‘Vog’ réunionnais

L’Observatoire Volcanologique du Piton de la Fournaise a publié le 12 mai 2021 des images de la région du volcan recouverte d’une nappe de brouillard d’où émergeait le Dolomieu. Ce phénomène n’est pas exceptionnel sur le volcan où il a déjà été observé à plusieurs reprises. Les Hawaiiens le connaissent bien et ce brouillard volcanique a été baptisé vog, un condensé de volcanic fog. Il était fréquent lors de la dernière éruption du Kilauea. Au moment des intempéries, il provoquait des pluies acides qui posaient des problèmes aux horticulteurs. En effet, le gaz qui forme ce brouillard est majoritairement du dioxyde de soufre qui, même dilué dans l’air, peut aussi provoquer des irritations des muqueuses, de la peau et des voies respiratoires supérieures. Il est donc conseillé aux personnes vulnérables comme les enfants en bas âge, les femmes enceintes ou encore les personnes souffrant de difficultés respiratoires d’éviter la zone où ce brouillard est présent. A la Réunion, il était recommandé d’éviter la Route des Laves car le panache de gaz descendait vers la mer, emporté par une brise de terre.

Source : Réunion la 1ère.

Crédit photo : OVPF

Eruption islandaise: Attention aux gaz volcaniques ! // Icelandic eruption: Beware of volcanic gases !

Une nouvelle voie d’accès plus courte et plus sure vient d’être mise en place pour permettre aux curieux d’atteindre le site éruptif dans la Geldingadalur sur la péninsule de Reykjanes. Le nouveau parcours dure environ une heure et demie pour des randonneurs bien préparés. Il mesure 3,5 km dans chaque sens, 7 km aller-retour.

Comme je l’ai déjà écrit, le site de l’éruption a été fermé aux visiteurs en raison des fortes concentrations de gaz volcaniques. Selon un scientifique du Met Office, si les gaz s’accumulent à la surface du sol autour de vous, et si vous vous penchez pour relacer vos chaussures, ces gaz lourds peuvent vous faire perdre connaissance. Selon le Met Office islandais, la diminution du vent de sud-ouest le 23 mars 2021 a entraîné une chute de la qualité de l’air près du site éruptif avec une concentration de SO2 supérieure à 9000 µg / m3. Le gaz peut s’accumuler dans les points bas. Il est conseillé de quitter la zone avant 17h00 et de rester à l’écart des dépressions de terrain. La concentration de SO2 dans l’atmosphère peut devenir une menace pour la santé si elle dépasse 350 µg / m3. Le cratère proprement dit est dans une dépression et lorsque le vent ne permet pas aux gaz volcaniques de s’évacuer, ils s’accumulent sur le site de l’éruption, créant une situation potentiellement très dangereuse.

Les visiteurs ne doivent pas entrer sur le nouveau champ de lave. Outre les gaz, la lave peuvent présenter un autre danger. Les coulées ne sont pas particulièrement rapides mais elles peuvent être imprévisibles et leur direction peut changer soudainement. L’accumulation de lave autour du cône éruptif le rend particulièrement instable. Une partie de l’hornito s’est effondrée il y a quelques jours, laissant échapper une volumineuse coulée e lave. sur ses flancs.

Source: Iceland Review.

Dernière minute : Le site éruptif est de nouveau ouvert au public. Distanciation sociale demandée car de nouveaux cas de Covid-19 sont apparus ces dernières heures. Une agence de voyage organise des excursions vers l’éruption depuis Reykjavik avec départ à 16, heures et retour à 23 heures (4990 couronnes; environ 35 euros AR) .

————————————————–

A new, shorter and safer hiking path can now be used by visitors to reach the eruption site in Geldingadalur on the Reykjanes Peninsula. The new hike takes about an hour and a half for well-prepared hikers, the route is 3.5km each way, 7 km in total.

As I put it before, the eruption site was closed to visitors because of high concentrations of volcanic gases. According to a Met Office expert, if the heavy gasses have gathered on the ground around you, even stooping down to tie your shoelace could be enough to fall unconscious. According to a statement from the Icelandic Meteorological Office, decreasing southwesterly wind on Marh 23rd, 2021 caused unhealthy air quality near the eruption site with SO2 concentration over 9000 µg/m3. The gas may gather in valleys and depressions in the landscape. It is advised to leave the area before 17:00 and keep away from valleys and depressions. It should be noted that the amount SO2 in the atmosphere can start to threaten health if it goes over 350 µg/m3. The crater itself is in a depression and when the wind is not constantly blowing the gases away from the eruption, they gather there, creating a life-threatening situation. As a consequence, visitors should NOT walk on the new lava.

Beside the gases, the lava flows can be another danger. They are not particularly fast but they can be unpredictable and their direction can change suddenly. The buildup of cooled lava around the crater is high and unstable. Part of it collapsed a few days ago, with a huge flow travelling down its flanks.

Source: Iceland Review.

Last minute : The eruptive site is again open to the public. Sanitary measures should be respected because new Covid-19 cases have appeared in the last hours. A travel agency organises trips to the eruption from Reykjavik. Departure at 4 pm. Return at 11 pm. Price: 4990 crowns; about 35 euros).

Tracé de la nouvelle voie d’accès au site éruptif (Source : Iceland Review)

L’éruption de 1783 du Laki (Islande) dans les archives paroissiales

Le 8 juin 1783, une fissure de 27 kilomètres de long déchire le paysage islandais. C’est le point de départ d’une éruption qui durera jusqu’au 7 février 1784. Elle a produit 14,7 kilomètres cubes de lave qui ont recouvert une superficie de 599 kilomètres carrés. La fissure est ponctuée de quelque 140 cratères, évents et de cônes orientés dans une direction SO-NE, celle du rift qui tranche l’Islande dans son ensemble.

Cette lave a menacé de nombreux Islandais, leurs animaux et leurs biens. L’éruption a produit de grandes quantités de gaz et de cendres. Ces dernières, très riches en fluor, ont empoisonné les champs, les prairies et les étangs. 50 % des bovins, 79 % des ovins et 76 % des chevaux ont péri entre 1783 et 1785.

L’éruption a également profondément affecté la vie de la population, avec la famine de la brume, ou Móðuharðindin. Le régime alimentaire islandais de l’époque était principalement basé sur la viande et le poisson, de sorte que les retombées de cette éruption ont été catastrophiques. En 1785, environ 20 % de la population islandaise était morte de faim, de malnutrition ou de maladie.

Cette éruption est remarquable par ses impacts bien au-delà de l’Islande. Les gaz – surtout le dioxyde de soufre (SO2) – ont été transportés en Europe par le jet-stream et le SO2 est apparu sous la forme d’un brouillard sec à odeur de soufre. Les populations en Europe ignoraient qu’une éruption volcanique s’était produite en Islande au même moment et que c’était cet événement qui causait ce brouillard sec inhabituel. Une autre caractéristique de l’été 1783 a été la coloration  rouge sang du ciel au coucher et au lever du soleil.

Par sa durée, le brouillard sec a pu avoir des effets négatifs sur la végétation et la santé humaine en Europe continentale. Plusieurs plantes se sont fanées, les feuilles ont changé de couleur et certains arbres ont perdu leurs feuilles. Le brouillard sec a frappé plus durement les personnes souffrant de problèmes respiratoires ou cardiaques préexistants. Dans plusieurs régions, les gens se sont plaints de douleurs aux yeux.

Différentes explications ont été données par la population pour expliquer le temps inhabituel de 1783. La plus populaire pour justifier la présence du brouillard sec tournait autour des nombreux séismes qui ont semblé se produire tout au long de l’année : En février et mars 1783, une séquence de cinq très forts tremblements de terre a secoué la Sicile et la Calabre, faisant environ 30 000 victimes. D’autres séismes se sont produits pendant l’été. Ainsi, le 6 juillet, un tremblement de terre a secoué une partie de la France et a été ressenti en Franche-Comté, dans le Jura, en Bourgogne et à Genève. Il n’a pas fait beaucoup de dégâts, mais il s’est produit alors que le brouillard sec était encore dense et étendu.

Ces rapports de séismes ont donné foi à l’idée d’une  «  révolution souterraine  » reliant entre eux les  événements en Islande et en Calabre. On croyait que les volcans du monde entier étaient reliés par des canaux souterrains. On a également rapporté qu’un brouillard sec s’était formé juste avant le premier séisme en Calabre, faisant craindre que ce brouillard sec ne soit qu’un présage pour un grand tremblement de terre à venir.

Un fidèle lecteur de mon blog – que je remercie très sincèrement – vient de me faire parvenir plusieurs pages des archives paroissiales du village de Canet (Aude) où il est fait allusion à cette période tourmentée de 1783 -1784. En voici un extrait :

« Il a paru dans les jours de cette année un phénomène aussi rare qu’inexplicable ; il a excité la curiosité des savants et des plus habiles astronomes dans les villes les mieux instruites ; mais c’est en vain qu’on a cherché à deviner l’énigme. Le temps seul nous l’a appris et jusqu’à ce moment, le peuple a été dans la frayeur sur un événement qui paraissait (…..) des plus grands malheurs ! Voici le fait :

Le soleil, tant à son lever qu’à son coucher parut comme obscurci, la terre était alors couverte comme d’une fumée qui empêchait les personnes de pouvoir se connaître à vingt pas, quelquefois même il était impossible de s’apercevoir. Cet état durait jusque sur les sept heures du matin, le soleil reprenait alors la clarté naturelle et les nuages qui couvraient toute la terre se dissipaient. Vers les cinq heures du soir les mêmes nuages réapparaissaient, le soleil s’obscurcissait et disparaissait ainsi de notre hémisphère. Ce n’était que quelques heures après que le soleil s’était couché que les nuages disparaissaient aussi. Ce phénomène dura jusque vers la fin du mois d’août sans qu’on peut découvrir ce qu’il pouvait nous annoncer. Chacun se livrait à des conjonctures, les uns voulaient que ce fut le pronostic de quelques maladies contagieuses que nous aurions dans le pays, les autres prétendirent que nous aurions quelque fort tremblement de terre. D’autres enfin moins craintifs disaient que c’était la faute du tremblement de terre qui était arrivé il n’y avait pas longtemps à Messine. Ce tremblement fut si fort que toute la ville de Messine à l’exception d’un couvent de Cap(?) fut engloutie et les habitants par conséquent ensevelis dans les ruines. Il y a des maisons de campagne assez près de cette malheureuse ville qui furent transportées à quelques distances de leur sol. Les rivières changèrent de lit et il n’y eut que très peu d’habitants qui à la première secousse arrivèrent à courir dans les champs qui furent sauvés. »

On retrouve dans ces écrits paroissiaux du sud de la France nombre d’événements mentionnés par les historiens qui ont étudié l’époque autour l’éruption islandaise du Laki, en particulier la référence aux séismes qui se sont produits en Calabre et en Sicile.

Mesure du dioxyde de soufre (SO2) en milieu volcanique // Measurement of sulphur dioxide (SO2) in volcanic environments

Le dioxyde de soufre (SO2) est l’un des principaux gaz émis par les volcans. L’éruption de la Lower East Rift Zone (LERZ) du Kilauea en 2018 a libéré d’énormes quantités de SO2 et tout l’archipel hawaïen a parfois été envahi par le brouillard volcanique, appelé localement vog. Aujourd’hui, avec l’éruption dans l’Halema’uma’u, les panaches de SO2 sont emportés par les alizés et ils perturbent la vie de la population dans les zones sous le vent. Il est donc important de savoir quelle quantité de ce gaz est émise pour comprendre les conséquences pour la santé humaine.

J’ai écrit une note sur les émissions de SO2 le 31 mai 2020. Les scientifiques du HVO donnent aujourd’hui plus de détails sur la technique de mesure de ce gaz.

Pour mesurer les émissions de SO2, les scientifiques du HVO commencent par monter un spectromètre ultraviolet (UV) sur la carrosserie d’une voiture ou la carlingue d’un avion. Dans la mesure où le SO2 est invisible et peut ne pas coïncider parfaitement avec les parties visibles du panache éruptif, ils déterminent l’endroit où le SO2 est susceptible de se trouver en fonction de la direction du vent.

Puis, en partant du ciel clair d’un côté du panache, ils balayent toute la largeur inférieure du panache et retrouvent le ciel clair de l’autre côté. Le spectromètre est d’abord orienté vers le ciel et, comme le SO2 absorbe les rayons UV, l’appareil détecte ensuite une quantité d’UV moins importante lorsqu’il se trouve sous le panache de gaz contenant du SO2. Le spectromètre mesure la quantité de SO2 qui se trouve au-dessus de lui dans une trajectoire verticale ; c’est la « longueur de trajet de concentration. » (concentration-path-length).

Cette longueur de trajet de concentration associe la concentration et le trajet en une seule unité, ppm ∙ m (parties par million par mètre). Un panache de 1 mètre d’épaisseur avec une concentration de 10 ppm de SO2 équivaut à 10 ppm ∙ m. Il en va de même pour un panache de 10 mètres d’épaisseur avec une concentration de seulement 1 ppm de SO2. La quantité de SO2 est la même, elle est simplement distribuée différemment.

Toutes ces mesures mises ensemble sur la largeur du panache fournissent des indications sur une section transversale de ce même panache et montrent quelle quantité de SO2 se trouvait au-dessus du spectromètre en chaque point de mesure. Cette section transversale qui incorpore la largeur du panache en mètres, permet de connaître la surface de gaz dans cette zone, avec des unités de ppm ∙ m2 (parties par million par mètre carré).

Une fois que les scientifiques ont calculé cette section transversale, ils utilisent la vitesse du panache (en mètres / seconde) pour déterminer le nombre de sections transversales – mais aussi la quantité de gaz – dans un certain laps de temps. Cela conduit à des unités de ppm ∙ m3 / s (parties par million par mètre cube par seconde), autrement dit un volume de gaz émis avec une certaine concentration de SO2 par seconde.

Dans la mesure où on sait combien pèse une molécule de SO2, on peut convertir ce volume en masse (en kilogrammes ou en tonnes), et on peut convertir les secondes en jours. C’est ainsi que procèdent les scientifiques pour déterminer les flux de SO2 qui sont généralement exprimés en tonnes / jour (t / j). Grâce aux résultats obtenus, les scientifiques du HVO peuvent comparer les émissions de SO2 de l’éruption actuelle avec celles des éruptions précédentes du Kilauea.

Ainsi, lorsque le HVO a commencé à utiliser des mesures UV en 1979, les émissions de SO2 au sommet du volcan atteignaient en moyenne 500 t / j ou moins. Entre 1983 et 2008, l’éruption du Pu’uO’o émettait en moyenne 2000 t / j. Après des émissions relativement élevées au début de l’éruption sommitale de 2008-2018, les émissions du lac de lave se sont stabilisées à près de 5 000 t / j tandis que les émissions du Pu’uO’o chutaient  à quelques centaines de t / j.

L’éruption de 2018 a eu des émissions très élevées, avec près de 200 000 t / j ; ce sont les émissions les plus élevées jamais enregistrées sur le Kilauea.

Après l’éruption de 2018, les émissions de SO2 du Kilauea ont chuté à une trentaine de tonnes par jour.

Au début de la nouvelle éruption en décembre 2020, les émissions de SO2 au sommet du Kilauea étaient de 30 000 à 40 000 t / j. Les services sanitaires ont mis en garde le public sur la mauvaise qualité de l’air et ses dangers pour la santé.

Après l’arrêt de l’activité dans la fissure nord de l’Halema’uma’u le 26 décembre 2020, les émissions de SO2 ont progressivement baissé pour atteindre environ 2500 t / j le 11 janvier 2021, signe que l’activité éruptive diminuait..

Source: USGS / HVO.

———————————————-

Sulphur dioxide (SO2) is one of the main gases emitted by volcanoes. Kilauea’s Lower East Rift Zone (LERZ) eruption in 2018 released huge amounts of sulphur dioxide and the whole Hawaiian archipelago was sometimes invaded by the volcanic fog, or vog. Today, during the Halema’uma’u eruption, SO2 plumes are pushed by the trade winds and disturb life in downwind areas. So, it is important to know how much of this gas is emitted for understanding implications for human health during volcanic eruptions.

I wrote a post about SO2 emissions on May 31st, 2020. In a new article, HVO scientists give more details about how to measure this gas.

To measure SO2 emission rates, HVO scientists begin by mounting an ultraviolet (UV) spectrometer to a car or an aircraft. Since SO2 is invisible and may not perfectly coincide with visible parts of the plume, they determine where the SO2 should be based on wind direction.

Then, starting under clear sky on one side of the plume, they traverse underneath the entire width of the plume, and end up back under clear sky on the other side.

The spectrometer looks up at the sky and, because SO2 absorbs UV radiation, it detects less incoming UV when it is under the gas plume where there is SO2. It measures how much SO2 is above it in the vertical ‘path’ where the spectrometer is looking – the ‘concentration-path-length’.

Concentration-path-length combines concentration and path into a single unit, ppm∙m (parts per million meters). A 1-metre-thick plume with a concentration of 10 ppm (parts per million) of SO2 is equivalent to 10 ppm∙m. So is a 10-metre-thick plume with a concentration of only 1 ppm of SO2. The amount of SO2 is the same, it is just distributed differently.

All those concentration-path-length measurements put together across the plume’s width make a ‘slice’, or cross-section, through the plume, showing how much SO2 was above the spectrometer at each point. That slice, since it incorporates the plume width in metres, is the area of the gas in a cross-section of plume, with units of ppm∙m2 (parts per million square metres).

Once the scientists have that cross-section, they use plume speed (in metres/second) to determine how many of those cross-sections – and how much gas – are passing overhead in a certain amount of time. That brings them to units of ppm∙m3/s (parts per million cubic metres per second)—which is a volume of gas with a certain concentration of SO2 each second.

Because one knows how much a molecule of SO2 weighs, one can convert that volume into a mass (in kilograms or tonnes), and one can convert seconds to days. That is how scientists derive the emission rates of SO2, which are usually presented in units of tonnes/day (t/d).

With the results they obtain, HVO scientists are able to compare SO2 emission rates from the current eruption to those emitted by previous Kilauea eruptions.

When HVO began to use UV measurements in 1979, the summit averaged about 500 t/d of SO2 or less. Between 1983 and 2008, Kilauea’s Pu’uO’o eruption averaged around 2,000 t/d. After higher emission rates early in the 2008–2018 summit eruption, the lava lake emissions stabilized near 5,000 t/d while Pu’uO’o’s emissions fell to a few hundred t/d.

The 2018 eruption had very high emission rates of nearly 200,000 t/d, the highest recorded emissions from Kilauea. Following the 2018 activity, Kilauea emissions dropped to only about 30 t/d.

At the beginning of the new eruption in December 2020, Kilauea summit emission rates were 30,000–40,000 t/d. The Department of Health warned the public of potential hazardous, poor air quality. It advised residents and visitors to be prepared and aware of the surrounding conditions. Since the north fissure activity ceased on December 26, 2020, SO2 emissions have progressively dropped and reached about 2,500 t/d on January 11th, 2021, a sign that the eruption rate has decreased.

Source : USGS / HVO.

 

Panaches de gaz sur le Kilauea (Photos : C. Grandpey)