Avec la prévision sismique nulle, la prévention réduit les risques // With zero seismic prediction, prevention reduces risks

Dans un article récemment publié sur le site du Hawaiian Volcano Observatory (HVO), l’USGS confirme que nous sommes toujours incapables de prévoir les séismes majeurs. Les sismologues savent qu’il se produira probablement cette semaine quelque part dans le monde un séisme de magnitude 6.0, mais ils ne savent pas où. En s’appuyant sur les statistiques, ils savent juste que, probablement, au moins un événement de M 6.0 se produira sur Terre au cours d’une semaine donnée. De la même manière, il y aura, à un moment ou un autre, un séisme de M 7 en Alaska, mais on ne sait pas quand. Ce peut être demain, le mois prochain ou dans quelques millions d’années. Aucun endroit sur Terre n’est à l’abri d’un séisme destructeur.
Les scientifiques du HVO expliquent sur leur site web qu’il y aura un séisme à Hawaii demain, mais ils ne savent pas quelle sera son intensité. Néanmoins, les sismologues locaux peuvent anticiper certaines magnitudes avec une fiabilité correcte. Il est presque certain qu’un tremblement de terre de M 1.0 sera enregistré demain à Hawaii, car un tel événement est fréquent et fait partie de l’activité volcanique habituelle. Il sera détecté par les équipements de surveillance, mais avec une magnitude aussi faible, il ne sera pas ressenti par la population qui ne s’inquiètera donc pas.
Le problème est que les séismes les plus puissants, donc les plus destructeurs sont beaucoup plus difficiles à prévoir. L’examen des événements enregistrés au cours des 200 dernières années à Hawaii permet de connaître les endroits où des secousses importantes et destructrices se sont produites dans le passé, mais il n’y a aucun moyen de prévoir de manière fiable quand elles se produiront de nouveau.

Si la prévision sismique reste à un niveau très bas, voire nul, la prévention reste possible et la préparation aux tremblements de terre peut se faire à n’importe quel moment. Nous n’avons pas besoin d’attendre la prévision du « Big One » pour nous préparer à un séisme destructeur.
Une façon de s’y préparer est de participer à un exercice de prévention. Ces exercices sont très fréquents au Japon, mais ils ont également lieu dans certains endroits aux États-Unis. Ainsi, en 2019, plus de 42 000 personnes dans l’État d’Hawaii ont participé à un exercice annuel de préparation aux tremblements de terre. Il s’agit du «Great Hawai’i ShakeOut». Le ShakeOut Day, journée internationale de préparation aux séismes, dont fait partie le «Great Hawai’i ShakeOut», a toujours lieu le troisième jeudi d’octobre. À cette occasion, le HVO invite la population hawaiienne à participer à l’opération « Drop, Cover, and Hold on. » Les participants sont invités à s’inscrire sur le site web « ShakeOut.»
«Drop» signifie s’accroupir sur le sol; «Cover» signifie se mettre à l’abri sous une table ou un bureau ; «Hold on» suppose de maintenir cette position tant que le danger est présent. Ce triptyque permet d’éviter d’être renversé ou blessé lors d’un séisme dans la plupart des situations – mais pas toutes – à l’intérieur d’un bâtiment. Le site web « ShakeOut » fournit plus de détails concernant d’autres situations: à l’extérieur, à l’école ou au travail, à la plage ou au volant d’une voiture.
S’il est important de savoir quels gestes adopter pendant un séisme, il est également important de savoir ce qu’il faut faire avant et après un tel événement. Par exemple, on peut réduire considérablement les dégâts causés par un tremblement de terre avec quelques astuces simples, comme utiliser de la gomme adhésive ou des bandes Velcro pour sécuriser les objets avant qu’un séisme se produise.
Après le tremblement de terre, il y a d’autres risques à prendre en compte, tels que des lignes électriques endommagées et la possibilité d’un tsunami.
La réponse à ces questions et à d’autres se trouve sur le site http://shakeout.org/hawaii.

Source: USGS / HVO.

—————————————————–

In a recent article, USGS confirms that major earthquakes cannot be predicted. Seismologists know that there will be a magnitude-6 earthquake this week, buth they just don’t know where. Probabilistically, at least one M 6 earthquake will happen on Earth on any given week. In the same way, there will be an M 7 earthquake in Alaska, but we just don’t know when. It could be tomorrow, next month, or in the next few million years, but no location on Earth is exempt from a damaging earthquake.

HVO scientists explain on their website that there will be an earthquake in Hawaii tomorrow, bu they just don’t know how big. However, local seismologists can get some magnitudes generally right. It is nearly sure that an M 1.0 earthquake will be recorded in Hawai‘i tomorrow because this is part of the usual volcanic activity.  The event will not be detected by anything other than sensitive monitoring equipment, so the prediction is not publicly relevant.

The problem is that the timing of larger, damaging earthquakes is much harder to narrow down. Looking at the record of earthquakes over the past 200 years in Hawai‘i helps to understand where large, damaging earthquakes have occurred in the past, but there is no way to reliably predict when damaging earthquakes will happen.

While the prediction of earthquakes remains at a very low level, prevention remains possible and earthquake preparedness can happen at any time. We do not need the predictions of a “big one” to actually be ready for a damaging earthquake.

One way to train oneself to be ready for a damaging earthquake is to participate in an earthquake drill. Such drills are very frequent in Japan, but also occur in some places in the U.S. In 2019, over 42,000 individuals in the State of Hawai‘i participated in an annual earthquake preparedness drill, called “The Great Hawai‘i ShakeOut.” International ShakeOut day, which “The Great Hawai‘i ShakeOut” is a part of, is always the third Thursday of October. On this occasion, HVO invites everyone in Hawai’i to “Drop, Cover, and Hold on!”

The participants in the drill are invited to register on the ShakeOut website .

During “The Great Hawai‘i ShakeOut,” the public is encouraged to practice “Drop, Cover, and Hold on!” as part of the earthquake drill. ‘Drop’ means crouching onto the ground; ‘Cover’ means putting oneself under a table or a desk; ‘Hold on’ mens staying in this position as long as the danger is present. “Drop, Cover, and Hold on!” will help reduce the risk of being knocked down or injured during an earthquake for most indoor situations, but not all. The ShakeOut website provides more detailed earthquake safety actions for other situations: outdoors, at school or work, at the beach, or while driving a car.

While knowing what to do during an earthquake is important, it is also important to know what should be done before and after an earthquake. For instance, one can greatly reduce earthquake damage with a few simple life hacks, by using putty or Velcro strips to secure items before an earthquake happens.

After an earthquake passes, there are other hazards that should be considered, such as damaged utility lines and the potential for a tsunami being generated.

The answer to these and other questions can be found at http://shakeout.org/hawaii.

Source : USGS / HVO.

La prévention sismique à Vancouver (Canada)

Piton de la Fournaise : Pétera, ou pétera pas? // An eruption, or no eruption?

Dans son bulletin du 3 octobre 2020, l’OVPF indique qu’une activité sismique est toujours enregistrée sous le Piton de la Fournaise (Ile de la Réunion), en particulier sous la zone sommitale et le flanc Est (voir les détails de cette sismicité sur le site web de l’Observatoire).

A côté de cette sismicité, des déformations sont toujours observées. Elles ont diminué sur le flanc Est du volcan mais ont repris sous la zone sommitale. S’agissant du flanc Est, la station GPS « GPNG » de l’OVPF localisée dans la partie haute des Grandes Pentes, à 1414 m d’altitude, a glissé d’environ environ 73 cm depuis le début de la crise et s’est soulevée d’environ 26 cm au cours de la même période.

Les concentrations en CO2 dans le sol sont en augmentation en champ lointain, paramètre souvent associé à une remontée de magma depuis le manteau.

La sismicité et les déformations sous le flanc Est montrent que l’intrusion magmatique est encore active et peut déboucher sur une éruption. Certains Réunionnais expliquent que la crise sismique exceptionnellement longue qui s’est produite lundi et mardi derniers rappelle celle de 2007 qui avait précédée « l’éruption du siècle ». En attendant, l’Enclos reste fermé au public.

Source : OVPF et presse locale.

La prévision éruptive montre ses limites, mais il faut reconnaître que le Piton de la Fournaise a un comportement particulièrement désarçonnant…

———————————————-

In its update of October 3rd, 2020, OVPF indicates that seismic activity is still recorded under Piton de la Fournaise (Reunion Island), in particular under the summit area and the eastern flank (see the details of this seismicity on the Observatory’s website).

Alongside this seismicity, deformations are still observed. They have declined on the eastern flank of the volcano, but have started again in the summit area. As far as the eastern flank is concerned, the Observatory’s « GPNG » GPS station located in the upper part of the Grandes Pentes, at an altitude of 1,414 m, has slid by about 73 cm since the start of the crisis and risen by about 10 inches during the same period.

CO2 concentrations in the soil are increasing in the far field, a parameter often associated with  the ascent of magma from the mantle.

Seismicity and deformations beneath the eastern flank show that the magmatic intrusion is still active and may lead to an eruption. Some people on the island explain that the last seismic crisis reminds them of the 2007 crisis which preceded the “eruption of the century”. In the meantime, the Enclos remains closed to the public.

Source : OVPF and local newspapers.

Eruptive prediction is showing its limits, but one should admit that the Piton de la Fournaise behaves particularly puzzling way…

Photo : C. Grandpey

Amélioration de la prévision volcanique en Nouvelle Zélande // Improving volcanic prediction in New Zealand

En passant au peigne fin 350 000 années de volcanisme, des scientifiques de l’université Massey ont trouvé des preuves de centaines d’éruptions dans l’Ile du Nord en Nouvelle Zélande. De tels événements causeraient d’importants dégâts s’ils se produisaient à l’heure actuelle. Dans le champ volcanique d’Auckland – sur lequel repose une partie de la ville aujourd’hui – ils ont détecté quelque 54 volcans ayant montré des signes d’activité sur un laps de temps de  250 000 ans. Si de telles éruptions devaient se produire aujourd’hui, elles perturberaient fortement la vie des Kiwis.

Dans le même temps, des chercheurs de l’Université d’Auckland affirment avoir inventé un système d’alerte capable d’annoncer les éruptions volcaniques. Il permettrait d’empêcher que se produisent des tragédies comme celle qui a tué 21 personnes sur White Island en 2019. Leur étude a été publiée dans Nature Communications.
Les scientifiques expliquent que leurs recherches «montrent des schémas d’activité sismique permettant de donner une alerte avant une éruption». Ils pensent que leur nouveau système aurait déclenché un signal d’alerte 16 heures avant l’éruption meurtrière de White Island.
Le réseau sismique géré par GeoNet répertorie chaque année les données générées par des milliers de séismes et des événements volcaniques en Nouvelle Zélande, mais ces données ne sont pas prédictives. Dans le cadre de leur étude, les scientifiques ont appliqué les données d’éruptions antérieures à des «algorithmes d’interprétation automatique» permettant de mettre au point des modèles de phase pré-éruptive. Ils ont ainsi remarqué que l’éruption de 2019 à White Island avait été précédée de 17 heures d’alerte sismique. Il y a d’abord eu une phase intense d’activité sismique de quatre heures qui, selon eux, correspondait à l’ascension de nouveaux fluides magmatiques qui ont accru la pression des gaz et de l’eau déjà emprisonnés dans la roche au-dessus. Ce processus a conduit à l’éruption, comme si le couvercle d’une cocotte-minute avait sauté. Un signal semblable avait été enregistré 30 heures avant une éruption en août 2013, et il était présent dans deux autres éruptions en 2012.
Les géologues espèrent adapter ces données à d’autres volcans, tels que le Tongariro et le Ruapehu, mais ils reconnaissent que leur système n’est pas infaillible. Ainsi, il n’aurait déclenché un signal d’alerte que dans quatre des cinq dernières éruptions majeures à White Island. Ils pensent, malgré tout, qu’il y a de bonnes chances pour que leur système permette de détecter des éruptions comme celle de 2019, ou d’autres.

Source: Médias d’information néo-zélandais.

—————————————

Scientists from the Massey University have revealed evidence of hundreds of ancient eruptions in New Zealand after reconstructing 350 000 years of volcanism across the North Island. These explosions would cause widespread havoc if they occurred in the present time. In the Auckland Volcanic Field, they have detected about 54 volcanoes over 250 000 years of course. Should such eruptions occur today, they would be big enough to cause significant disruption.

Meantime, New Zealand scientists at the University of Auckland say they have invented a warning system to predict volcanic eruptions that may prevent future tragedies such as the one that killed 21 people on White Island in 2019. Their study has been published in Nature Communications.

The researchers explain that their research “shows patterns of seismic activity before an eruption that make advance warning possible”. They think their new system would have raised the alert 16 hours before the volcano’s deadly eruption.

The GeoNet system reports back data from the country’s thousands of earthquakes, and less frequent volcanic events, each year as they happen, but they are not predictive. To perform their study, the scientists have applied past eruption data to “machine learning algorithms”, allowing them to look for patterns in the build-up to eruptions. In this way, they have noticed that last year’s eruption at White Island was preceded by 17 hours of seismic warning. It began with a strong four-hour burst of seismic activity, which they think was fresh magmatic fluid rising up to add pressure to the gas and water trapped in the rock above. This led to its eventual bursting, like a pressure cooker lid being blasted off. A similar signal was recorded 30 hours before an eruption in August 2013, and it was present in two other eruptions in 2012.

The geologists hope to adapt the data to apply to other volcanoes, such as Mt Tongariro and Mt Ruapehu, but admit it is not fool-proof. They say the system would only have raised an alert in four of the last five major eruptions at White Island, but they think there is a good chance eruptions like the 2019 event or larger will be detected.

Source : New Zealand news media.

Photo : C. Grandpey

Piton de la Fournaise (Ile de la Réunin) : on attend toujours l’éruption ! // Still waiting for the eruption !

Après la crise sismique enregistrée le 3 juillet 2020 sur le Piton de la Fournaise, avec 202 séismes volcano-tectoniques au niveau de la zone sommitale, on a enregistré un retour au calme avec aucun événement le 4 juillet et un seul le 5 juillet.

Cela ne signifie pas pour autant que le risque d’une éruption soit définitivement écarté car les GPS continuent à indiquer une inflation de l’édifice volcanique, aussi bien au niveau de la zone sommitale que dans le champ lointain, signe de la mise sous pression du volcan sous la poussée du magma.
L’éruption n’a certes pas eu lieu dans un délai de minutes ou d’heures comme le pensaient à l’origine les scientifiques de l’OVPF, mais la partie n’est probablement que remise.

Il ne faut toutefois pas s’attendre à un événement majeur car les hésitations du magma pour percer la surface montrent que la pression des gaz – moteurs de l’éruption, il ne faudrait pas l’oublier – ne semble pas très forte..

Patience. Sur l’île de la Réunion, le risque pour les populations est faible car la plupart des éruptions ont pour cadre l’Enclos Fouqué. La prévision éruptive dispose donc d’une grande marge d’erreur, contrairement à ce qui se passe pour les volcans explosifs de l’Indonésie ou des Philippines, par exemple. Et puis, les éruptions du Piton de la Fournaise sont effusives, ce qui laisse le temps de déguerpir, si nécessaire. Des éruptions pour touristes…

—————————————-

After the seismic crisis recorded on July 3rd, 2020 on Piton de la Fournaise, with 202 volcano-tectonic earthquakes in the summit area, no event was detected on July 4th and only one on July 5th.
This does not mean, however, that the risk of an eruption is definitively ruled out because the GPS system continues to indicate an inflation of the volcanic edifice, both in the summit area and in the far field, a sign of the pressurization of the volcano under the push of magma.
The eruption did not occur within minutes or hours as originally predicted by OVPF scientists, but it will probably take place sooner or later.
However, we should not expect a major event because the hesitations of magma to pierce the surface show that the pressure of the gases – which drive the eruption, it should not be forgotten – does not seem very strong.
Patience. On Reunion Island, the risk for the populations is low because most of the eruptions take place in the Enclos Fouqué. Eruptive prediction therefore has a wide margin of error, unlike the explosive volcanoes of Indonesia or the Philippines, for example. What is more, the eruptions of Piton de la Fournaise are effusive, which gives time to clear off, if necessary. Eruptions for tourists…

Prochaine éruption sur le versant est, ou du côté ouest? Seul le volcan connaît la réponse! ( Photos : C. Grandpey)

Prévision volcanique et principe de précaution

Heureusement qu’il y a le principe de précaution. Côté prévision éruptive, ça patauge un peu depuis quelque temps.

Sur l’Ile de la Réunion, on nous annonçait une éruption « imminente » du Piton de la Fournaise depuis le mois de décembre 2019. Tous les ingrédients étaient présents pour que le volcan se manifeste à nouveau, mais son humeur n’était pas éruptive à ce moment-là. Il a fallu attendre le 10 février 2020 pour que la lave montre le bout de son nez, avant de disparaître quelques jours plus tard..

Comme je l’expliquais précédemment, la prévision éruptive n’a qu’une importance relative à la Réunion dans la mesure où les éruptions se déroulent en général dans l’Enclos Fouqué qui est une zone désertique.

Le seul principe de précaution consiste, pour la Préfecture, à interdire l’accès de l’Enclos aux randonneurs. La mesure est facile à appliquer étant donné que l’entrée dans le site se fait par un portail qu’il suffit de cadenasser.

Le Piton de la Fournaise constitue surtout un excellent laboratoire pour étudier le comportement (fantasque !) d’un volcan.

++++++++++

En Islande, l’activité sismique sur la Péninsule de Reykjanes a décontenancé les scientifiques de l’Icelandic Met Office (IMO). Ces derniers sont habitués à voir des essaims sismiques faire frissonner la péninsule de temps à autre. Le phénomène est prévisible et facile à comprendre étant donné le contexte tectonique dans lequel se situe l’Islande.

Le problème, c’est que depuis quelques semaines on enregistrait une inflation de plusieurs centimètres dans un secteur de la péninsule. Annonçait-elle une prochaine éruption ? L’IMO faisait état d’une possible intrusion magmatique, démentie quelques jours plus tard. Autrement dit, personne ne savait ce qui allait se passer.

Contrairement à l’Enclos Fouqué à la Réunion, le Péninsule de Reykjanes est habitée, même si la densité de population n’est pas énorme. De plus, en cas d’éruption, l’aéroport international de Keflavik, situé à quelques encablures de la péninsule, pourrait être impacté par des nuages de cendre.

La prévision sismique ou éruptive étant impossible, les autorités islandaises ont mis en place le principe de précaution et demandé aux habitants de se tenir prêts à une évacuation en cas d’éruption. Il leur a été vivement conseillé d’être attentifs aux messages d’alerte susceptibles d’être envoyés sur leurs smartphones.

A ce jour, aucune éruption ne s’est produite sur la Péninsule de Reykjanes.

++++++++++

Aux Philippines, le volcan Taal a montré, lui aussi, les difficultés de la prévision éruptive. Le PHIVOLCS n’a pas prévu l’éruption qui a débuté le 12 janvier 2020 avec des panaches de vapeur et de cendre qui sont montés à 10-15 km de hauteur. L’Institut a immédiatement relevé le niveau d’alerte à 4 (éruption dangereuse éruption imminente), sur une échelle de 5 échelons. Aux Philippines, tous les ingrédients étaient présents pour que se produise une puissante éruption (sismicité, gonflement de l’édifice volcanique, intensification des émissions gazeuses), mais l’événement majeur attendu ne s’est (heureusement) jamais produit.

Le PHIVOLCS a constamment conseillé aux autorités d’évacuer sur une vaste zone les populations menacées par le Taal. Le principe de précaution a bien fonctionné et le 19 janvier 2020, 96 000 personnes avaient quitté leurs domiciles.

A la mi-février 2020, le niveau d’alerte pour le Taal est redescendu à 2, ce qui a permis à un grand nombre de personnes de quitter les structures d’hébergement provisoires.

++++++++++

Le 9 décembre 2019, le cratère de White Island (Nouvelle Zélande) explosait, projetant des nuages de cendre, d’eau et de vapeur acides à haute température. Une quarantaine de touristes se trouvaient dans le cratère au moment de l’éruption et 21 personnes ont péri, soit immédiatement, soit des suites de leurs très graves brûlures.

Au moment de l’événement ; le niveau d’alerte était à 2 sur une échelle de 5 : « Moderate to heightened volcanic unrest [Activité volcanique modérée à élevée] .» Selon les volcanologues néo-zélandais, on avait affaire à une “activité volcanique pouvant conduire à un danger éruptif,” le type même de mise en garde vague que l’on rencontre sur tous les volcans actifs de la planète. Aucune éruption ou explosion majeure n’était prévue le 9 décembre 2019, même si le volcan présentait des signes d’activité.

C’est une fois la catastrophe passée que l’on se demande ce qu’il aurait fallu faire, comment on aurait prévenir un tel événement éruptif. La mesure la plus radicale était, bien sûr, d’interdire totalement l’accès à un volcan potentiellement dangereux. La poussée de plus en plus forte du tourisme de masse rend la mise en place d’une telle mesure extrêmement difficile. On aurait pu, aussi, limiter l’accès du cratère à des petits groupes, et éviter ainsi qu’une quarantaine de personnes se fasse surprendre.

Pour le moment, l’accès à White Island est interdit et il risque fort de le rester pendant longtemps. Le traumatisme subi par les Néo-Zélandais sera long à évacuer.

Panache éruptif du Taal (Source: Disaster Risk Reduction Management Council)

Le cratère de White Island après l’explosion (Source: Helicopter Rescue Trust)

 

Volcan Taal (Philippines) : Prévision éruptive…ou pilotage à vue ?

Au cours de ma conférence « Volcans et risques volcaniques », j’explique que, malgré les outils technologiques ultra modernes (systèmes GPS, observations satellitaires, etc) dont disposent les scientifiques, la prévision volcanique reste très aléatoire, pour ne pas dire inexistante, surtout sur les volcans gris, les plus explosifs, donc les plus dangereux. Les terres étant très fertiles, des centaines de milliers de personnes vivent sur leurs pentes ou à proximité.

Lorsqu’un événement majeur se produit, les autorités mettent en général d’emblée en place le principe de précaution. On a tiré les leçons des éruptions meurtrières du passé et on n’attend plus de savoir si le volcan va se mettre vraiment en colère pour évacuer les populations menacées. La dernière éruption du Taal aux Philippines vient confirmer cette stratégie. Il suffit d’observer le déroulement des événements pour s’en rendre compte. Examinons les bulletins d’information émis par le PHIVOLCS (Philippine Institute of Volcanology and Seismomogy) pendant les jours qui ont précédé le réveil du volcan.

Dans un bulletin émis le 8 janvier 2020 à 8 heures du matin, le PHIVOLCS indiquait que le réseau sismique du Taal avait enregistré 29 séismes d’origine volcanique au cours des dernières 24 heures. Les dernières mesures effectuée début janvier révélaient une légère baisse de la température du lac dans le Main Crater (cratère principal), de 31.6°C à 31.5°C. On observait aussi une baisse du niveau de l’eau de 0.34 mètre, contre 0.27 mètre précédemment. L’acidité de l’eau avait augmenté et était passée d’un pH de 2.81 à un pH de 2.75. Le réseau GPS montrait aussi une inflation du volcan, mais sans changement significatif par rapport aux mesures précédentes sur le long terme. Au vu de ces paramètres, le PHIVOLCS avait mis en place le niveau d’alerte à 1, sur une échelle de 5. Cela signifiait qu’ « une éruption dangereuse n’était pas imminente. »

Le bulletin émis le 9 janvier à 8 heures était en grande partie identique à celui de la veille.

Même son de cloche le 10 janvier au matin où le PHIVOLCS signalait toutefois deux séismes susceptibles d’avoir été ressentis par la population.

Bis repetita les 11 et 12 janvier à 8 heures. Les bulletins émis par le PHIVOLCS étaient en tout point identique à ceux des jours précédents. Le niveau d’alerte volcanique était maintenu à 1.

Changement de décor dans le bulletin du 12 janvier à 14h30 ! Le PHIVOLCS signalait des émissions de vapeur dans le Main Crater, probablement générés par une activité phréatique. Rien de vraiment significatif dans l’activité sismique et la déformation du volcan. L’Institut signalait une augmentation régulière de la teneur en CO2 de l’eau du lac de cratère depuis février 2019. Par précaution, le niveau d’alerte volcanique passait de 1 à 2 (probable intrusion magmatique pouvant conduire à une éruption).  Il était demandé à la population de ne pas s’approcher du Main Crater.

Ce même jour à 16 heures, le PHIVOLCS faisait passer le niveau d’alerte de 2 à 3 car l’activité éruptive s’intensifiait avec un panache de 1 km de hauteur et une hausse de la sismicité. L’Institut expliquait qu’il se produisait probablement une intrusion magmatique et conseillait l’évacuation des barangays (unités administratives) d’Agoncillo et Laurel dans la province de Batangas à cause du risque de coulées pyroclastiques et de tsunami.

Une heure trente plus tard, à 17h30, le niveau d’alerte passait de 3 à 4 (dangereuse éruption imminente). L’éruption s’était intensifiée depuis le précédent bulletin, avec un panache de 10 à 15 km de hauteur et des retombées de cendre vers le nord du volcan. Le PHIVOLCS notait la présence de tremor et une hausse de l’activité sismique. Des fissures s’étaient ouvertes et d’autres s’étaient agrandies. Le PHIVOLCS s’attendait à une éruption majeure « dans les prochaines heures ou les prochains jours.» En conséquence, l’Institut conseillait fortement l’évacuation totale de Volcano Island et de la population dans un rayon de 14 km du Main Crater.

L’activité éruptive s’est poursuivie les jours suivants, sans que l’on assiste toutefois à l’éruption cataclysmale annoncée par le PHIVOLCS. Le niveau d’alerte était maintenu à 4 sur 5.

Le 25 janvier 2020, sismicité, déformation de l’édifice volcanique et émissions de SO2 poursuivant leur décrue, le PHIVOLCS a décidé de ramener le niveau d’alerte à 3, sans exclure une baisse à 2 les jours suivant si la baisse d’activité se confirme. Les personnes évacuées ont été en grande partie autorisées à rentrer chez elle. Les écoles primaires et secondaires de la province de Batangas restent toutefois fermées car elles hébergent les habitants de Agoncillo et Laurel, localités qui n’ont pas été jugées suffisamment sures par l’Institut.

°°°°°°°°°°

Les événements que je viens de mentionner montrent que la sismicité est restée intense pendant plusieurs jours avant de décliner progressivement. La cendre a envahi Volcano Island qui, selon les autorités, est en passe de devenir un no man’s land où toute implantation de population devrait être officiellement interdite, mais on sait d’avance qu’une telle mesure sera difficile à mettre en place.

Une évacuation à grande échelle a été décrétée sur une zone d’un rayon de 14 km par rapport au Main Crater. La carte à risque du Taal montre qu’environ 460 000 personnes habitent dans cette zone. Le 21 janvier, 148 987 personnes séjournaient dans 493 centres d’évacuation, en sachant que des milliers d’autres s’étaient réfugiées chez des parents et amis ailleurs dans le pays. La population et l’armée empêchaient les habitants évacués de revenir chez eux.

Ces événements confirment que la gestion de l’éruption s’est faite au jour le jour, au vu des paramètres du moment, surtout en fonction de l’intensité du panache éruptif et des retombées de cendre. L’éruption majeure envisagée par le PHIVOLCS n’a jamais eu lieu. Le principe de précaution a toutefois permis de mettre des dizaines de milliers de personnes à l’abri d’une possible éruption de grande ampleur. Les autorités philippines avaient sûrement en tête l’éruption du Pinatubo en 1991. L’événement avait alors tué quelque 800 personnes, un bilan relativement modéré au vu de la puissance de l’éruption.

Etant donné notre incapacité à réellement prévoir l’évolution d’une éruption sur un volcan explosif de la Ceinture de Feu du Pacifique, l’adoption du principe de précaution est à mes yeux une sage décision. Les autorités philippines ont par ailleurs eu la bonne idée de décréter une évacuation à grande échelle dès le début de l’activité éruptive. En 2010, j’avais critiqué l’évacuation pas à pas décidée par les autorités indonésiennes lors de l’éruption du Mérapi et ses quelque 340 morts. Dans le cas du Taal, aucune victime n’est à déplorer à ce jour. Il est vrai que le volcan a eu la bonne idée de ne pas envoyer de coulées pyroclastiques, ce qui est une différence majeure avec l’éruption du Merapi.

Source: Disaster Risk Reduction Management Council

Une nouvelle technique pour essayer de prévoir les éruptions // A new technique to try to predict eruptions

Notre capacité à prévoir les éruptions est encore très faible aujourd’hui. Des progrès ont certes été réalisés au cours des dernières décennies avec de nouveaux instruments performants, mais les centaines de morts causées par les éruptions du Merapi (Indonésie) en 2010 et du Fuego (Guatemala) en 2018 montrent que nous sommes encore très loin de la prévision parfaite.
Une équipe de chercheurs de l’Illinois et du Michigan a testé une nouvelle technique qui, selon eux,  pourrait permettre de prévoir avec précision à quel moment une éruption volcanique se produira. La méthode utilise physique et statistique pour analyser la probabilité de modèles d’éruptions passées. Pour ce faire, les scientifiques ont étudié l’histoire éruptive du volcan Okmok en Alaska.
Un panache de cendre émis lors de l’éruption de l’Okmok en 2008 s’est étiré sur environ 1,6 km dans le ciel et a constitué un danger pour les moteurs d’avion. L’éruption fut une surprise. En effet, après une éruption en 1997, on avait observé des périodes de légère activité dans les années qui ont suivi, mais pratiquement pas de sismicité ou d’autres signes annonciateurs d’une éruption.
Selon les chercheurs, pour développer de meilleures prévisions, il est essentiel de comprendre les éruptions volcaniques qui s’écartent de la norme. Les éruptions sont généralement prévisibles au vu de la sismicité, de l’inflation de l’édifice volcanique et des émissions de gaz, ainsi que d’autres paramètres analysés au cours de la période précédant une éruption. Cependant, l’Okmok ne présentait aucun de ces paramètres.
L’équipe de chercheurs a utilisé le filtrage de Kalman – Ensemble Kalman Filter (EnKF) – une technique d’analyse de données statistiques qui a été améliorée après la Seconde Guerre mondiale. La version utilisée pour l’étude a été mise à jour en 1996 et a continué à être utilisée dans les prévisions météorologiques et climatiques, ainsi que dans l’océanographie physique. L’équipe de chercheurs a été la première à utiliser la méthode en volcanologie, en particulier pour l’étude de l’éruption de l’Okmok.
Les scientifiques ont constaté qu’il n’y avait pas eu d’augmentation de la sismicité avant l’éruption de l’Okmok en 2008. Cela pourrait s’expliquer par le fait que le réservoir magmatique sous le volcan avait conservé la même taille pendant qu’il se remplissait de gaz à haute température et de magma. Cela a entraîné une hausse de pression dans la chambre qui a provoqué le déplacement des roches environnantes, phénomène qui a fini par déclencher des séismes. Lors de l’éruption de 2008, il apparaît que la chambre magmatique s’est agrandie pour s’adapter à l’augmentation de pression, de sorte que l’activité sismique qui aurait dû normalement précéder l’éruption n’a pas eu lieu et n’a donc pas pu être détectée.
En regardant dans le passé grâce aux nouveaux modèles, les scientifiques ont pu constater que des contraintes s’étaient accumulées pendant des semaines dans les roches autour de la chambre magmatique et la croissance du système magmatique avait finalement entraîné sa rupture et l’éruption volcanique. La modélisation en amont et en aval a permis aux chercheurs d’observer l’évolution du système volcanique. Ils ont été en mesure de faire évoluer le nouveau modèle dans le temps et de prévoir le comportement éruptif de l’Okmok.
Cependant, l’équipe scientifique a ajouté que chaque volcan était différent et qu’un modèle spécifique devrait être élaboré  pour chacun d’eux.

Source: American Geophysical Union (AGU) – Geophysical Research Letters / The Watchers.

———————————————–

Our capacity to predict eruptions is still very low today. Progress has been made in the past decades with new effective instruments but the hundreds of deaths caused by the eruptions of Mt Merapi (Indonesia) in 2010 and Mt Fuego (Guatemala) in 2018 show that we are still very far from the perfect prediction.

A research team from Illinois and Michigan has tested a new technique that could possibly forecast how a volcanic eruption will happen accurately. The method combined physics and statistics to capture the probability of past eruption patterns. The scientists studied the history of the eruption of the Okmok Volcano in Alaska.

An ash plume from the eruption of Okmok in 2008 extended about 1.6 km into the sky and posed a hazard to aircraft engines. The eruption came a a surprise. Indeed, after an eruption in 1997, there were periods of slight unrest, but very little seismicity or other eruption precursors.

According to the researchers, in order to develop better forecasting, it is crucial to understand volcanic eruptions that deviate from the norm. Eruptions are commonly predicted by studying seismicity, inflation of the volcanic edifice and gas emissions, and other established parameters analused during the period that precedes an eruption. However, Okmok did not display any of the patterns.

The research team used a statistical data analysis technique called Ensemble Kalman Filter (EnKF) or Kalman filtering, which was improved after World War II. The version used for the study was updated in 1996 and has continued to be used in weather and climate forecasting, as well as physical oceanography. The research team was the first group to use the updated method in volcanology, especially for Okmok’s eruption study.

The researchers noticed there was a lack of increased seismicity before the eruption. A hypothesis explains that the reservoir under the volcano remained the same size as it filled with hot gases and magma. This resulted in pressure in the chamber that triggered surrounding rocks to move, eventually leading to earthquakes. In the 2008 eruption, it appears that the magma chamber grew larger to accommodate the increasing pressure, so that the precursor seismic activity could not be detected.

By looking back in time with the new models, the scientists could observe that stress had been building up in the rocks around the chamber for weeks, and the growth of the magma system ultimately led to its failure and eruption. The backward and forward modelling enabled researchers to observe the evolution of the volcanic system. They were also able to propagate the new model forward in time and predict Okmok’s eruptive behaviour afterward.

However, the scientific team added that since every volcano is different, a model must be specifically made for each of them.

Source: American Geophysical Union (AGU) – Geophysical Research Letters / The Watchers.

Vue du cratère de l’Okmok le 15 septembre 2008 (Crédit photo : Alaska Volcano Observatory)