Nyiragongo (RDC) : la difficulté de la prévision éruptive // The difficulty of eruptive prediction

L’année dernière, le 22 mai 2021, le Nyiragongo (République Démocratique du Congo) est entré brutalement en éruption. Les habitants de Goma ont vu les villageois des environs arriver en courant avec des matelas sur la tête et de grands sacs contenant leurs affaires, leurs enfants derrière eux. Ces villageois ont dit qu’il y avait un feu de forêt et qu’il se rapprochait. À 17 heures, une forte lueur est apparue dans le ciel et des explosions étaient audibles au loin. Vers 18 heures, tout le monde s’est rendu compte qu’il s’agissait d’une éruption volcanique. Vers 3 heures du matin, la coulée de lave vomie par le Nyiragongo s’est arrêtée à une centaine de mètres de la porte d’entrée de la clinique de Buhene, et à moins de 800 mètres de l’aéroport de Goma. Selon l’ONU, plus de 13 villages et 3 629 maisons ont été détruits, laissant plus de 20 000 personnes sans abri. La lave ayant détruit les lignes électriques, un quart des habitants de Goma se sont retrouvés sans électricité. Au moins 37 personnes sont mortes, soit d’une exposition à la lave ou aux gaz, soit dans des accidents pendant leur fuite devant le danger.

Dans une nouvelle étude publiée le 31 août 2022 dans la revue Nature, des scientifiques du Centre européen de géodynamique et de sismologie de Walferdange au Luxembourg, ont expliqué pourquoi l’éruption avait surpris tout le monde.
La plupart des volcans sous surveillance scientifique envoient des signaux indiquant qu’ils sont susceptibles d’entrer en éruption. En se frayant un chemin à travers la roche, le magma génère des signaux sismiques et déforme le sol à mesure qu’il monte vers la surface en libèrant des gaz toxiques.
Malheureusement, ce ne fut pas le cas pour le Nyiragongo en 2021. Selon les volcanologues locaux, le volcan se comportait comme d’habitude. Ils n’ont détecté aucun changement particulier annonçant une éruption à court terme.
Dans l’étude, les chercheurs avancent l’hypothèse qu’avant le paroxysme, le magma a pénétré à l’intérieur du flanc du Nyiragongo. La masse de roche en fusion était déjà si proche de la surface que le flanc du volcan s’est éventré, libérant immédiatement la lave, sans les signes précurseurs habituels. Le 22 mai, le flanc du Nyiragongo avait probablement été affaibli au fil du temps par des secousses sismiques et par des intrusions magmatiques, de sorte qu’il a fini par céder et laissé échapper des torrents de lave qui ont dévalé ses pentes.
Ce genre d’éruption inopinée devrait servir de leçon aux scientifiques : malgré ce que nous savons déjà sur les volcans, il y a encore des choses que nous ne comprenons pas.
Avec sa lave fluide et rapide et sa capacité à émettre du dioxyde de carbone dans son environnement, le Nyiragongo est un volcan particulièrement dangereux qui met fréquemment en danger Goma, au Congo, et Gisenyi, une ville rwandaise à proximité.
Les éruptions latérales du Nyiragongo en 1977 et 2002 ont tué des centaines de personnes, mais ces deux événements avaient été précédées de signaux indiquant que le magma était sur le point d »atteindre la surface. On avait enregistré de puissants séismes et une modification de comportement du lac de lave. De plus, le Nyiamuragira voisin était entré en éruption et on sait qu’il existe une interconnexion des conduits d’alimentation avec ceux du Nyiragongo.
Depuis 2015, un nouveau réseau sismique est installé dans la région pour détecter les mouvements du magma du Nyiragongo. Avec le bruit émis par le lac de lave qui bouillonne dans le cratère, la « bande sonore » est souvent saturée et il est donc très difficile de détecter un comportement inhabituel du volcan.
Malgré des problèmes politiques, techniques et financiers ces dernières années, le personnel de l’Observatoire Volcanologique de Goma était en mesure de surveiller le volcan au moment de l’éruption et aucun signal précurseur n’a été détecté avant l’éruption de 2021. Cela a été confirmé par des scientifiques internationaux qui ont examiné les données recueillies à l’époque : le Nyiragongo n’a montré aucune activité sismique particulière et le lac de lave n’a pas montré de changement significatif.
Selon la nouvelle étude, tout cela signifie que l’utilisation des méthodes de surveillance traditionnelles sur le Nyiragongo ne permet pas de détecter de tels types d’éruptions. Cela rend ce volcan encore plus dangereux.
La capacité du Nyiragongo à dissimuler son comportement éruptif n’est pas unique dans le monde. Certains volcans peuvent émettre leur lave tranquillement au sein de paysages fracturés, tandis que d’autres montrent de soudaines explosions de vapeur. Il faut espérer qu’un jour, en étudiant ces éruptions soudaines et imprévues à l’aide d’équipements plus performants, on puisse détecter des précurseurs qui permettront de sauver des vies. Il se peut aussi que nous ne réussissions jamais à aller plus avant dans la prévision volcanique. On peut lire dans la conclusion de l’étude : « Il y a peut-être des choses qu’on ne pourra jamais prévoir. »
Source : Le New York Times, via Yahoo News.

——————————————–

Last year, on May 22nd, 2021, Nyiragongo volcano (Democratic Republic of Congo) eruptedsuddenly. The residents of Goma could see villagers from the foothills of Mount Nyiragongo hurrying with mattresses on their heads and large sacks with their belongings, children in tow. These villagers said there was a forest fire, and it was getting closer. By 5 pm, a fiery glow appeared in the sky and explosions could be heard in the distance. At about 6pm, everybody realized it was a volcanic eruption. At around 3 o’clock in the morning, the flow of lava stopped about 100 metres from the front gate of the clinic in Buhene, and less that 800 metres from Goma’s airport. According to the U.N., over 13 villages and 3,629 houses were destroyed, leaving over 20,000 people homeless. As the lava wiped out power lines, a quarter of Goma’s inhabitants were left without electricity. At least 37 people died, either from exposure to the lava or gases, or in accidents while trying to evacuate.

In a new study published on August 31st, 2022 in the journal Nature, scientists at the European Center for Geodynamics and Seismology in Walferdange, Luxembourg, explained how the eruption managed to ambush everyone.

Most sufficiently monitored volcanoes offer warning signals before erupting. Magma forcing its way through rock generates distinctive types of earthquakes, deforms the land as it ascends and unleashes noxious gases.

Not so for Nyiragongo in 2021. According to the local volcanologists, the volcano was behaving as usual. They were not able to detect any dramatic change that could tell that an eruption would occur.

In the study, the researchers suspect that, before the paroxysm, magma intruded below Nyiragongo’s flank. The molten mass was already so close to the surface that should the flank have broken apart, it would have immediately erupted without the usual precursory signs. On May 22nd, the flank, which had been weakened over time by earthquakes, and by incursions of magma, finally yielded and rivers of lava travelled down its slopes

This sort of unannounced eruption offers scientists a harsh lesson : despite what we already know about volcanoes, there are still things that we don’t understand.

With its fluid, fast-moving lava and its ability to suffuse carbon dioxide into its surroundings, Nyiragongo is an extraordinarily perilous volcano that frequently endangers Goma, in Congo, and Gisenyi, a contiguous Rwandan city.

Nyiragongo’s flank eruptions in 1977 and 2002 killed hundreds, but both were preceded by signs that magma was about to invade the surface: large earthquakes, strange lava lake convulsions and the eruption of the nearby Nyamulagira volcano, whose magmatic pathways are partially entwined with Nyiragongo’s.

Since 2015, a new seismic ntwork has been established in the region to detect Nyiragongo’s magma movements. Partly thanks to the endlessly bubbling lava lake, the soundtrack is as interminable as it is loud. Trying to pick out unusual changes is like trying to identify a new voice in a gigantic crowd of people talking.

Although the Goma Volcano Observatory has been beset with political, technical and financial troubles in recent years, its staff managed to monitor the volcano around the time of the eruption. And as far as they could tell, no precursory signals were detected before the 2021 outburst. This was confirmed by international scientists who scrutinized the scientific data that was gathered at the time : Nyiragongo had exhibited no peculiar seismic activity and its lava lake had not acted up; it had not significantly changed shape.

According to the new study, all this means that using traditional monitoring methods on Nyiragongo will not allow to detect such kinds of eruptions. This makes this volcano even more dangerous than previously thought.

Nyiragongo’s stealthy capabilities are not unique. Other volcanoes can let their lava loose from rifting landscapes relatively quietly, while others unleash unexpected blasts of steam. The hope is that by studying these eccentric eruptions, with improved technological wizardry, some lifesaving precursors will be spotted some day But it’s possible that we will never become perfect prophets of our volcanic futures. One can read in the study’s conclusion : “There may be things we will never be able to forecast.”

Source :The New York Times, via Yahoo News.

La lave du Nyiragongo a recouvert des zones habitées

Leçons de l’éruption du Mauna Loa (Hawaii) en 1916 // Lessons from the 1916 Mauna Loa eruption (Hawaii)

C’est en 1916 qu’est né le Parc National des Volcans d’Hawaii. C’est aussi cette même année que le Mauna Loa est entré en éruption avec la coulée de lave d’Honamalino sur la zone de rift sud-ouest (southwest rift zone – SWRZ) du volcan. L’éruption a commencé le 19 mai 1916 et a duré moins de deux semaines. Même si elle a été courte, on peut tirer des leçons pour les futures éruptions du Mauna Loa.
Le Dr Thomas Jaggar, qui avait fondé l’Observatoire des Volcans d’Hawaii, le HVO, en 1912, a tenté de prévoir la prochaine éruption du Mauna Loa en se basant sur le schéma éruptif des zones de rift depuis 1868. Les éruptions précédentes avaient eu lieu tantôt sur la zone de rift nord-est (NERZ ), tantôt sur la zone sud-ouest(SWRZ), tout en étant fréquemment séparées par des éruptions dans la caldeira sommitale du Mauna Loa (Moku’āweoweo).

 

Caldeira sommitale du Mauna Loa (Source: USGS)

Le Mauna Loa était entré en éruption en 1907 dans la SWRZ et en 1914-15 au sommet. C’est pourquoi le Dr Jaggar a émis l’hypothèse que la prochaine éruption latérale se produirait sur la NERZ.
Le 19 mai 1916, l’éruption sur la SWRZ n’a pas respecté le schéma éruptif que le Dr Jaggar avait observé sur le Mauna Loa. Comme de nombreuses éruptions sur l’île d’Hawaï, elle a été précédée d’une activité sismique. Les habitants de Ka’u ont ressenti de nombreuses secousses en début de matinée avant qu’apparaisse un impressionnant panache de vapeur au-dessus de la SWRZ du Mauna Loa dans la matinée du 19 mai. L’activité dans cette zone a duré moins de 24 heures.

 

Source: Université d’Hawaii

Plus tard, un autre essaim sismique a secoué la région de Ka’u lorsque la lave a pénétré dans la SWRZ, avec l’ouverture d’une ligne de fractures dans la partie inférieure de cette zone dans la soirée du 21 mai. La lave émise par les différentes bouches s’est répandue sur la crête de la zone de rift, avec des coulées de chaque côté: la coulée d’Honomalino a dévalé le versant sud-ouest, plus escarpé, tandis que la plus grande coulée de Kahuku se répandait plus largement vers le sud-est.
En raison de la nature ramifiée de l’éruption de 1916 et des coulées de part et d’autre de la zone de rift, avec un volume éruptif relativement faible, les coulées de lave ne sont pas allées très loin. Une seule structure a été détruite lors de l’éruption qui s’est terminée le 31 mai.
L’éruption de 1916 a été suivie par les éruptions de 1919 et 1926 sur la SWRZ du Mauna Loa, sans éruptions intermédiaires. Au cours de ces deux éruptions, des coulées de lave ont atteint l’océan et détruit des villages côtiers. Les coulées de lave de 1919 et 1926 auraient coupé l’actuelle Highway 11 et causé de graves problèmes aux personnes qui habitent actuellement dans ce secteur.
Plusieurs autres coulées de lave en provenance de la SWRZ du Mauna Loa, notamment en 1868, 1887 et 1950, ont également affecté cette région. Elles ont traversé des routes et atteint l’océan, parfois quelques heures après l’ouverture des bouches éruptives.

Eruptions sur la SWRZ du Mauna Loa (Source: USGS)

L’éruption de 1950 sur la SWRZ a été la plus grande éruption observée sur le Mauna Loa. Elle a donné naissance à des coulées qui se sont dirigées de part et d’autre de la crête de la zone de rift, comme lors de l’éruption de 1916. Toutefois, contrairement à l’éruption de 1916, trois coulées de lave sont apparues en 1950 et sont entrées dans l’océan moins de 24 heures après le début de l’éruption. Une répétition de l’éruption de 1950 serait aujourd’hui très problématique en raison de l’importante population de la région.
La principale leçon à tirer de l’éruption du Mauna Loa en 1916 est que les éruptions – et les volcans – ne suivent pas toujours les mêmes schémas éruptifs . Alors que la plupart des éruptions observées dans la SWRZ couperaient au minimum la Highway 11, la plus petite éruption de 1916 démontre que ce n’est pas toujours le cas.
Au cours des 200 dernières années, les éruptions sur les zones de rift du Mauna Loa se sont réparties de manière égale entre la SWRZ et la NERZ. Cependant, la remarquable série de quatre éruptions consécutives (1907, 1916, 1919, 1926) sur la SWRZ montre le peu de fiabilité des modèles de probabilité éruptive, aussi bien à long terme qu’à court terme.
Source : USGS, HVO.

———————————————

1916 marked the birth of Hawaiʻi Volcanoes National Park, but it was also the year of a Mauna Loa eruption with the Honamalino flow on the volcano’s Southwest Rift Zone (SWRZ).

The eruption began on May 19th, 1916, and lasted less than two weeks. even though it was short, it offers lessons for future Mauna Loa eruptions.

Dr. Thomas Jaggar, who had founded the Hawaiian Volcano Observatory in 1912, attempted to forecast the next Mauna Loa eruption based on the pattern of rift zone eruptions on the volcano since 1868. The previous rift eruptions alternated locations between the Northeast Rift Zone (NERZ) and the SWRZ though these were frequently separated in time by eruptions confined to Mauna Loa’s summit caldera (Moku‘āweoweo).

Mauna Loa had erupted in 1907 from the SWRZ and in 1914-15 from the summit. Therefore, Dr. Jaggar hypothesized that the next Mauna Loa flank eruption would occur from the NERZ.

The May 19th, 1916, SWRZ event deviated from the pattern of eruptions Dr. Jaggar had observed at Mauna Loa. Like many eruptions on the Island of Hawaii, it was preceded by earthquake activity. Residents of Ka‘u felt numerous earthquakes early in the morning before an impressive steam plume rose high up on Mauna Loa’s SWRZin the morning of May 19th, marking the start of the eruption (sse image above). Activity in this area lasted less than 24 hours.

Later, another seismic swarm shook the Ka‘u area as lava intruded the SWRZ resulting in a line of fissures opening on the lower SWRZ on the evening of May 21st. Lava from the vents spread over the crest of the rift zone feeding lava flows on either side : the Honomalino flow moving down the steep southwest side and the larger Kahuku flow spreading more widely to the southeast.

Due to the branched nature of the 1916 eruption and the flows on either side of the rift zone, coupled with the relatively small total erupted volume, lava flows did not travel very far. Only one homestead was destroyed during the eruption, which ended on May 31st.

The 1916 eruption was followed by Mauna Loa’s 1919 and 1926 SWRZ eruptions with no intervening eruptions. During both eruptions, lava flows reached the ocean and destroyed Hawaiian coastal villages. The 1919 and 1926 lava flows would have cut the current Highway 11 and caused severe disruptions for current residents.

Several other lava flows from Mauna Loa’s SWRZ, including in 1868, 1887 and 1950, have also travelled quickly through this region, crossing roads and entering the ocean, sometimes within a matter of hours of the vent opening.

The 1950 eruption on the SWRZ was the largest recorded Mauna Loa eruption and fed flows on either side of the rift zone crest like the 1916 eruption. In a contrast to the 1916 eruption, three lava flows erupted in 1950 entered the ocean within less than 24 hours of that eruption starting.

A repeat of the 1950 eruption would be of great concern today due to the increased population of the area.

The main lesson to be drawn from Mauna Loa’s 1916 eruption is that eruptions and volcanoes do not always follow the same patterns. While repeats of most recorded SWRZ eruptions would at a minimum cut off Highway 11, the smaller 1916 eruption demonstrates this is not always the case.

Over the past 200 years, Mauna Loa rift zone eruptions are evenly divided between the SWRZ and the NERZ. However, the remarkable run of four SWRZ eruptions in a row (1907, 1916, 1919, 1926) shows the weakness of long-term or short-term probability models.

Source: USGS, HVO.

 

Coulée de lave et système d’alerte sur le versant SO du Mauna Loa (Photo: C. Grandpey)

Prévision éruptive à quatre ans? // Four-year eruptive prediction?

Selon un volcanologue du Queens College de New York qui semble avoir des dons de devin, l’éruption du Cumbre Vieja à La Palma était en préparation depuis quatre ans. C’est ce que l’on peut lire dans un article publié dans la revue Science. Le scientifique explique que l’analyse préliminaire des données montre que l’éruption était prévisible, à commencer par un essaim sismique enregistré en octobre 2017. Par la suite, « l’activité s’est accélérée jusqu’au moment où une éruption a semblé probable, huit jours seulement avant que le magma perce la surface ».

Il y aurait beaucoup à dire sur cette pseudo prévision qui n’est, en fait, qu’une simple constatation. Un essaim sismique enregistré quatre ans avant une éruption sur un volcan actif ne permet pas de déterminer le moment où il va entrer en éruption. On sait que le risque existe, mais la prévision s’arrête là. Il faut d’autres paramètres pour affiner la prévision. En plus d’une hausse de la sismicité, c’est parce qu’une inflation a été enregistrée sur le Cumbre Vieja dans les jours qui ont précédé l’éruption que les scientifiques espagnols ont alerté les autorités qui ont procédé à des évacuations.

La prévision d’une éruption à quatre ans fait partie des rêves et des objectifs des volcanologues, mais nous n’en sommes pas encore là. Les nouvelles technologies ont permis et permettent encore de progresser. De plus en plus d’instruments sont installés sur les volcans actifs. Les drones aident à mieux voir ce qui se passe à l’intérieur d’un cratère en ébullition. La muographie permet de mieux connaître les entrailles d’un volcan, mais son utilité en matière de prévision, et donc de prévention, volcanique reste faible.

La volcanologie progresse, mais il reste un long chemin à parcourir pour aboutir à une prévision éruptive digne de ce nom. L’éruption catastrophique du Semeru vient nous les confirmer.

——————————————

According to a volcanologist from Queens College in New York who appears to have diviner gifts, the eruption of Cumbre Vieja in La Palma had been in preparation for four years. This prediction can be read in an article published in the journal Science. The scientist explains that the preliminary analysis of the data shows that the eruption was predictable, starting with a seismic swarm recorded in October 2017. Thereafter, « activity accelerated until the moment when an eruption appeared likely, just eight days before magma pierced the surface.  »
There is a lot to say about this pseudo prediction which is, in fact, only a simple observation. A seismic swarm recorded four years before an eruption on an active volcano cannot determine when it will erupt. We know that the risk exists, but prediction cannot go any further. Other parameters are needed to refine the prediction. In addition to an increase in seismicity, it was because inflation was recorded on Cumbre Vieja in the days leading up to the eruption that Spanish scientists alerted the authorities who carried out evacuations.
Predicting a four-year eruption is one of the dreams and goals of volcanologists, but we’re not there yet. New technologies have made it possible and still allow to make progress. More and more instruments are installed on active volcanoes. Drones help to better see what’s going on inside a boiling crater. Muography makes it possible to better understand the inside of a volcano, but it is useless in terms of prediction, and therefore prevention.
Volcanology is progressing, but there is still a long way to go to get to a reliable eruptive prediction. Mt Semeru’s deadly eruption has just confirmed this.

Capture d’écran webcam de l’éruption du Cumbre Vieja

Semeru: les lacunes de la prévision et de la prévention éruptives // The shortcomings of eruptive prediction and prevention

Au lendemain de l’éruption meurtrière du Semeru (39 morts et 12 disparus, et des dizaines d’autres gravement brûlés), on se rend compte une fois de plus à quel point la prévision volcanique est faible, surtout sur les volcans explosifs de la Ceinture de Feu du Pacifique.
L’éruption du Semeru s’est produite sans prévenir. Elle soulève des questions et des doutes au sein de la population sur l’efficacité du système indonésien d’alerte aux catastrophes et sur les dangers de la reconstruction sur les pentes fertiles mais dangereuses d’un volcan.
Les autorités ont déclaré que des messages d’alerte avaient été envoyés aux administrateurs locaux, mais elles ont reconnu qu’ils n’avaient pas donné lieu à un ordre d’évacuation, « en partie parce que l’activité du volcan est difficile à prévoir. »
Les messages recommandant des évacuation sont normalement relayés par l’agence nationale de gestion des catastrophes, comme ce fut le cas en 2017 lorsqu’elle a ordonné à 100 000 personnes vivant près du mont Agung à Bali de quitter immédiatement la zone de danger. C’était une bonne mesure de prévention, même si aucune éruption majeure n’a eu lieu.
Curah Kobokan est l’un des villages détruits par la dernière éruption du Semeru. En javanais, ce nom signifie « bol en train de déverser », en référence à la rivière qui passe à proximité. Autrefois source de vie, la rivière est devenue source de malheur pour ce village. Lorsque le Semeru est entré en éruption, le cours d’eau a véhiculé d’épaisses coulées de boue et de cendres à haute température qui se sont déversées directement dans Curah Kobokan, transformant le village en un champ de cendres grises qui a englouti les lignes électriques, tandis que seuls les toits des maisons dépassaient de la fange.
Les villageois disent que l’air est devenu « brûlant et noir » en quelques secondes. Les gens ont crié et se sont enfuis; certains se sont réfugiés dans une maison de prière, d’autres se sont blottis dans une canalisation en béton. Sur les huit villageois interrogés, aucun n’a déclaré avoir été prévenu d’une éruption imminente. Ils ont tous ajouté que si les gens avaient été prévenus, ils seraient partis. Au lieu de cela, en quelques minutes, la coulée pyroclastique les a tués.
La dévastation causée par le Semeru peut être attribuée à un ensemble de facteurs, mais personne ne se sent responsable. Cela me rappelle la dernière grande éruption du volcan Fuego (Guatemala) et ses centaines de morts. À la suite de l’événement, l’INSIVUMEH et le CONRED se sont mutuellement attribués la responsabilité du désastre.
Le directeur de l’agence géologique indonésienne a déclaré que des messages avaient été envoyés aux autorités locales pour les avertir du risque de coulée pyroclastique et que la rivière près de Curah Kobokan était marquée en rouge sur la carte.
L’agence de gestion des catastrophes de Java Est a déclaré que les mises e garde avaient été transmises aux agences locales, mais qu’il n’y avait pas eu d’ordre spécifique d’évacuation.
Les scientifiques expliquent que la nature de l’éruption – un effondrement du dôme de lave peut-être déclenché par des facteurs externes tels que de fortes pluies – était difficile à prévoir. Un chercheur explique que les éruptions déclenchées par les effondrements de dômes de lave représentent environ 6 % de l’ensemble des éruptions volcaniques.
Un autre facteur causal de la tragédie est la réalité de la vie sur les pentes du Semeru, où au fil des décennies, les villageois se sont habituées à l’activité volcanique, y compris les émissions de gaz et de vapeur au sommet du volcan.
Alors que les autorités évaluent les dégâts (100 000 maisons ont été endommagées ou détruites), il semble y avoir une prise de conscience du danger de vivre si près du volcan. Le président indonésien a déclaré qu’au moins 2 000 maisons devraient être déplacées.
Avec 142 volcans potentiellement actifs, l’Indonésie a la plus forte densité de population vivant à proximité de l’un d’eux. 8,6 millions de gens habitent à moins de 10 km d’un volcan. Lorsque des coulées pyroclastiques se déclenchent, il n’y a pas le temps de fuir. Si de véritables mesures de prévention ne sont pas mises en place, la vraie question sera de savoir quel volcan indonésien sera le prochain tueur…
Source : d’après un article paru dans Yahoo News.

——————————————-

In the wake of the deadly Semeru eruption (39 dead and 12 missing, with tens of others severely burnt) one realises once again how low volcanic prediction is, above all on the explosive volcanoes of the Pacific Ring of Fire.

The Semeru eruption occurred with no warning and it raises questions and doubts among the population about the effectiveness of Indonesia’s disaster warning system, and the dangers of rebuilding on the volcano’s fertile but precarious slopes.

Officials said some messages were sent to local administrators but acknowledged they did not result in an evacuation order, « in part because the volcano’s activity is hard to predict. »

Warnings to evacuate are normally relayed by the national disaster mitigation agency, such as in 2017 when it ordered 100,000 people living near Bali’s Mt Agung to immediately leave the danger zone It was the right prevention measure, although no major eruption occurred.

One of the villages affected by Mt Semeru’s last eruption was Curah Kobokan which, in Javanese, means « pouring bowl », a reference to the river that snakes by it. Once a source of life, the river also became the community’s downfall. When Semeru erupted, the river carried thick and hot flows of lava and ash directly into Curah Kobokan, turning the village into a field of gray ash piled as high as the powerlines, a few roofs jutting out of the newly formed disaster landscape.

Villagers say the air grew blazing hot and pitch black in seconds. People screamed and fled in panic, some taking refuge in a prayer house, others huddled in a concrete drain. Out of eight residents interviewed, not one said they received warning of an impending eruption. They added that if there had been a warning, people would have evacuated. Instead in a matter of minutes, la pyroclastic flow killed a lot of people.

The devastation wreaked by Semeru can be ascribed to a deadly confluence of factors, for which no one wants to take the blame. This reminds me of the last major eruption of Fuego volcano (Guatemala) which killed hundreds of people. Following the event, INSIVUMEH and CONRED accursed each other of the disaster.

The head of Indonesia’s geological agency says messages were sent to local officials warning of hot ash clouds and that the river near Curah Kobokan was marked red on the map.

The East Java disaster mitigation agency says the warnings were passed on to local resilience officers but there were no specific orders to evacuate.

Experts say the nature of the eruption, a collapse of the lava dome possibly triggered by external factors such as heavy rain, was also difficult to predict. A researcher explains that eruptions triggered by lava dome collapses account for about 6% of all volcanic eruptions.

Another causal factor for the tragedy is the reality of life on Semeru’s slopes, where over the decades communities have become inured to volcanic activity, including the summit letting off steam.

As disaster officials survey the devastation (100,000 homes were damaged or destroyed), there is growing talk about the danger of living so close to the mountain. The Indonesian President said that at least 2,000 homes should be moved.

With 142 volcanoes, Indonesia has the largest population living in close range to a volcano, including 8.6 million within 10km. When pyroclastic flows are triggered, there is no time to run. If no new prevention measures are taken, the real question will be to knowwhich Indonesian volcano will be the next killer…

Source: after an article published in Yahoo News.

Photos : C. Grandpey