruption majeure dans l’hémisphère nord pousse la ZCIT vers le sud et les ouragans font de même. L’inverse est également vrai. Les chercheurs ont remarqué que les effets ont persisté pendant quatre ans après l’éruption, ce qui signifie que même après que le volcan se soit calmé, la saison cyclonique tropicale reste perturbée.
Si l’on considère que les cyclones tropicaux provoquent des dizaines de milliards de dollars de dégâts chaque année, l’amélioration des prévisions est essentielle pour atténuer les conséquences des prochaines catastrophes. Si les chercheurs parviennent à mieux comprendre les différents paramètres qui déterminent l’évolution des tempêtes – qu’il s’agisse des éruptions volcaniques ou des événements El Niño – les prévisions s’en trouveront forcément améliorées. .
Source: The Weather Network, PNAS.

————————————————–

One can read on the website of The Weather Network a very intersting article about the impact of volcanic eruptions on the formation of hurricanes. Until a recent study, scientists were not sure how the two interacted.

The study, led by researchers at The University of Quebec in Montreal and Columbia University, shows for the first time how large volcanic eruptions have impacts that echo through not just the tropical cyclone season following the eruption, but for years afterward.

It took quite a lot of time to find the link between the two natural phenomena because most of the major eruptions in recent history have occurred during El Niño or La Niña events (the El Niño Southern Oscillation, or ENSO), which themselves impact tropical cyclone seasons around the globe.

This study, based on sophisticated simulations, seeks to isolate major eruption events from any ENSO impact, and a distinct pattern emerged. The researchers found that large eruptions in either the northern or southern hemispheres served to push the Intertropical Convergence Zone (ITCZ) away from its usual position — further into the southern hemisphere in the case of a northern hemisphere eruption, and the opposite for an eruption south of the Equator.

The ITCZ is the band near the Equator where the trade winds converge, known as the ‘doldrums’ — so named by sailors because the surface winds are calm at this convergence point. This region plays a key role in the formation of tropical cyclones when the boundary drifts north or south out of the doldrums and into regions more favourable for cyclone development, be they Atlantic hurricanes or Pacific typhoons.

A large eruption in the tropical regions of the Northern Hemisphere leads to a southward shift of the Intertropical Convergence Zone. This results in an increase in hurricane activity between the Equator and the 10ºN line, and a decrease further north. The zone’s southward shift has further effects in the Southern Hemisphere, causing a decrease in activity on the coasts of Australia, Indonesia, and Tanzania, while Madagascar and Mozambique experience an increase. To put it briefly, a major eruption in the northern hemisphere pushes the ITCZ south, and the hurricanes go with it. The reverse is also true. More than that, the effects lingered for four years following the eruption, meaning even after the volcano has quieted, the tropical cyclone season was still altered.

With tropical cyclones generating tens of billions of dollars in damages every year, improved forecasting is one key to lessening the blow from future disasters. The more researchers can understand about the ingredients that go into determining the evolution of the storms – whether they are volcanic eruptions or strong El Niño events – the better future forecasts will be.

Source: The Weather Network, PNAS.

L’image ci-dessus montre l’évolution possible de l’intensité cyclonique, ou la force des tempêtes qui se développent, suite à des éruptions dans l’hémisphère Nord (en haut) et dans l’hémisphère Sud (en bas). [Source: Proceedings of the National Academy of Sciences ].

On va avoir soif cet été !

Je suis toujours surpris de voir les présentateurs des bulletins météo se réjouir quand une longue période de grand beau temps se profile à l’horizon, alors que nous traversons en Limousin une période de sécheresse qui risque de se prolonger au cours des prochains mois.

N’ayez pas la mémoire courte ! L’automne et l’hiver 2017-2018 avaient été copieusement arrosés et, malgré cela, la chaleur de l’été 2018 commençait à poser des problèmes. Le niveau du lac de Vassivière avait beaucoup baissé car il fallait compenser le faible débit de la Vienne pour refroidir les réacteurs de la centrale nucléaire de Civaux. Comme on le dit volontiers dans notre région, il faut mille vaches pour alimenter six veaux….

Voici les chiffres de pluviométrie fournis par la station météo de Limoges-Bellegarde pour la période octobre 2017 – mars 2018 d’une part, et pour la période octobre 2018 – mars 2019 d’autre part. Vous allez vite réaliser pourquoi je sui pessimiste.

Octobre 2017 : 38,7 mm  / Octobre 2018 : 31,1 mm

Novembre 2017 : 89,7 mm  /  Novembre 2018 : 74,3 mm

Décembre 2017 : 141,1 mm  /  Décembre 2018 : 132,2 mm

Janvier 2018 : 195,7 mm  /  Janvier 2019 : 82,3 mm

Février 2018 : 66,8 mm  / Février 2019 : 38,8 mm

Mars 2018 : 137,8 mm  /  Mars 2019 : 68,3 mm

Par rapport à la période précédente, nous sous trouvons actuellement avec un déficit de 242,8 mm, ce qui est considérable.

Lorsqu’il a plu ces derniers temps, le niveau des ruisseaux a rebaissé très vite, ce qui montre que les sources n’ont pas un débit abondant. Cette situation a été confirmée par les agriculteurs qui craignent des semaines difficiles pour leur bétail.

Les climatologues misent sur un été 2019 chaud car El Niño a refait surface dans le Pacifique oriental. Cette situation génère en général des étés chauds en Europe occidentale.

Contrairement aux idées reçues, le Limousin et son Plateau de Millevaches (mille sources) ne sont pas un immense château d’eau. Les ressources sont superficielles et de plus en plus fragiles, notamment à cause des sécheresses à répétition. Les autorités locales commencent à se poser des questions sur les solutions à adopter pour faire face à une pénurie d’eau dans les années à venir.

Une solution pourrait être d’interconnecter les différents réseaux d’eau ou bien procéder à de nouveaux captages. On se rend compte aujourd’hui que le réseau d’eau est vétuste et demande à être modernisé afin de réduire les pertes. Certains suggère la mise en place de nouvelles réserves, voire un nouveau barrage.

Le temps presse. Les effets du changement climatique se font déjà sentir en Limousin et en Creuse en particulier. Alors que le mois d’avril n’a pas encore commencé, le département a été placé par la préfecture en vigilance sécheresse il y a une dizaine de jours.

Source : Météo France, presse locale.

Relevés de la station météo de Limoges-Bellegarde pour le mois de mars. On remarque le très net déficit pluviométrique.

Février 2019 encore trop chaud // February 2019 was still too hot

Les chiffres viennent de tomber. Selon la NASA, le mois de février 2019 a été le troisième plus chaud depuis le début des relevés en 1880. Avec 0,92°C au-dessus de la moyenne 1951-1980, l’anomalie relevée en février 2019 est en hausse par rapport celle de janvier qui était de 0,87°C.  Depuis 1880, seuls les mois de février 2016 et 2017 ont été plus chauds.

Pour l’année en cours (avec les seuls mois de janvier et février), 2019 est à +0,895°C, quasiment au même niveau que 2017 et juste derrière le record de 2016.

La suite dépendra de l’évolution du phénomène El Niño qui présente encore des incertitudes. Plusieurs modèles climatiques tablent sur la poursuite des conditions El Niño dans la seconde partie de 2019 tandis que d’autres anticipent un retour à des conditions neutres. Il est néanmoins probable que les conditions plutôt chaudes actuelles dans le Pacifique conduiront à un pic de la température globale dans les prochains mois.

Au niveau régional, des anomalies de 8 à 12°C supérieures à la période 1951-1980 ont été observées dans certaines régions du nord de l’Eurasie, en Alaska et dans l’Arctique. Il a fait très chaud également en Antarctique.

Les chiffres publiés par la NASA sont relatifs à la période 1951-1980 mais on peut aussi calculer les anomalies par rapport à la période 1880-1899 où les émissions de gaz à effet de serre anthropiques n’avaient pas encore profondément modifié le climat. Par rapport à la période 1880-1899, l’anomalie a été de +1,19°C en février 2019. Lors de la COP21 de Paris, il a été prévu de contenir le réchauffement sous les 2°C, voire 1,5°C si possible. Ce dernier niveau avait été dépassé en février 2016 avec +1,6°C.

Source : NASA, global-climat.

——————————————

The latest fiigures have just been released. According to NASA, February 2019 was the third warmest since records began in 1880. At 0.92°C above the 1951-1980 average, the anomaly recorded in February 2019 is higher than that of January (0.87°C). Since 1880, only the months of February 2016 and 2017 have been warmer.
For the current year (with the only months of January and February), 2019 is + 0.895°C, almost at the same level as 2017 and just behind the record of 2016.
The rest of the year will depend on the evolution of the El Niño phenomenon which still presents uncertainties. Several climate models rely on the continuation of El Niño conditions in the second half of 2019 while others anticipate a return to neutral conditions. Nevertheless, it is likely that the current rather warm conditions in the Pacific will lead to a spike in global temperatures in the coming months.
At the regional level, anomalies of 8 to 12°C above 1951-1980 have been observed in parts of northern Eurasia, Alaska and the Arctic. It was very hot in Antarctica as well.
The figures published by NASA are relative to the period 1951-1980 but one can also calculate the anomalies compared to the period 1880-1899 when the emissions of anthropogenic greenhouse gases had not yet deeply modified the climate. Compared to the period 1880-1899, the anomaly was + 1.19°C in February 2019. At COP21 in Paris, it was planned to contain warming below 2°C, or 1.5°C if possible. This last level was exceeded in February 2016 with + 1.6°C.
Source: NASA, global-climat.

Source: NASA

…sans oublier la Courbe de Keeling qui montre des concentrations de CO2 en hausse permanente dans l’atmosphère, avec 414 ppm à l’heure actuelle, ce qui est considérable et inquiétant pour le climat de la Terre.

Source: Scripps Institution of Oceanography

El Niño : le retour ! // El Niño is back !

D’après la NOAA, le phénomène El Niño vient de faire officiellement sa réapparition dans le Pacifique tropical. Les prévisionnistes s’attendent à ce qu’il persiste au printemps. Toutefois, en raison de la faiblesse attendue du phénomène, les impacts globaux devraient être limités.

Depuis septembre 2018, les températures de surface de la mer étaient au-dessus du seuil El Niño mais il fallait la preuve du couplage avec l’atmosphère pour que le phénomène soit officiellement reconnu.

Avec +0,6°C, le réchauffement de la surface dans la région Pacifique de Niño3.4 est actuellement juste au-dessus du seuil d’El Niño (+0,5°C). La plupart des modèles climatiques prévoient que l’anomalie de température de surface augmentera légèrement dans un proche avenir et restera au-dessus du seuil d’El Niño jusqu’au printemps.

Il est intéressant de rappeler comment se forme le phénomène El Niño. Les vents soufflant normalement d’est en ouest, cela entraîne une accumulation d’eau chaude dans le Pacifique occidental. Un affaiblissement de ces vents entraîne la couche superficielle vers l’est et potentiellement la propagation d’une onde océanique de Kelvin. Il s’agit d’une vague sous-marine qui afflue vers les côtes américaines. Les coups de vents dans la zone équatoriale exercent une pression sur la surface de la mer, agissant ainsi à la fois sur le niveau de la mer et sur la profondeur de la thermocline (La thermocline est la différence de température entre deux zones d’eau de mer contiguës, l’eau plus chaude se trouvant en surface, l’eau froide en profondeur). Ce déplacement entraîne une poussée de l’onde de Kelvin vers le bas (« downwelling Kelvin wave » en anglais) alors que l’onde se dirige vers l’est. Ainsi, il est plus difficile pour les eaux plus froides et plus profondes d’influencer la surface.

Depuis le début du mois de janvier 2019, une « downwelling Kelvin wave » a accru les anomalies sous la surface de l’océan vers le centre et l’est du Pacifique. Le phénomène sera donc intéressant à suivre au cours des prochaines semaines, car il pourrait fournir des eaux plus chaudes en surface.

Comme indiqué plus haut, les modèles de la NOAA annoncent un épisode El Niño faible. D’autres organismes comme le National Center for Environmental Prediction (NCEP) sont moins optimistes et prévoient une hausse supérieure à 1°C dans la région Niño 3.4.  .

Ce retour d’El Niño n’est pas vraiment une bonne nouvelle. Le phénomène est souvent le signe d’étés plus chauds et de faibles précipitations en Europe. Certains climatologues affirment déjà que 2019 sera l’année la plus chaude de l’histoire. Au vu des températures anormalement douces de ce mois de février en France, il se pourrait bien que de nouveaux records de chaleur soient battus. Sale temps pour les glaciers des Alpes !

Source : NOAA, global-climat.

————————————————-

According to NOAA, the El Niño phenomenon has officially re-emerged in the tropical Pacific. Climatologists think it will persist in the spring. However, due to the expected weakness of the phenomenon, the overall impacts should be limited.
Since September 2018, sea surface temperatures have been above the El Niño threshold but it was necessary to prove the coupling with the atmosphere for the phenomenon to be officially recognized.
At + 0.6°C, surface warming in the Pacific region of Niño3.4 is currently just above the El Niño threshold (+ 0.5°C). Most climate models predict that the surface temperature anomaly will increase slightly in the near future and remain above the El Niño threshold until spring.
It is interesting to recall how the El Niño phenomenon is formed. Winds are normally blowing from east to west, resulting in hot water accumulation in the western Pacific. A weakening of these winds transfers the surface layer to the east and potentially causes the propagation of an ocean Kelvin wave. This is a submarine wave that is flowing to the American coast. Wind gusts in the equatorial zone exert pressure on the sea surface, thus acting on both the sea level and the depth of the thermocline (The thermocline is the temperature difference between two contiguous sea water zones, with warmer water on the surface and deep cold water). This displacement causes a downwelling Kelvin wave as the wave moves eastward. Thus, it is more difficult for colder and deeper waters to influence the surface.
Since the beginning of January 2019, a downwelling Kelvin wave has increased anomalies below the ocean surface towards the central and eastern Pacific. It will be interesting to observe the phenomenon in the coming weeks as it could provide warmer surface water.
As noted above, the NOAA models predict a weak El Niño episode. Other organizations such as the National Center for Environmental Prediction (NCEP) are less optimistic and expect an increase of more than 1°C in the Niño 3.4 region. .
The return of El Niño is not really good news. The phenomenon is often a sign of warmer summers and low rainfall in Europe. Some climate scientists are already saying that 2019 will be the hottest year ever. In view of abnormally mild temperatures this February in France, new heat records may be beaten. This is not good news for the glaciers in the Alps!
Source: NOAA, global-climat.

Localisation des différentes régions El Niño dans le Pacifique (Source : NOAA)

Prévisions des modèles pour les températures de surface de la mer dans la région Nino3.4. (Source : NCEP, NOAA)