Février 2021 un peu moins chaud // February 2021 sljghtly cooler

Selon la NASA et la NOAA, la température de surface à l’échelle de la planète en février 2021 a été de 0,65°C au-dessus de la moyenne du 20ème siècle (12,1°C). En classement, ce fut le 16ème mois de février le plus chaud des 142 dernières années.

Février 2021 a été le 45ème mois de février consécutif et le 434ème mois avec des températures supérieures à la moyenne du 20ème siècle. En particulier, l’Amérique du Nord a connu son mois de février le plus froid depuis 1994.

L’étendue moyenne de la glace de mer dans l’Arctique en février 2021 a été de 5,9% inférieure à la moyenne de 1981-2010 et à égalité avec 2019 comme septième plus petite étendue en février sur 43 années de relevés L’étendue de la glace de mer en février a été proche de la moyenne dans la plupart des régions de l’Arctique.

En Antarctique, l’étendue de glace de mer en 2021 a été la 11ème plus faible pour un mois de février depuis le début des relevés satellitaires en 1979.

Globalement, février 2021 a marqué une légère pause dans la hausse des températures dans le monde. Deux phénomènes doivent être pris en compte pour expliquer cette pause. D’une part, l’effet de refroidissement de La Niña dans le Pacifique équatorial a atteint son maximum en octobre-novembre 2020, mais ce refroidissement s’est encore fait sentir en février. D’autre part, un réchauffement stratosphérique soudain (SSW) a provoqué la rupture du vortex polaire qui s’est brisé en plusieurs morceaux. L’un de ces segments a atteint le continent nord américain, ce qui explique les basses températures et les tempêtes de neige dans plusieurs états des Etats-Unis.

——————————————–

According to NASA and NOAA, the February 2021 global surface temperature was 0.65°C above the 20th century average of 12.1°C. This was the 16th highest for February in the 142-year record.

February 2021 marked the 45th consecutive February and the 434th consecutive month with temperatures above the 20th century average. In particular, North America had its coldest February since 1994.

The February average Arctic sea ice extent was 5.9 percent below the 1981-2010 average and tied with 2019 as the seventh-smallest February extent in the 43-year record.  February sea ice extent was near average across most regions in the Arctic.

The Antarctic sea ice extent was the 11th smallest for February since satellite records began in 1979

 February 2021 marked a slight pause in temperature rise around the world. Two phenomena should be taken into account to explain this pause. On the one hand, the cooling influence of La Niña in the Equatorial Pacific reached its peak in October-November 2020 but could still be felt in February.  On the other hand, a sudden stratospheric warming (SSW) caused the polar vortex to break into pieces. One of the segments reached the North American continent, which accounts for low temperatures and snowstorms in several states of the United States.

Source : NOAA

Janvier 2021 6ème mois de janvier le plus chaud // January 2021, sixth hottest January

Pénalisé par le phénomène de refroidissement La Niña dans le Pacifique équatorial oriental et par l’éclatement du vortex polaire, le mois de janvier 2021 affiche une forte baisse de température par rapport au mois de janvier 2020. C’est la conclusion du rapport de la NASA et de la NOAA qui prend en compte les températures à la surface de la terre et des océans.

Janvier 2021 confirme donc la baisse entamée en décembre 2020. Avec +0,402°C au-dessus de la moyenne 1981-2010, la température observée en janvier 2021 est la 6ème plus élevée depuis le début des mesures de la NASA en 1880.

Par rapport à la période 1880-1920, l’anomalie signalée par la NASA atteint +1,17°C en janvier 2021. Il est utile de rappeler que l’objectif le plus ambitieux du GIEC est de limiter le réchauffement à +1,5°C au-dessus de la période préindustrielle.

L’épisode La Niña largement responsable du refroidissement de la température de la planète a débuté en août 2020 et fait maintenant sentir pleinement son impact sur l’anomalie globale. Comme je l’ai expliqué à plusieurs reprises, La Niña a tendance à refroidir légèrement la température du globe tandis qu’El Niño a tendance à l’augmenter. Malgré ce refroidissement, 2021 devrait se situer une fois de plus parmi les 10 années les plus chaudes, mais il y a très peu de chances d’assister à un nouveau record de chaleur.

Un autre phénomène influe considérablement sur le climat en ce moment. Il s’agit d’un réchauffement stratosphérique soudain (Sudden Stratospheric Warming – SSW) que j’ai expliqué dans une note précédente. Ce SSW s’est produit entre fin décembre et début janvier. Comme souvent, il a été suivi par une oscillation arctique et une oscillation nord-atlantique (NAO) fortement négatives pendant la majeure partie de janvier. Ces modèles vont généralement de pair avec des températures plus froides sur l’est des Etats-Unis et l’Europe. Cette situation s’est effectivement répétée en ce début d’année en Europe mais pas aux Etats-Unis. Les hautes pressions sur le Groenland se sont étendues vers le sud-ouest et ont généré des températures au-dessus de la normale dans le nord des Etats-Unis.

Si La Niña et le réchauffement stratosphérique soudain ont retenu l’attention, on peut s’attarder sur une statistique étonnante. Le graphique de la NOAA ci-dessous montre le pourcentage de la planète ayant atteint un niveau de température record pour chaque mois de janvier depuis 1951 (chaud en rouge, froid en bleu). En janvier 2021, 5,93% de la surface de la planète a atteint une température record. Seuls les mois de janvier 2016 et 2020 ont connu des pourcentages plus élevés. L’Afrique a connu des températures encore jamais enregistrées. L’Amérique du Nord dans son ensemble a connu son 2ème mois de janvier le plus chaud.

Source, NASA, NOAA, global-climat.

——————————————–

Penalized by the La Niña cooling phenomenon in the eastern equatorial Pacific and by the fluctuations of the polar vortex, January 2021 showed a big drop compared to January 2020.This is the conclusion of the NASA and NOAA report which takes into account the temperatures on the surface of the Earth and the oceans.

January 2021 thus confirms the drop started in December 2020. With + 0.402°C above the 1981-2010 average, the temperature observed in January 2021 is the 6th highest since the start of NASA measurements in 1880.

Compared to the period 1880-1920, the anomaly reported by NASA reached + 1.17°C in January 2021. It is useful to remember that the most ambitious objective of the IPCC is to limit the warming to +1, 5°C above the pre-industrial period.

The La Niña episode largely responsible for the cooling of the planet’s temperature emerged in August 2020 and is now having its full impact on the global anomaly. As I have explained many times, La Niña tends to cool the temperature of the globe while El Niño tends to increase it. Despite this cooling, 2021 is set to be once again among the 10 hottest years on record, but there is little chance of seeing a new heat record.

Another phenomenon is significantly influencing the climate at the moment. It is a Sudden Stratospheric Warming (SSW) that I explained in a previous note. This SSW occurred between late December and early January. As often, it was followed by a strongly negative Arctic Oscillation and North Atlantic Oscillation (NAO) throughout most of January. These patterns are generally associated with cooler temperatures over the eastern United States and Europe. This situation was confirmed at the start of the year in Europe but not in the United States. High pressures over Greenland spread to the southwest and generated above normal temperatures in the northern United States.

While La Niña and the sudden warming of the stratosphere have drawn attention, there is also a startling statistic. The NOAA graph below shows the percentage of the planet at an all-time high for each January since 1951 (hot in red, cold in blue). In January 2021, 5.93% of the world’s surface reached a record temperature. Only the months of January 2016 and 2020 saw higher percentages. Africa has experienced unprecedented temperatures. North America as a whole experienced its second warmest January.

Source: NASA, NOAA, global-climat.

Source : NOAA

Novembre 2020 encore beaucoup trop chaud // November 2020 still much too hot

Selon la NOAA, novembre 2020 a été le deuxième mois de novembre le plus chaud, derrière 2015, depuis le début des relevés à l’échelle de la planète en 1880. La température à la surface des terres et des océans en novembre 2020 se situe à 0,97°C au-dessus de la moyenne du 20ème siècle (12,9°C).

Pour la NASA, novembre 2020 a été le plus chaud jamais enregistré. C’est aussi l’avis du programme européen Copernicus. L’Agence Météorologique Japonaise (JMA), quant à elle, a classé novembre 2020 en deuxième position.

Novembre 2020 a été le 44ème mois de novembre consécutif et le 431ème mois consécutif avec des températures supérieures à la moyenne du 20ème siècle. Les 10 mois de novembre les plus chauds ont tous eu lieu depuis 2004. Les cinq plus chauds ont eu lieu depuis 2013.

Pour la période septembre-octobre-novembre, l’hémisphère nord a connu son deuxième automne le plus chaud, avec une différence de seulement 0,01°C avec le record établi en 2015. L’hémisphère sud a connu son neuvième printemps le plus chaud.

Les 11 mois de janvier à novembre se situent à 1,0°C au-dessus de la moyenne du 20ème siècle. Cette période de 11 mois est la deuxième plus chaude jamais enregistrée, avec seulement 0,01°C de différence avec le record établi en 2016.

Si l’on prend en compte l’ensemble des relevés de la NASA, la NOAA, des NCEP, ERA5, RSS et de l’UAH, novembre 2020 a été le mois de novembre le plus chaud, avec 0,64°C au-dessus de la moyenne 1981-2010 (voir graphique ci-dessous)

L’année 2020 est pratiquement certaine de figurer parmi les cinq années les plus chaudes jamais enregistrées. Il est important de noter que chacune des années civiles entre 2014 et 2020 compte parmi les sept années les plus chaudes jamais enregistrées depuis 1880.

La température de l’océan à l’échelle de la planète en novembre 2020 a été la quatrième plus chaude jamais enregistrée. En revanche, la température sur la terre ferme a été la plus chaude jamais enregistrée.

On sait que les records de température sont plus susceptibles d’être établis lors de forts événements El Niño qui réchauffe les eaux de surface dans le Pacifique tropical. Ce qui est remarquable actuellement, c’est que les records de chaleur de 2020 sont établis pendant une transition entre un El Niño faible et un événement La Niña modéré, c’est-à-dire à un moment où le refroidissement du Pacifique tropical devrait contribuer au refroidissement des températures globales, ce qui n’est pas la cas ! Le fait que la chaleur record de 2020 se produise dans ces conditions montre bien le rôle exercé par le réchauffement climatique d’origine humaine.

Source : NOAA, NASA.

———————————————-

According to NOAA, November 2020 was the second warmest November since global record keeping began in 1880, behind the record set in 2015. The November 2020 global land and ocean surface temperature was 0.97°C above the 20th-century average of 12.9°C.

NASA rated the month as the warmest November on record, as did the European Copernicus Climate Change Service. The Japan Meteorological Agency rated it as the second-warmest.

November 2020 marked the 44th consecutive November and the 431st consecutive month with temperatures above the 20th-century average. The 10 warmest Novembers have all occurred since 2004. The five warmest Novembers have occurred since 2013.

For the period September-October-November, the Northern Hemisphere had its second warmest autumn, only 0.01°C behind the record set in 2015. The Southern Hemisphere had its ninth warmest spring on record.

The 11 months of January through November were 1.0 degree Celsius above the 20th-century average. That 11-month period ranks as the second-warmest such period on record, only 0.01°C behind the record set in 2016.

Taking into account NASA, NOAA, NCEP, ERA5, RSS, UAH, November 2020 was the warmest month of November, with 0.64°C above the average 1981-2010 (see graph below)

The year 2020 is virtually certain to rank among the five warmest years on record, making each of the seven calendar years 2014 through 2020 one of the seven warmest years on record, dating back to 1880.

Global ocean temperatures during November 2020 were the fourth warmest on record, and global land temperatures were the warmest on record.

Global temperature records are more likely to be set during strong El Niño events. Remarkably, the record warmth of 2020 has occurred during the transition from a weak El Niño to a moderate La Niña event, when cooling of the tropical Pacific Ocean helps cool global temperatures. That the record warmth of 2020 occurred under those circumstances underscores the dominant role of human-caused global warming in heating the planet.

Source : NOAA, NASA

Source : global-climat

Le retour de La Niña (suite) // La Niña is back (continued)

Dans une note publiée le 14 septembre 2020, j’indiquais que La Niña était de retour. El Niño et La Niña sont deux modèles météorologiques complexes résultant des variations de température océanique dans le Pacifique équatorial. Il serait toutefois exagéré de dire que El Niño conduit à une augmentation des températures dans le monde et que La Niña réduit l’impact du réchauffement climatique.
L’Organisation Météorologique Mondiale (OMM) vient de confirmer qu’un événement météorologique La Niña d’intensité modérée à forte est en cours dans l’Océan Pacifique. Il devrait se poursuivre jusqu’au premier trimestre 2021. Un tel événement significatif a eu lieu pour la dernière fois en 2010-2011.
Si La Niña a généralement un effet de refroidissement sur les températures de la planète, cet effet ne sera pas suffisant pour compenser la chaleur emmagasinée dans l’atmosphère terrestre par les gaz à effet de serre. En conséquence, il ne fait guère de doute que 2020 sera l’une des années les plus chaudes jamais enregistrées et 2016-2020 devrait être la période de cinq ans la plus chaude de tous les temps. Aujourd’hui, les années avec la présence de La Niña sont plus chaudes que celles où apparaissait El Niño dans le passé.
L’OMM explique qu’elle annonce l’arrivée de La Niña pour permettre aux gouvernements de planifier leur politique dans des domaines clés tels que la gestion des catastrophes et l’agriculture. Un aspect important de La Niña est l’effet qu’elle pourrait avoir sur le reste de la saison des ouragans dans l’Atlantique.

La Niña réduit l’impact des vents entre la surface et les couches supérieures de l’atmosphère, ce qui permet aux ouragans de se développer. La saison des ouragans s’est terminée le 30 novembre et jusqu’à présent il y en a eu 27 C’est plus que les 25 prédits par la NOAA au début de cette année.
Source: Yahoo News.

——————————————-

In a post published on September 14th, 2020, I indicated that La Niña was back. El Niño and La Niña are two complex weather patterns resulting from variations in ocean temperatures in the Equatorial Pacific.

It would be exaggerated to say that El Niño leads to an increase in temperatures in the world and that La Niña reduces the impact of global warming.

The World Meteorological Organization (WMO) has just confirmed that a moderate to strong La Niña weather event has developed in the Pacific Ocean. This La Niña is set to last through the first quarter of 2021. The last time that a strong event developed was in 2010-2011.

If La Niña typically has a cooling effect on global temperatures, it won’t be sufficient to offset the heat trapped in our atmosphere by greenhouse gases. Therefore, 2020 remains on track to be one of the warmest years on record and 2016-2020 is expected to be the warmest five-year period on record. La Niña years now are warmer even than years with strong El Niño events of the past.

The WMO says it is announcing the La Niña now to give governments a chance to mobilise their planning in key areas such as disaster management and agriculture. One important aspect of La Niña is the effect it could have on the remainder of the Atlantic hurricane season.

A La Niña event reduces the change in winds between the surface and the upper levels of the atmosphere. This allows hurricanes to grow. The hurricane season ended on November 30th and so far there have been 27 named storms. This is more than the 25 predicted by NOAA earlier this year.

Source: Yahoo News.

Représentation schématique des effets de El Niño (à gauche) et La Niña (à droite)

La Niña : le retour // La Niña is back

Au cours de ma conférence sur la fonte des glaciers dans le monde, je fais référence à El Niño et à La Niña, deux régimes météorologiques complexes liés à des variations de températures océaniques dans le Pacifique équatorial.
El Niño, qui signifie Le petit garçon en espagnol, fait référence à l’interaction climatique océan-atmosphère liée à un réchauffement périodique de la surface de la mer dans le centre et le centre-est du Pacifique équatorial.
La Niña signifie La Petite Fille en espagnol. Ses épisodes entraînent des périodes de températures de surface de la mer inférieures à la moyenne dans le centre et le centre-est du Pacifique équatorial.

L’ensemble du cycle climatique naturel géré par El Niño et La Niña est connu sous le nom d’El Niño – Southern Oscillation (ENSO), une alternance d’eau de mer plus chaude ou plus froide dans l’océan Pacifique central.
On oppose souvent La Niña à El Niño quant à leur influence sur le climat mondial mais cette influence est beaucoup plus complexe qu’il y paraît. Il serait trop rapide d’affirmer qu’El Niño entraîne une hausse des températures dans le monde et que La Niña atténue le réchauffement climatique.

Des articles récents parus dans la presse américaine nous apprennent que La Niña est de retour. Les climatologues expliquent que le phénomène pourrait accélérer la saison des ouragans dans l’Atlantique. La Niña pourrait aussi prolonger la saison des incendies qui ravagent l’ouest des États-Unis.
La Niña est l’un des principaux facteurs météorologiques aux États-Unis et dans le monde, en particulier à la fin de l’automne, en hiver et au début du printemps. Selon les prévisionnistes de la NOAA, La Niña sera présente probablement tout l’hiver. Ce régime météorologique peut contribuer à une augmentation de l’activité des ouragans dans l’Atlantique en affaiblissant le cisaillement du vent sur la Mer des Caraïbes et le bassin atlantique tropical, ce qui permet aux tempêtes de se développer et de s’intensifier.
Dans cette perspective, les prévisionnistes prévoient que jusqu’à 25 tempêtes pourraient se former dans l’Atlantique. 17 d’entre elles ont déjà sévi, parmi lesquelles l’ouragan Laura qui a ravagé des parties du sud-ouest de la Louisiane au mois d’août.
La Niña a tendance à apporter un temps sec dans certaines parties de la Californie et une grande partie du sud-ouest, ce qui n’arrange rien à la situation des incendies dans ces régions. Déjà, plus de la moitié de l’État de Californie connaît actuellement une période de sécheresse.
Aux Etats-Unis, la présence de La Niña en hiver apporte généralement de la pluie et de la neige au nord-ouest et des conditions anormalement sèches dans la majeure partie du sud du pays. Le sud-est et le centre de l’Atlantique ont également tendance à voir des températures plus chaudes que la moyenne pendant un hiver géré par La Niña.
À l’échelle mondiale, La Niña apporte souvent de fortes pluies en Indonésie, aux Philippines, au nord de l’Australie et en Afrique australe.
Source: USA Today.

—————————————–

During my conference about the melting of glaciers in the world, I refer to El Niño and La Niña , two complex weather patterns resulting from variations in ocean temperatures in the Equatorial Pacific.

El Niño, which means The Little Boy in Spanish, refers to the large-scale ocean-atmosphere climate interaction linked to a periodic warming in sea surface temperatures across the central and east-central Equatorial Pacific.

La Niña means The Little Girl in Spanish. Its episodes represent periods of below-average sea surface temperatures across the east-central Equatorial Pacific.

The entire natural climate cycle is officially known as the El Niño – Southern Oscillation (ENSO), a see-saw dance of warmer and cooler seawater in the central Pacific Ocean.

Global climate La Niña impacts tend to be opposite those of El Niño impacts, but the situation is far more complex than it seems. It would be exaggerated to say that El Niño leads to an increase in temperatures in the world and that La Niña reduces the impact of global warming.

Recent articles in the US press inform us that La Niña has arrived. Climatologists warn that this could provide an additional boost to the already active Atlantic hurricane season, as well as extend the disastrous fire season in western USA.

The La Niña climate pattern is one of the main drivers of weather in the U.S. and around the world, especially during late autumn, winter and early spring. According to NOAA forecasters, La Niña is likely to persist through the winter. This weather pattern can contribute to an increase in Atlantic hurricane activity by weakening the wind shear over the Caribbean Sea and tropical Atlantic Basin, which enables storms to develop and intensify.

In that outlook, forecasters predict that as many as 25 storms could form in the Atlantic. Already, 17 have formed, including Hurricane Laura, which ravaged portions of southwestern Louisiana in August.

As for its impact on the western fires, La Niña tends to bring dry weather across portions of California and much of the Southwest. Already, over half of the state of California is in a drought.

A typical La Niña winter in the U.S. brings rain and snow to the Northwest and unusually dry conditions to most of the southern tier of the U.S. The Southeast and Mid-Atlantic also tend to see warmer-than-average temperatures during a La Niña winter.

Globally, La Niña often brings heavy rainfall to Indonesia, the Philippines, northern Australia and southern Africa.

The entire natural climate cycle is officially known as the El Niño – Southern Oscillation (ENSO), a see-saw dance of warmer and cooler seawater in the central Pacific Ocean.

Source: USA Today.

Anomalies de température à la surface de l’océan avec El Niño (à gauche) et La Niña (à droite)

Cycle hivernal classique géré par La Niña en Amérique du Nord.

 

El Niño, un phénomène encore mal compris // El Niño, a poorly understood phenomenon

Au cours de ma conférence « Glaciers en péril », je fais référence à El Niño qui influe considérablement sur le climat de notre planète. Il s’agit d’un phénomène climatique étonnamment complexe dans l’Océan Pacifique, qui se traduit pas une hausse de la température à la surface de l’eau, sur une dizaine de mètres de profondeur, dans l’est de l’océan Pacifique, autour de l’équateur. Inversement, quand El Niño disparaît il est remplacé par La Niña qui produit un effet de refroidissement inverse. En 2017 et une grande partie de l’année 2018, on a observé une faiblesse d’El Niño ; malgré cela, les températures globales ont continué à augmenter sur Terre.

Le site web Radio-Canada nous apprend que des chercheurs australiens ont montré, grâce à l’étude de coraux vieux de quatre siècles, que certaines variantes du phénomène El Niño ont augmenté en nombre au cours des dernières années, tandis que d’autres ont augmenté en intensité.

Les coraux enregistrent une partie de leur vécu au cœur de leur structure, un peu comme le font les cernes sur un tronc d’arbre. En révélant ce vécu à l’aide d’une intelligence artificielle, les chercheurs australiens ont pu retracer le comportement d’El Niño au cours des 400 dernières années.

Le phénomène El Niño survient tous les deux à sept ans et il se caractérise par une hausse des températures de l’Océan Pacifique ainsi que des changements dans les courants marins et aériens de cette région. Ces changements dans la chaleur et l’humidité augmentent le rythme des événements extrêmes dans le monde. Certaines régions sont frappées par de grands ouragans ou des inondations, tandis que d’autres subissent davantage de sécheresses et des feux de forêt. Lorsque El Niño sévit, la fonte des glaciers se trouve accélérée.

La force et le rythme de ces événements ne sont toutefois pas constants. Certains épisodes, comme celui de 1997-1998, ont causé des dégâts importants à l’échelle du globe, tandis que d’autres n’ont eu qu’une faible influence sur les événements météorologiques extrêmes.

De plus, les chercheurs reconnaissent maintenant qu’il existerait deux variantes du phénomène, une qui débute au centre du Pacifique, et une autre qui débute dans l’est de cet océan, chacune touchant plusieurs régions de façon différente.

Jusqu’à maintenant, nos connaissances de l’histoire d’El Niño restaient limitées, et les chercheurs ne pouvaient qu’utiliser les données des événements qui ont été mesurés directement au cours du dernier siècle.

L’étude des coraux va changer la donne. Ces derniers possèdent un squelette de carbonate de calcium qu’ils assemblent à l’aide de minéraux dissous dans l’océan. Leur composition permet d’en apprendre plus sur la salinité et la température de l’eau où ils ont grandi. Ces informations pourraient permettre d’identifier les changements océaniques occasionnés par El Niño.

Les modifications subies par les coraux sont infiniment plus complexes que celles que l’on trouve dans les cernes des arbres. Beaucoup de scientifiques pensaient que les coraux ne pourraient guère venir en aide pour comprendre le comportement d’El Niño. Pour arriver à leurs fins, les chercheurs de l’Université de Melbourne se sont tournés vers l’intelligence artificielle. À l’aide d’échantillons de coraux provenant de 27 sites distincts à travers l’Océan Pacifique, les scientifiques ont entraîné leur algorithme à reconnaître les modifications des coraux et à les associer aux événements El Niño dont on connaissait les dates au cours du siècle dernier.

Une fois que leur système a été capable de faire cette association sans erreur, ils lui ont soumis des données de coraux plus anciens, échelonnées sur les quatre derniers siècles. Les chercheurs ont alors remarqué que le nombre d’occurrences d’El Niño originaires du centre du Pacifique a plus que doublé durant la deuxième moitié du 20ème siècle comparativement aux siècles précédents, avec 9 épisodes au lieu de 3,5 par période de 30 ans durant la même période.

En ce qui concerne les occurrences d’El Niño originaires de l’est du Pacifique, leur nombre semble plutôt avoir décliné durant les dernières décennies. Par contre, leur intensité semble suivre la tendance inverse, et les trois derniers phénomènes de ce type à avoir été enregistrés, ceux de 1982, 1997 et 2015, sont parmi les plus puissants El Niño des 400 dernières années.

Selon les chercheurs, cette méthode permet non seulement de mieux comprendre l’histoire du phénomène El Niño, mais aussi de mieux prévoir comment il pourrait se comporter au cours des prochaines années.

Source : Radio-Canada.

———————————————-

During my conference « Glaciers at Risk », I refer to El Niño, which has a major impact on the climate of our planet. It is a surprisingly complex climatic phenomenon in the Pacific Ocean, which results in a rise in the temperature of the surface of the water, about ten metres deep, in the eastern part of the Pacific Ocean, around the equator. Conversely, when El Niño disappears, it is replaced by La Niña, which produces a reverse cooling effect. In 2017 and much of 2018 El Niño has been weak; despite this, global temperatures continued to increase on Earth.
The Radio-Canada website informs us that Australian researchers have shown, through the study of four-century-old corals, that some variants of the El Niño phenomenon have increased in numbers in recent years, while others have increased in intensity.
Corals record some of their life in the heart of their structure, much like tree rings on a trunk. By revealing the coral life using artificial intelligence, Australian researchers have been able to trace the behaviour of El Niño over the last 400 years.
The El Niño phenomenon occurs every two to seven years and is characterized by rising temperatures in the Pacific Ocean as well as changes in the marine and air currents of this region. These changes in heat and humidity are increasing the pace of extreme events around the world. Some areas are hit by major hurricanes or floods, while others suffer more droughts and forest fires. When El Niño occurs, glacier melting is accelerated.
The strength and pace of these events, however, are not constant. Some episodes, such as the 1997-1998 episode, have caused significant global damage, while others have had little influence on extreme weather events.
In addition, researchers now reveal that there are two variants of the phenomenon, one that starts in the centre of the Pacific, and another that begins in the eastern part of this ocean, each affecting several regions in different ways.
Until now, our knowledge of El Niño history has been limited, and researchers could only use data from events that have been measured directly over the last century.
The study of corals will change the research. They have a skeleton of calcium carbonate which they assemble using minerals dissolved in the ocean. Their composition makes it possible to learn more about the salinity and the temperature of the water where they grew up. This information could help identify the oceanic changes caused by El Niño.
The changes in corals are infinitely more complex than those found in tree rings. Many scientists thought that corals could hardly help to understand the behaviour of El Niño. To achieve their ends, researchers at the University of Melbourne turned to artificial intelligence. Using coral samples from 27 distinct sites across the Pacific Ocean, scientists have trained their algorithm to recognize changes in corals and associate them with El Niño events that had known dates during the past century.
Once their system was able to make this association without error, they submitted to it older coral data over the last four centuries. The researchers noted that the number of El Niño occurrences from the central Pacific more than doubled during the second half of the 20th century compared to previous centuries, with 9 episodes instead of 3.5 per 30-year period. during the same period.
As for El Niño occurrences from the eastern Pacific, their numbers appear to have declined in recent decades. However, their intensity seems to follow the opposite trend, and the last three phenomena of this type to have been recorded, those of 1982, 1997 and 2015, are among the most powerful El Niño of the last 400 years.
According to the researchers, this method not only helps to better understand the history of the El Niño phenomenon, but also to better predict how it could behave over the next few years.
Source: Radio-Canada.

El Niño et La Niña influencent le climat de notre planète (Source: NOAA)

Impacts des éruptions volcaniques sur la formation des ouragans // Impact of volcanic eruptions on the formation of hurricanes

On peut lire sur le site web de The Weather Network un article très intéressant sur l’impact des éruptions volcaniques sur la formation des ouragans. Jusqu’à une étude récente, les scientifiques ne savaient pas exactement comment les deux phénomènes naturels interagissaient.
L’étude, dirigée par des chercheurs de l’Université du Québec à Montréal et de l’Université Columbia, montre pour la première fois dans quelle mesure les grandes éruptions volcaniques ont non seulement un impact immédiat sur la saison des cyclones tropicaux, mais également sur les années suivantes.
Il a fallu pas mal de temps aux chercheurs pour établir le lien entre les deux phénomènes naturels. En effet, la plupart des éruptions majeures de l’histoire récente se sont produites simultanément avec des événements El Niño ou La Niña (l’oscillation australe El Niño ou ENSO) qui ont eux-mêmes un impact sur les saisons cycloniques tropicales à travers le monde.
Cette étude, basée sur des simulations de dernière génération, s’est efforcée d’étudier les événements éruptifs majeurs indépendamment de tout impact ENSO, et les chercheurs ont réussi a obtenir un schéma très révélateur. Ils ont découvert que des éruptions importantes dans les hémisphères nord et sud avaient pour effet d’éloigner la zone de convergence intertropicale (ZCIT) de sa position habituelle – plus loin dans l’hémisphère sud en cas d’éruption de l’hémisphère nord et inversement, lors d’une éruption. au sud de l’équateur.
La ZCIT est la bande proche de l’équateur où convergent les alizés. Elle a été baptisée «pot au noir» par les marins parce que les vents à la surface de l’océan sont calmes à ce point de convergence. Cette région joue un rôle clé dans la formation de cyclones tropicaux lorsque la frontière se déplace vers le nord ou vers le sud au niveau du « pot au noir », et se dirige vers des régions plus propices au développement de cyclones, qu’il s’agisse d’ouragans pour l’Atlantique ou de typhons pour le Pacifique.
Une puissante éruption dans les régions tropicales de l’hémisphère nord entraîne un déplacement de la zone de convergence intertropicale vers le sud. Cela se traduit par une augmentation de l’activité des ouragans entre l’équateur et la latitude 10º N et une diminution plus au nord. Le déplacement de la zone vers le sud a d’autres effets dans l’hémisphère sud, car cela entraîne une baisse de l’activité sur les côtes australiennes, indonésiennes et tanzaniennes, tandis que Madagascar et le Mozambique connaissent une augmentation. En bref, une éruption majeure dans l’hémisphère nord pousse la ZCIT vers le sud et les ouragans font de même. L’inverse est également vrai. Les chercheurs ont remarqué que les effets ont persisté pendant quatre ans après l’éruption, ce qui signifie que même après que le volcan se soit calmé, la saison cyclonique tropicale reste perturbée.
Si l’on considère que les cyclones tropicaux provoquent des dizaines de milliards de dollars de dégâts chaque année, l’amélioration des prévisions est essentielle pour atténuer les conséquences des prochaines catastrophes. Si les chercheurs parviennent à mieux comprendre les différents paramètres qui déterminent l’évolution des tempêtes – qu’il s’agisse des éruptions volcaniques ou des événements El Niño – les prévisions s’en trouveront forcément améliorées. .
Source: The Weather Network, PNAS.

————————————————–

One can read on the website of The Weather Network a very intersting article about the impact of volcanic eruptions on the formation of hurricanes. Until a recent study, scientists were not sure how the two interacted.

The study, led by researchers at The University of Quebec in Montreal and Columbia University, shows for the first time how large volcanic eruptions have impacts that echo through not just the tropical cyclone season following the eruption, but for years afterward.

It took quite a lot of time to find the link between the two natural phenomena because most of the major eruptions in recent history have occurred during El Niño or La Niña events (the El Niño Southern Oscillation, or ENSO), which themselves impact tropical cyclone seasons around the globe.

This study, based on sophisticated simulations, seeks to isolate major eruption events from any ENSO impact, and a distinct pattern emerged. The researchers found that large eruptions in either the northern or southern hemispheres served to push the Intertropical Convergence Zone (ITCZ) away from its usual position — further into the southern hemisphere in the case of a northern hemisphere eruption, and the opposite for an eruption south of the Equator.

The ITCZ is the band near the Equator where the trade winds converge, known as the ‘doldrums’ — so named by sailors because the surface winds are calm at this convergence point. This region plays a key role in the formation of tropical cyclones when the boundary drifts north or south out of the doldrums and into regions more favourable for cyclone development, be they Atlantic hurricanes or Pacific typhoons.

A large eruption in the tropical regions of the Northern Hemisphere leads to a southward shift of the Intertropical Convergence Zone. This results in an increase in hurricane activity between the Equator and the 10ºN line, and a decrease further north. The zone’s southward shift has further effects in the Southern Hemisphere, causing a decrease in activity on the coasts of Australia, Indonesia, and Tanzania, while Madagascar and Mozambique experience an increase. To put it briefly, a major eruption in the northern hemisphere pushes the ITCZ south, and the hurricanes go with it. The reverse is also true. More than that, the effects lingered for four years following the eruption, meaning even after the volcano has quieted, the tropical cyclone season was still altered.

With tropical cyclones generating tens of billions of dollars in damages every year, improved forecasting is one key to lessening the blow from future disasters. The more researchers can understand about the ingredients that go into determining the evolution of the storms – whether they are volcanic eruptions or strong El Niño events – the better future forecasts will be.

Source: The Weather Network, PNAS.

L’image ci-dessus montre l’évolution possible de l’intensité cyclonique, ou la force des tempêtes qui se développent, suite à des éruptions dans l’hémisphère Nord (en haut) et dans l’hémisphère Sud (en bas). [Source: Proceedings of the National Academy of Sciences ].