Halema’uma’u (Hawaii): Résultats de l’analyse de l’eau // Results of water analysis

Comme prévu, le HVO a récemment échantillonné l’eau du lac qui est apparu au fond du cratère de l’Halema’uma’u, au sommet de Kilauea. Le niveau de cette eau a augmenté d’environ 90 centimètres par semaine depuis sa première apparition le 25 juillet 2019. Jusqu’à présent, le HVO ne pouvait qu’évaluer à distance la taille du lac, observer sa couleur et estimer sa température. En voyant la lac s’agrandir, le HVO a décidé d’élaborer une stratégie pour échantillonner son eau. En effet, la chimie du lac est une bonne indication de la provenance de l’eau, de son influence possible sur le dégazage et donc des risques potentiels au sommet du Kilauea.
Il a été décidé qu’un drone serait la meilleure solution pour l’échantillonnage. Le 26 octobre, un engin a prélevé avec succès 0,73 litre d’eau du lac. L’échantillon a ensuite été envoyé à des laboratoires sur le continent pour des analyses exhaustives.
Les résultats obtenus jusqu’à maintenant indiquent que l’eau est acide, avec un pH de 4,2 (le pH neutre est de 7). Il est intéressant de noter que la plupart des lacs de cratères ont un pH inférieur à 3,5 (plus acide) ou supérieur à 5 (moins acide), ce qui place le lac de l’Halema’uma’u dans la moyenne.
Une modélisation mathématique effectuée avant l’apparition du lac indiquait que l’eau de la nappe phréatique était susceptible de pénétrer dans le cratère de l’Halema’uma’u une fois que l’environnement se serait suffisamment refroidi, après la disparition du lac de lave qui avait séjourné dans le cratère entre 2008 et 2018. Il n’est donc pas surprenant de voir de l’eau appraître dans le cratère.
Cependant, il est important de noter que l’Halema’uma’u est l’endroit où les émissions sommitales de dioxyde de soufre (SO2) sont les plus importantes, et que le SO2 se dissout facilement dans l’eau.
Lorsque l’eau souterraine s’écoule en direction du cratère en cours de refroidissement, elle dissout le SO2 provenant du magma situé en dessous. Cela conduit à des concentrations élevées d’ions sulfate dans le lac (53 000 milligrammes par litre) et à un pH plus acide.
A côté de cela, cette eau acide réagit chimiquement avec le basalte du Kilauea, ce qui diminue son acidité et augmente donc son pH. On observe aussi des concentrations élevées de magnésium dans l’eau. Les rapports magnésium / sodium et sodium / potassium dans l’eau du lac sont semblables à ceux du basalte du Kilauea, confirmation des réactions chimiques entre l’eau et la roche.
Les concentrations de calcium ne sont pas très élevées dans l’échantillon d’eau prélevé. Cela s’explique par le fait que le calcium se combine avec des ions sulfate pour former des minéraux solides qui précipitent dans l’eau. Le fer est également susceptible de former divers minéraux, ce qui explique les teintes jaunâtres du lac.
Les réactions complexes entre les gaz et les roches environnantes expliquent pourquoi l’eau du lac dans l’Halema’uma’u est chimiquement différente de la nappe phréatique au fond d’un puits de recherche situé au sud de Halema’uma’u et aussi de l’eau de pluie. Les tests effectués sur l’oxygène et l’hydrogène qui forment les molécules d’eau révèlent que l’eau du lac était à l’origine une eau de pluie qui a percolé dans le sous-sol où sa chimie a évolué.
Le niveau du lac au fond de l’Halema’uma’u continue à s’élever. Le pH actuel reflète un équilibre entre les eaux souterraines qui y pénètrent et le niveau des émissions de SO2 en provenance du sous-sol. Si le niveau du lac se stabilise ou si la quantité de SO2 change, le pH est susceptible de se modifier. Sur le Pinatubo aux Philippines, après l’éruption de 1991, un lac de cratère s’est formé avec un pH presque neutre, mais l’eau est devenue plus acide quand le dégazage de SO2 s’est intensifié, avec l’apparition d’une activité volcanique ultérieure.
Les analyses chimiques confirment que le lac au fond du cratère de l’Halema’uma’u dissout le SO2 d’origine magmatique. Cela signifie que les niveaux d’émission de SO2 mesurés par le HVO (environ 30 tonnes par jour) sous-estiment le SO2 émis globalement par le Kilauea. Sans le lac, les émissions de SO2 au sommet du volcan seraient probablement plus élevées. Cette découverte est importante car un niveau d’émission de SO2 en hausse peut indiquer la présence de magma à faible profondeur.  .
Source: HVO.

———————————————

As expected, HVO recently sampled the Halema‘uma‘u water lake at the bottom of Kilauea’s summit crater. The water has risen about 90 centimetres per week since first spotted on July 25th, 2019. Initially, HVO was limited to remote observations of lake size, colour, and surface temperature. As the lake grew, HVO began formulating a plan to sample the water. Indeed, the lake’s chemistry could reveal where the water was coming from and what it might mean for degassing and potential hazards at Kilauea’s summit.

It was decided that a UAS was the best option for sampling. On October 26th, a drone successfully collected about 0.73 litres of water from the lake. The sample was then shipped to mainland USGS laboratories for sophisticated analyses.

Results thus far indicate an acidic lake, with a pH of 4.2 (neutral is pH 7). Interestingly, most volcanic crater lakes have a pH of less than 3.5 (more acidic) or higher than 5 (less acidic), which places the Halema’uma’u lake in the midddle range.

Mathematical modelling performed prior to the lake’s appearance predicted that groundwater could flow into Halema‘uma‘u once the area had cooled enough after the 2008-18 lava lake drained away. So, it was not entirely a surprise when water began to pond in the crater.

But, it’s important to note that Halema‘uma‘u is where most summit sulfur dioxide (SO2) degassing takes place, and that SO2 dissolves readily in water.

As water flows underground toward the now-cooling crater, it dissolves SO2 rising from magma below. This leads to high concentrations of sulfate ions in the lake (53,000 milligrams per liter) and a tendency towards a more acidic pH.

However, that acidic water reacts chemically with Kilauea’s basaltic rock, which makes the lake less acidic (raises the pH) and results in high concentrations of magnesium in the water. The ratios of magnesium to sodium and of sodium to potassium in the lake water are similar to those ratios in Kilauea’s basalt, which is further evidence of chemical reactions between the water and rocks.

Calcium concentrations are not very high in the water sample; calcium is instead combining with sulfate ions to form solid minerals that precipitate from the water. Iron is also likely forming various minerals, contributing to the lake’s yellowish colours.

Complex gas/rock reactions result in Kilauea’s lake water being chemically different from groundwater in a research well south of Halema‘uma‘u and from rainwater. Testing of oxygen and hydrogen that form the water molecules indicate that the lake water was originally rain that percolated into the subsurface where it became groundwater and the chemistry changed.

The Halema’uma’u lake is still rising. The current pH reflects the balance between incoming groundwater and the degree of SO2 degassing from below. If the lake level stabilizes, or the amount of SO2 changes, the pH may also change. At Mount Pinatubo (Philippines), after the 1991 eruption, a crater lake formed with a nearly-neutral pH but became more acidic with increased SO2 degassing and later volcanic activity.

Chemical analyses confirm that the Halema’uma’u crater lake dissolves magmatic SO2. This implies that HVO’s measured SO2 emission rates (about 30 tonnes per day) underestimate the total outgassed SO2 at Kilauea. Without the lake, SO2 emissions from the summit would likely be higher. This finding is important given that an increasing SO2 emission rate can indicate shallowing magma.

Source : HVO.

Le lac acide au fond du cratère de l’Halema’uma’u (Crédit photo: HVO)

Du “vog” sur l’île de la Réunion

L’éruption du Piton de la Fournaise est terminée, mais elle a laissé derrière elle une enveloppe de brouillard volcanique que les Hawaiiens ont baptisé « vog », le condensé de « volcanic fog », autrement dit brouillard volcanique. A Hawaii, avant que se termine l’éruption du Kilauea en août 2018, ce brouillard a posé des problèmes aux horticulteurs  car le gaz qu’il véhicule est en grande partie de dioxyde de soufre (SO2). Se mêlant à la pluie, il devient de l’acide sulfurique et donne naissance à des pluies acides qui abîment les récoltes. S’il persiste, le vog peut également devenir un problème pour les personnes souffrant de problèmes respiratoires.

A la Réunion, le vog n’a pas vraiment d’impact sur la vie de l’île. Les météorologues n’enregistrent rien de significatif. De plus, le phénomène ne devrait persister que quelques dizaines d’heures. Pour le moment, le gaz émanant de l’éruption reste piégé sous un couvercle nuageux qui persiste sur toute la zone sud de l’île. Le vog se dispersera avec le retour de la pluie et du vent qui nettoiera l’atmosphère.

Côté circulation, la réouverture totale de la RN2 s’est effectuée dans les deux sens le 27 octobre dans la soirée. Les gendarmes ont toutefois maintenu une surveillance de la route au niveau de la coulée en raison de la forte affluence.

Source de vog à Hawaii (Photo: C. Grandpey)

Le Raikoke (Russie) provoque de beaux levers de soleil dans le Colorado // Raikoke Volcano (Russia) causes nice sunrises in Colorado

Au cours des dernières semaines, les habitants du Colorado ont pu observer de beaux levers de soleil pourprés tout à fait inhabituels. Leur cause se trouve à plusieurs milliers de kilomètres de cet Etat. Des chercheurs de l’Université de Boulder ont recueilli des preuves indiquant que le volcan Raikoke, qui est entré en éruption dans les îles Kouriles en juin dernier, a envoyé dans l’atmosphère un épais panache de cendres et de gaz volcaniques. Les satellites de la NASA ont observé l’éruption et envoyé des images impressionnantes du panache éruptif (voir ci-dessous). Grâce à un ballon à haute altitude, les chercheurs de Boulder ont pu détecter des aérosols – principalement du SO2, selon la NASA – qui ont diffusé la lumière du soleil. Combinés à la couche d’ozone qui absorbe la lumière, les aérosols peuvent apporter une belle nuance de violet aux couchers et aux levers de soleil.
L’éruption du Raikoke a été relativement modeste (voir mes notes des 22 et 26 juin 2019), mais suffisante pour affecter la majeure partie de l’hémisphère nord. Selon les chercheurs de l’Université de Boulder, le dernier phénomène similaire observé dans le Colorado s’est produit en 1991, lors de l’éruption du Pinatubo aux Philippines.
Source: The Denver Channel.

———————————–

Over the past few weeks, people in Colorado could notice unusually purple sunrises. The cause might be a few thousand miles away.Researchers at Boulder University have collected evidence that points to Raikoke, a volcano located on the Kuril Islands that erupted in June, sending a thick plume of ash and volcanic gases into the atmosphere. NASA satellites observed the eruption, capturing impressive images of the smoke plume (see below). Thanks to a high-altitude balloon, Boulder researchers could detect aerosols – mostly SO2, according to NASA – which scatter sunlight as they pass through the air.Combined with the ozone layer absorbing light, the aerosols can produce a shade of purple in sunrises and sunsets.
The eruption of Raikoke was relatively small (see my posts of 22 and 26 June 2019), but it was enough to impact most of the northern hemisphere. According to Boulder University researchers, the last similar phenomenon observed in Colorado happened in 1991, when Mount Pinatubo erupted in the Philippines.
Source: The Denver Channel.

L’éruption du Raikoke vue depuis l’espace (Source: NASA)

Quelques nouvelles d’Hawaii // Some news from Hawaii

L’éruption a été déclarée définitivement terminée par le HVO et tout est actuellement calme sur le Kilauea. Il n’y a aucune lave active sur la Grande Ile d’Hawaii. Aucun changement majeur n’a été observé sur le Pu’uO’o. Un récent survol en hélicoptère a permis de constater que la morphologie du cratère vide se modifie lentement suite à des effondrements de ses parois. Le magma a quitté le Pu’uO’o le 30 avril 2018 et a fait surface quelques jours plus tard dans la Lower East Rift Zone. Après cette évacuation de la lave, le cratère présentait une profondeur d’environ 356 mètres. Des matériaux provenant d’effondrements des parois du cratère ont, depuis cette époque, recouvert son plancher qui se trouve aujourd’hui à 286 mètres de profondeur.

Un modèle 3D du cratère du Pu’uO’o a été réalisé à partir d’images thermiques obtenues lors du récent survol. Les zones blanches montrent les points chauds dans le cratère. La forme du cratère continue de changer suite à de petits effondrements qui se produisent de temps à autre. Une station GPS sur le flanc nord du Pu’uO’o montre un affaissement constant de la lèvre du cratère. Ce mouvement est dû au glissement du rebord instable du cône.
Voici une courte vidéo du survol:
https://volcanoes.usgs.gov/observatories/hvo/multimedia_uploads/multimediaFile-2662.mp4

Dans ses dernières mises à jour, le HVO indique que les paramètres relatifs à la déformation du sol sont à mettre en relation avec le remplissage du réservoir magmatique profond du Kilauea. Les émissions de SO2 dans l’East Rift Zone et au sommet du Kilauea restent faibles.
Source: USGS / HVO.

——————————————–

With the eruption definitely declared over by HVO, everything is currently quiet on Kilauea Volcano. There is currently no active lava to be seen on the Big Island. No major changes have been observed at Pu’uO’o. A recent helicopter overflight allowed to see that the empty crater is slowly being altered by small rockfalls within it. Magma drained from beneath Pu’uO’o on April 30th, 2018 and erupted a few days later in the lower East Rift Zone. After the magma drained, the crater was roughly 356 metres deep. Collapses on the crater walls have since filled the deepest part of the crater with rockfall debris. Today, the deepest portion of the crater is 286 metres.

A 3D model of the Pu’uO’o crater was constructed from thermal images taken during the recent overflight. White areas show warm spots in the crater. The shape of the crater continues to change through occasional small collapses. A GPS station on the north flank of Pu’uO’o has been showing steady slumping of the craters edge. This motion is due to the sliding of the unstable edge of the cone.

Here is a short video of the overflight:

https://volcanoes.usgs.gov/observatories/hvo/multimedia_uploads/multimediaFile-2662.mp4

In its latest updates, HVO indicated that deformation signals are consistent with the refilling of Kilauea Volcano’s deep East Rift Zone magma reservoir. SO2 emission rates on the East Rift Zone and at Kilauea’s summit remain low.

Source: USGS / HVO.

Voici deux images montrant le cratère du Pu’uO’o le 11 mai 2018 et le 18 mars 2019. On se rend parfaitement compte de la remontée du plancher suite aux effondrements des parois du cratère.

  (Source : USGS / HVO)

Conséquences sanitaires de l’éruption du Kilauea dans les Leilani Estates // Health impacts of the Kilauea eruption in the Leilani Estates

Plusieurs semaines après la fin de l’éruption du Kilauea et la destruction de 716 structures dans la Lower East Rift Zone, les personnes dont la maison avait été épargnée par la lave ont été autorisées à regagner leur domicile le 8 septembre 2018. Certains des habitants subissent encore aujourd’hui les effets des polluants atmosphériques car des nuages ​​de vapeur continuent de s’échapper de la Fracture n° 8. Le HVO a indiqué que «les niveaux de gaz étaient bas ou inexistants et qu’il n’y avait plus de coulée de lave active en surface».
Malgré cette conclusion, de nombreux habitants se plaignent de problèmes respiratoires à cause de l’odeur de dioxyde de soufre qui a envahi la région. Le médecin d’une femme a déclaré que la pleurésie dont elle souffrait était probablement due aux émissions de gaz et peut-être aussi aux cheveux de Pelé.
Selon USGS, outre le SO2, les éruptions laissent échapper du sulfure d’hydrogène, gaz très toxique à des concentrations élevées. Les éruptions volcaniques libèrent également du fluor, du chlore et du brome qui sont des acides toxiques, ainsi que du méthane qui peut interférer avec l’oxygène. Les services de santé contrôlent en permanence les données fournies par les stations de surveillance de la qualité de l’air, en particulier les niveaux de SO2 et de particules fines sur Big Island. Un habitant a expliqué que le filtre d’habitacle de sa voiture était «noir à cause des substance qu’il respirait quotidiennement depuis des mois.»
En plus des émanations gazeuses, des cheveux de Pelé restent accrochés dans les arbres, les fossés et sur les pelouses de certaines habitations car leurs propriétaires n’ont pas les moyens de faire face à ces problèmes. Les professionnels de la santé ont conseillé à plusieurs habitants d’éviter de s’exposer aux gaz et aux particules, mais cela semble bien difficile.

En plus des conséquences physiques durables, de nombreux habitants des Leilani Estates ont l’impression qu’ils ne se remettront jamais émotionnellement des impacts de l’éruption du Kilauea. .
Source: Presse hawaiienne.

—————————————————

Several weeks after the 2018 Kilauea eruption, with the destruction of 716 homes in the Lower East Rift Zone, those whose homes still remain were allowed to return on September 8th, 2018. Some of the returning residents are being affected by air pollutants because clouds of fumes continue to emanate from Fissure 8. The Hawaiian Volcano Observatory determined that “the gas levels were low or nonexistent, with the nonexistence of lava on the surface.”

Despite this conclusion, many residents are complaining of breathing problems because of the sulphur dioxide odour that pervades the area. One woman said that her doctor assumes that the reason she got pleurisy was due to the emissions in the air and possibly Pele’s hair.

According to USGS, in addition to SO2, eruptions release hydrogen sulfide, which is very toxic at high concentrations. Volcanic eruptions also release fluorine, chlorine and bromine, which are strong, toxic acids, and methane, which can interfere with oxygen levels. The Department of Health maintains permanent SO2 and PM2.5 (particulates) air monitoring stations around the Big Island. A resident explained that the AC filter in his car was “black from months of the stuff he breathed in daily.”

In addition to the fumes, fine threads of Pele’s hair remain in the trees, gutters and lawns of some residents who have not had the resources to return home and deal with the damage. Medical professionals told several residents to avoid exposure, but it seems like an inescapable reality for them. In addition to concerns over lasting physical effects, many residents feel they will never recover emotionally from the ordeal.

Source : Hawaiian newspapers.

La dernière éruption du Kilauea a laissé échapper des quantités considérables de SO2 (Crédit photo: USGS / HVO)

Piton de la Fournaise (Ile de la Réunion) : Le volcan inquiète l’Observatoire // OVPF worries about the volcano

Suite à la forte augmentation observée au cours des dernières heures, l’intensité du tremor éruptif reste très élevée, ce qui est à mettre en relation avec l’ouverture des deux nouvelles fissures les 5 et 7 mars dernier. Le débit de surface a lui aussi augmenté de manière significative avec une moyenne sur les dernières 24 heures se situant aux alentours de 20-25 mètres cubes par seconde. Ces augmentations de débit de surface ont favorisé une progression rapide des coulées. D’après les observations visuelles depuis la RN2 et les images de la webcam du Piton des Cascades, le front de coulée actif a pu être estimé à 650 – 700 mètres d’altitude le 9 mars 2019 à 8h. Le front de coulée a ainsi parcouru environ 1 km en 24heures et se situait ce matin entre 2,5 et 3 km de la RN 2.

Les stations de l’OVPF situées sur le pourtour de l’Enclos Fouqué ont détecté pour la journée du 8 mars des émissions de SO2 dans l’air 3 à 4 fois plus importantes que celles enregistrées au début de l’éruption.

Les concentrations en CO2 dans le sol en champ proche (secteur Gîte du Volcan) semblent chuter depuis le 9 mars au matin, ce qui indiquerait une accélération du transfert du magma entre le réservoir profond et la surface.

Aucune déformation significative de l’édifice volcanique n’a été enregistrée. .

Sur les dernières 36 heures, plus d’une centaine de séismes volcano-tectoniques superficiels (à moins de 2,5 km de profondeur) ont été enregistrés sous la zone sommitale, mais ce nombre est largement sous estimé du fait de la difficulté à les comptabiliser compte tenu de l’intensité du tremor.

A noter que cette forte sismicité sous la zone sommitale ne cesse d’augmenter depuis 48 heures avec souvent des mécanismes en compression à la source, qui pourraient correspondre à des effondrements du toit de la chambre magmatique superficielle due à sa vidange importante. Cette sismicité est suivie de près par l’OVPF ; en effet, en cas de propagation de cette sismicité vers la surface (ce qui n’est pas le cas actuellement), cela pourrait engendrer la formation d’un pit-crater, comme cela a déjà été observé par le passé au Piton de la Fournaise, par exemple en Décembre 2002.

L’OVPF conclut son derner bulletin en expliquant que, compte tenu de l’ensemble des paramètres développés ci-dessus, l’ouverture de nouvelles fissures éruptives au niveau du site éruptif actuel ou ailleurs, à l’intérieur ou à l’extérieur de l’Enclos, n’est pas exclue.

La situation doit donc être surveillée très attentivement.

Source : OVPF.

————————————————–

Following the strong increase observed during the last hours, the intensity of the eruptive tremor remains very high, which is related to the opening of the two new fissures on March 5th and 7th. The surface flow output has also increased significantly with an average of about 20-25 cubic metres per second over the last 24 hours. This increase of the surface flow output favoured a rapid progression of the flows. Based on visual observations from RN2 and images provided by the Piton des Cascades webcam, the active flow front was estimated at 650-700 metres a.s.l. on 9 March 2019 at 8 am. The flow front travelled about 1 km in 24 hours and was this morning between 2.5 and 3 km from the RN 2.
For the day of March 8th, OVPF stations located around the Enclos Fouqué have detected SO2 emissions in the air 3 to 4 times greater than those recorded at the beginning of the eruption.
CO2 concentrations in the near-field soil (Gîte du Volcan area) appear to have dropped since the morning of 9 March, indicating an acceleration of magma transfer between the deep reservoir and the surface.
No significant deformation of the volcanic edifice has been recorded. .
Over the past 36 hours, more than 100 shallow volcano-tectonic earthquakes (less than 2.5 km deep) have been recorded under the summit area, but this number is largely underestimated because of the intensity of the tremor.
It should be noted that this strong seismicity under the summit area has been increasing for 48 hours, often with mechanisms in compression at the source, which could correspond to a collapses of the roof of the shallow magma chamber due to a significant drainage. This seismicity is followed monitored by OVPF; indeed, in the event of a propagation of this seismicity towards the surface (which is not currently the case), this could lead to the formation of a pit-crater, as has already been observed in the past at Piton de la Furnace, for example in December 2002.
OVPF concludes its latest bulletin by explaining that, considering all the above-mentioned parameters, the opening of new eruptive fissures at the current eruptive site or elsewhere, inside or outside the Enclos, is not excluded.
The situation must therefore be monitored very carefully.
Source: OVPF.

La hausse significative du tremor montre que le Piton de la Fournaise n’a pas dit son dernier mot. Vigilance! (Source: OVPF)

L’éruption est visible sur quatre webcams ce soir!

Le CO2 du Kilauea (Hawaii) // Kilauea’s CO2 (Hawaii)

Avec la fin de l’éruption du Kilauea, les habitants de Big Island peuvent respirer plus facilement, sans être importunés par le vog, ce brouillard volcanique provoqué par les émissions de dioxyde de soufre (SO2).
Malgré tout, en raison de l’activité volcanique récente, on perçoit encore parfois des odeurs de soufre sur l’île, mais c’est le gaz carbonique, ou dioxyde de carbone (CO2) qui intéresse à présent les géochimistes du HVO.
Le CO2 est émis en abondance au cours d’une éruption, en même temps que les gaz sulfureux, la vapeur d’eau et des quantités infimes d’autres gaz tels que le chlorure d’hydrogène, le fluorure d’hydrogène et l’hélium. Ce qui est intéressant avec le CO2, c’est qu’il peut donner des indications précieuses sur la profondeur à laquelle se trouve le magma.
Pour expliquer comment se comporte le CO2, les géologues font souvent une comparaison avec une bouteille de boisson gazeuse dans laquelle un seul gaz (le CO2) est dissous. Ce CO2 reste dissous tant que la bouteille est fermée car elle crée suffisamment de pression pour maintenir le gaz dans le liquide. Dès que la bouteille est ouverte, la pression diminue et le CO2 crée des bulles qui s’échappent dans l’atmosphère.
Contrairement à l’eau gazeuse, le magma contient de nombreux gaz différents les uns des autres et qui ne se comportent pas tous de la même manière. Avec la boisson gazeuse, une diminution de la pression suffit à libérer tout le gaz, mais avec le magma, des degrés de diminution de pression différents entraînent la libération de gaz différents.
Dans la mesure où la pression exercée sur le magma est créée par le poids de la terre qui se trouve au-dessus, plus le magma est profond, plus il est soumis à une pression élevée. À mesure que le magma s’élève à des profondeurs moindres, il est soumis à une moindre pression et différents gaz peuvent alors s’échapper en cours de route.
Lorsque le magma est peu profond ou atteint la surface, la pression exercée est assez faible de sorte que le SO2 peut facilement s’échapper, ce qui explique la formation du vog mentionné précédemment. Lorsque le magma est plus profond, comme c’est le cas actuellement sur le Kilauea, la pression est suffisante pour maintenir le SO2 dissous. Cependant, comme le CO2 est moins soluble que le SO2 dans le magma, il peut s’échapper même lorsque le magma est profond et que la pression est élevée. C’est pourquoi, même sans coulées de lave à la surface, le Kilauea émet actuellement du CO2. Il est important de noter que ces quantités sont très faibles à côté des émissions anthropiques. C’est ce CO2 qui, associé aux faibles quantités de gaz sulfureux encore émises, peut fournir des indications sur la profondeur du magma sous le Kilauea.
Comme le CO2 peut s’échapper même lorsque le magma est profond alors que le SO2 reste dissous jusqu’à ce qu’il s’approche de la surface, le magma plus profond produit un rapport CO2 / SO2 plus élevé.. C’est ce rapport CO2 / SO2 que les géochimistes utilisent généralement comme indication de la profondeur du magma.
Le magma profond peut commencer avec un rapport CO2 / SO2 élevé, mais ce rapport va diminuer eu fur et à mesure que le magma va se déplacer vers la surface et que de plus en plus de SO2 commencera à s’échapper. En conséquence, si les scientifiques sont capables de mesurer le rapport CO2 / SO2 du Kilauea au fil du temps, toute variation dans ce rapport peut leur indiquer si le magma est en train de remonter dans le système d’alimentation du volcan.
La mesure précise du rapport CO2 / SO2 dans le panache de gaz volcanique n’est pas chose aisée à cause de la quantité importante et variable de CO2 qui existe déjà dans l’atmosphère. Sur le Kilauea, la situation est encore plus complexe à cause des événements d’effondrement qui ont remodelé la caldeira sommitale et endommagé les routes et autres moyens d’accès aux zones de dégazage.
Tant que durera la phase d’inactivité du Kilauea, les géochimistes du HVO exploreront de nouvelles techniques de mesure du rapport CO2 / SO2, notamment grâce à l’installation de capteurs multi-gaz au sommet du volcan et à l’utilisation de capteurs de gaz montés sur des drones. Le but de cette collecte de données est de mieux comprendre les changements susceptibles d’indiquer une reprise d’activité du volcan.
Source: USGS / HVO.

———————————————————

With the end of the Kilauea eruption, Big Island residents can breathe more freely and are no loger disturbed by the vog, or volcanic smog, produced by voluminous sulphur dioxide (SO2) emissions.

Because of the recent volcanic activity, sulphur smells are still sometimes detected around the island, but carbon dioxide (CO2) is the other gas that is interesting HVO geochemists these days.

CO2 is a significant volcanic emission, along with sulphur gases, water vapour, and trace amounts of other gases, such as hydrogen chloride, hydrogen fluoride, and helium. What is interesting about CO2 is that it can give clues about the depth of magma.

To explain the behaviour of CO2, geologits often make a comparison with a bottle of soda, which has only one gas (CO2) dissolved in it. This CO2 stays dissolved as long as the bottle is sealed, because the bottle creates enough pressure to keep the CO2 in the liquid. As soon as the bottle is opened, pressure on the liquid decreases and the CO2 creates bubbles that escape to the atmosphere.

Unlike soda, magma has many different gases dissolved in it, and they do not all behave the same way. With soda, one pressure decrease is enough to release all the gas from it, but with magma, different degrees of pressure decrease result in the release of different gases.

Since pressure on magma is created by the weight of the earth above it, the deeper magma is, the higher the pressure it feels. As magma rises to shallower depths, it feels lesser amounts of pressure and different gases are able to escape along the way.

When magma is shallow or actually reaches the surface, the pressure on it is quite low, so SO2 can easily escape, leading to the above menyioned vog. When magma is deeper, as is the case now, there is enough pressure to keep the SO2 dissolved. However, CO2 is less soluble than SO2 in magma and can escape even when magma is deep and the pressure is high. This is why, even with no lava erupting at the surface, Kilauea is currently producing CO2. It is important to note that these amounts are very small compared to anthropogenic CO2 emissions. It is this CO2, in conjunction with the small amounts of sulphur gases still being emitted, that can provide clues to how deep Kilauea’s magma is.

Because CO2 can escape even when magma is deep but SO2 mostly stays dissolved until the magma is shallow, deeper magma produces a high ratio of CO2 to SO2. Geochemists typically use this CO2/SO2 ratio as an indication of magma depth.

Deep magma may begin with a high CO2/SO2 ratio, but that ratio will drop as magma moves to shallower depths and more SO2 begins to escape. Therefore, if scientists can measure Kilauea’s CO2/SO2 ratio over time, any changes in it can tell them whether magma is once again rising through the system.

The difficulty lies with the measurement of the CO2/SO2 ratio. Accurately measuring the CO2/SO2 ratio in volcanic gas is tricky because of the large and variable amount of CO2 that already exists in the atmosphere. At Kilauea, the situation is further complicated by collapse events that rearranged the summit caldera and damaged roads and other means of access to degassing areas.

As the current phase of inactivity at Kilauea continues, gas geochemistry scientists at HVO will explore new techniques for measuring the CO2/SO2 ratio, including the installation of multi-gas sensors at the volcano’s summit and the use of gas sensors mounted on unmanned aerial systems (UAS). The goal in collecting such gas data is to document changes that could eventually indicate an increased likelihood of renewed activity at Kilauea.

Source: USGS / HVO.

Pendant de longs mois, le vog a perturbé la vie des Hawaiiens.

Différents gaz sont émis pendant l’éruption du Kilauea…

(Photos: C. Grandpey)

Les détecteurs multi-gaz font partie des instruments utilisés sur les volcans.